JP3534743B1 - High-pressure tank using high-rigidity fiber and method for manufacturing the same - Google Patents

High-pressure tank using high-rigidity fiber and method for manufacturing the same

Info

Publication number
JP3534743B1
JP3534743B1 JP2003275438A JP2003275438A JP3534743B1 JP 3534743 B1 JP3534743 B1 JP 3534743B1 JP 2003275438 A JP2003275438 A JP 2003275438A JP 2003275438 A JP2003275438 A JP 2003275438A JP 3534743 B1 JP3534743 B1 JP 3534743B1
Authority
JP
Japan
Prior art keywords
fiber layer
liner
fiber
gpa
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003275438A
Other languages
Japanese (ja)
Other versions
JP2005036918A (en
Inventor
善樹 阪口
直樹 阪口
猛 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samtech Corp
Original Assignee
Samtech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samtech Corp filed Critical Samtech Corp
Priority to JP2003275438A priority Critical patent/JP3534743B1/en
Priority to DE10345159A priority patent/DE10345159B4/en
Application granted granted Critical
Publication of JP3534743B1 publication Critical patent/JP3534743B1/en
Publication of JP2005036918A publication Critical patent/JP2005036918A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0624Single wall with four or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • F17C2205/0397Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/224Press-fitting; Shrink-fitting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/018Adapting dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

【要約】 【課題】 小型で軽くしかも耐圧性に優れた高圧タンク
にする。 【解決手段】 高圧タンク1のライナー2外周面を被覆
する補強繊維層23を、ヤング率350GPa以上で破
断時の伸び0.7%以上の高剛性繊維をフープ巻きして
なり熱硬化性樹脂が含浸硬化された内側繊維層24と、
ヤング率280GPa以上350GPa未満で破断時の
伸び1.5%以上2.0%未満の繊維をヘリカル巻きし
てなり熱硬化性樹脂が含浸硬化された中間繊維層25
と、ヤング率230GPa以上280GPa未満で破断
時の伸び2.0%以上の繊維をハイアングルヘリカル巻
きしてなり熱硬化性樹脂が含浸硬化された外側繊維層2
6とで構成する。
A high pressure tank that is small, light, and excellent in pressure resistance. SOLUTION: A reinforcing fiber layer 23 covering an outer peripheral surface of a liner 2 of a high-pressure tank 1 is hoop-wrapped with a high-rigidity fiber having a Young's modulus of 350 GPa or more and an elongation at break of 0.7% or more. An impregnated and cured inner fiber layer 24;
An intermediate fiber layer 25 in which a fiber having a Young's modulus of 280 GPa or more and less than 350 GPa and an elongation at break of 1.5% or more and less than 2.0% is helically wound and a thermosetting resin is impregnated and cured.
And a high-angle helical winding of a fiber having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more, and impregnated and cured with a thermosetting resin.
6.

Description

【発明の詳細な説明】Detailed Description of the Invention 【技術分野】【Technical field】

【0001】この発明は、自動車用水素燃料タンク等に
適用される高剛性繊維を用いた高圧タンク及びその製造
方法に関するものである。
The present invention relates to a high-pressure tank using high-rigidity fiber applied to a hydrogen fuel tank for automobiles and the like, and a method for manufacturing the same.

【背景技術】[Background technology]

【0002】この種の高圧タンクは、アルミニウム合金
等の金属製ライナー外周面を炭素繊維等からなる補強繊
維層で被覆して構成されている。この補強繊維層は、フ
ィラメントワインディング法により、エポキシ樹脂等の
熱硬化性樹脂を含浸させた炭素繊維等の繊維をライナー
外周面に巻き付け、上記熱硬化性樹脂を硬化させること
によって構成される(例えば、特許文献1)。
A high-pressure tank of this type is constructed by coating the outer peripheral surface of a metal liner made of aluminum alloy or the like with a reinforcing fiber layer made of carbon fiber or the like. This reinforcing fiber layer is formed by winding a fiber such as a carbon fiber impregnated with a thermosetting resin such as an epoxy resin around the outer peripheral surface of the liner by a filament winding method and curing the thermosetting resin (for example, , Patent Document 1).

【特許文献1】特開平10−292899号公報(第3
頁、図1,4)
[Patent Document 1] Japanese Patent Laid-Open No. 10-292899 (3rd
(Page, Figure 1, 4)

【発明の開示】DISCLOSURE OF THE INVENTION 【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0003】ところで、上記の特許文献1の高圧タンク
は、高圧タンクとはいっても、精々20MPa程度のガ
ス充填圧クラスであり、これを例えば自動車の水素燃料
タンクとして適用した場合、1回のガス充填で走行でき
る距離は実用レベルに達していない。因みに、容量10
0リットルの高圧タンクに水素ガスを25MPa充填し
た場合、走行距離は約180kmで、実用レベルである
500kmにはほど遠いのが現実である。
By the way, the high-pressure tank of the above-mentioned Patent Document 1 is a gas filling pressure class of about 20 MPa at best even though it is a high-pressure tank. The distance that can be traveled by filling has not reached the practical level. By the way, capacity 10
When a high pressure tank of 0 liter is filled with 25 MPa of hydrogen gas, the traveling distance is about 180 km, which is far from the practical level of 500 km.

【0004】そこで、1回のガス充填で走行距離を長く
するには、タンク容量を大きくするか、あるいはガス充
填圧を高くする必要がある。
Therefore, in order to extend the traveling distance with one gas filling, it is necessary to increase the tank capacity or increase the gas filling pressure.

【0005】しかし、タンク容量を大きくすると積載重
量が増大して好ましくなく、また、占有空間が大きくな
るため、設置スペースに限界がある自動車には不向きで
ある。
However, increasing the tank capacity undesirably increases the weight to be loaded and occupies a large space, which is not suitable for an automobile having a limited installation space.

【0006】一方、ガス充填圧を高めるには、タンク本
体を構成するライナーの厚みを厚くする必要があるが、
この場合も、積載重量が増大するため好ましくない。
On the other hand, in order to increase the gas filling pressure, it is necessary to increase the thickness of the liner that constitutes the tank body.
Also in this case, the loaded weight increases, which is not preferable.

【0007】この発明はかかる点に鑑みてなされたもの
であり、その目的とするところは、小型で軽くしかも耐
圧性に優れた高圧タンクを開発することである。
The present invention has been made in view of the above points, and an object of the present invention is to develop a high pressure tank which is small in size, light in weight and excellent in pressure resistance.

【課題を解決するための手段】[Means for Solving the Problems]

【0008】上記の目的を達成するため、この発明は、
ライナーの外周面を被覆する補強繊維層を強化したこと
を特徴とする。
In order to achieve the above object, the present invention provides
The reinforcing fiber layer that covers the outer peripheral surface of the liner is reinforced.

【0009】具体的には、この発明は、補強繊維層に高
剛性繊維を用いた高圧タンク及びその製造方法を対象と
し、次のような解決手段を講じた。
Specifically, the present invention is directed to a high-pressure tank using a high-strength fiber in a reinforcing fiber layer and a method for manufacturing the same, and has taken the following solving means.

【0010】すなわち、請求項1及び2に記載の発明
は、前者の高剛性繊維を用いた高圧タンクに関するもの
であり、そのうち、請求項1に記載の発明は、アルミニ
ウム合金製の短筒状ブランク材を塑性変形させて筒状胴
部の一端に椀状鏡部を介してガス取出筒部が突設されて
構成され、このガス取出筒部は上記胴部の3倍以上の厚
みに設定され、上記鏡部は胴部からガス取出筒部に行く
に従って胴部の厚みからガス取出筒部の厚みに漸次増大
していて35〜75MPaの高圧ガスが充填される筒状
の金属製ライナーと、上記ライナーのガス取出筒部から
鏡部にかけての外周に嵌着された金属製の筒状補強カラ
ーと、上記ライナー外周面を被覆する補強繊維層とを備
え、上記補強繊維層は、ヤング率350GPa以上で破
断時の伸び0.7%以上の高剛性繊維をフープ巻きして
なり熱硬化性樹脂が含浸硬化された内側繊維層と、ヤン
グ率280GPa以上350GPa未満で破断時の伸び
1.5%以上2.0%未満の繊維をヘリカル巻きしてな
り熱硬化性樹脂が含浸硬化された中間繊維層と、ヤング
率230GPa以上280GPa未満で破断時の伸び
2.0%以上の繊維をライナー中心線に対する繊維角度
が上記中間繊維層の繊維角度よりも大きくなるようにハ
イアングルヘリカル巻きしてなり熱硬化性樹脂が含浸硬
化された外側繊維層とで構成され、上記補強繊維層を構
成する各繊維層は、繊維を偏平に集束して熱硬化性樹脂
を含浸させた繊維テープをプリプレグ状態で巻き付けて
上記熱硬化性樹脂を硬化させて構成されていることを特
徴とする。
[0010] That is, the invention described in claim 1 and 2 relates to a high-pressure tank using the high-rigidity fiber in the former, of which, according to a first aspect of the invention, Arumini
Cylindrical body made by plastically deforming a short tubular blank made of um alloy
A gas extraction cylinder is projected at one end of the chamber through a bowl-shaped mirror.
This gas extraction cylinder is three times thicker than the body.
The mirror part goes from the body part to the gas extraction cylinder part.
The thickness of the body is gradually increased from the thickness of the body according to
And a tubular metal liner filled with a high pressure gas of 35 to 75 MPa, and a gas extraction tubular portion of the liner.
Metallic cylindrical reinforcing collar fitted around the mirror part
And a reinforcing fiber layer that covers the outer peripheral surface of the liner. The reinforcing fiber layer is formed by hoop-winding high-rigidity fibers having a Young's modulus of 350 GPa or more and an elongation at break of 0.7% or more, and is thermosetting. Intermediate layer in which a thermosetting resin is impregnated and cured by helically winding an inner fiber layer in which a resin is impregnated and cured and a fiber having a Young's modulus of 280 GPa or more and less than 350 GPa and an elongation at break of 1.5% or more and less than 2.0% A high-angle helical winding of a fiber layer and a fiber having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more so that the fiber angle with respect to the liner center line is larger than the fiber angle of the intermediate fiber layer. The reinforcing fiber layer is composed of an outer fiber layer in which a thermosetting resin is impregnated and cured.
Each fiber layer that is formed is a thermosetting resin formed by flatly bundling the fibers.
Wrap the fiber tape impregnated with prepreg
It is characterized by being configured by curing the thermosetting resin .

【0011】上記の構成により、請求項1に記載の発明
では、ヤング率350GPa以上で破断時の伸び0.7
%以上の高剛性繊維からなるフープ巻きの内側繊維層
は、ライナーに35〜75MPaの高圧が加わっても伸
び難いため、この高剛性繊維からなる内側繊維層がガス
充填圧によってライナーに作用するライナー径方向の引
張応力に十分に抗し得てライナーの耐疲労性が向上す
る。この伸び難い高剛性繊維は反面、耐衝撃性に劣る
が、その外側のヤング率230GPa以上280GPa
未満で破断時の伸び2.0%以上の繊維からなるハイア
ングルヘリカル巻きの外側繊維層により、耐衝撃性が確
保される。さらに、ヤング率280GPa以上350G
Pa未満で破断時の伸び1.5%以上2.0%未満の繊
維からなるヘリカル巻きの中間繊維層により、ライナー
の中心線方向の耐力が向上する。しかも、このヘリカル
巻きの中間繊維層は、フープ巻きの内側繊維層に比べて
荷重分担が約半分でよいので、それほど高剛性は要求さ
れず、巻き易さとコスト面を考慮して内側繊維層と外側
繊維層との中間の剛性に設定しているため、必要以上に
層厚を厚くしなくてよい。したがって、タンク容量が小
さくかつライナーの厚みが薄くても、35〜75MPa
の高圧ガスの充填が可能になり、小型で軽くしかも耐圧
性に優れた高圧タンクが実現される。
With the above structure, in the invention of claim 1, the Young's modulus is 350 GPa or more and the elongation at break is 0.7.
% Of the high-rigidity fiber inside the hoop is difficult to stretch even when a high pressure of 35 to 75 MPa is applied to the liner, so the inner fiber layer of the high-rigidity fiber acts on the liner due to the gas filling pressure. The tensile stress in the radial direction can be sufficiently resisted to improve the fatigue resistance of the liner. Although this high-rigidity fiber that is hard to stretch is inferior in impact resistance, its outside Young's modulus is 230 GPa or more and 280 GPa.
Impact resistance is ensured by the outer fiber layer of the high-angle helical winding, which is made up of fibers having an elongation at break of 2.0% or more at breakage. Furthermore, Young's modulus of 280 GPa or more and 350 G
The helically wound intermediate fiber layer made of fibers having an elongation at break of 1.5% or more and less than 2.0% under Pa improves the proof strength of the liner in the direction of the center line. Moreover, since the load distribution of the intermediate fiber layer of the helical winding is about half that of the inner fiber layer of the hoop winding, high rigidity is not required so much, and in consideration of easiness of winding and cost, the inner fiber layer is Since the rigidity is set in the middle of that of the outer fiber layer, it is not necessary to increase the layer thickness more than necessary. Therefore, even if the tank capacity is small and the liner is thin, it is 35 to 75 MPa.
It is possible to fill the high-pressure gas, and it is possible to realize a compact, lightweight, high-pressure tank with excellent pressure resistance.

【0012】また、一般に、高剛性繊維は硬いため、紐
状の形態では滑り易くてライナーに巻き難く、弛みが生
じてライナーに作用する引張応力を全繊維に均等に分配
し辛いが、この発明では、特に、高剛性繊維を偏平なテ
ープにして用いるため、ライナーに沿わせ易く、ライナ
ーに弛みなく巻き付けることが可能で上記引張応力が全
繊維に均等に分配され、ライナーの耐疲労性向上が容易
に実現される。
[0012] In general, for high rigidity fiber is harder, less likely around the liner slippery in cord-like form, although difficult to uniformly distribute the tensile stress acting on the liner occurs slack in the total fiber, the present invention In particular, since the high-rigidity fiber is used as a flat tape, it is easy to follow the liner and can be wound around the liner without slack, and the above tensile stress is evenly distributed to all the fibers, improving the fatigue resistance of the liner. Easy to achieve.

【0013】さらに、ガス取出筒部が胴部の3倍以上の
厚みに設定され、そこから鏡部が漸次薄くなって胴部に
続いているため、上記ガス取出筒部及び鏡部の強度が確
保され、上述の補強繊維層によるライナーの耐疲労性向
上及び耐衝撃性確保と相俟って、35〜75MPaの高
圧に十分に耐え得る高圧タンクとなる。また、上記胴部
が薄くてもガス取出筒部及び鏡部が厚くなって強度が確
保されるため、胴部が薄い分だけ高圧タンク全体の重量
が軽減し、かつ材料費もあまり掛からない。
Further , since the gas take-out tube portion is set to have a thickness three times or more that of the body portion, and the mirror portion is gradually thinned from there to continue to the body portion, the strength of the gas take-out tube portion and the mirror portion is increased. A high-pressure tank that is secured and can sufficiently withstand a high pressure of 35 to 75 MPa in combination with the improvement of the fatigue resistance and the impact resistance of the liner due to the reinforcing fiber layer described above. Further, even if the body is thin, the gas extraction cylinder and the mirror are thickened to secure the strength. Therefore, the weight of the high-pressure tank is reduced due to the thinner body, and the material cost is not so high.

【0014】加えて、応力が集中し易いガス取出筒部及
びその近傍の鏡部の実質的な厚みが補強カラーの厚みに
より増大して当該箇所の強度がさらに確保され、35〜
75MPaの高圧に一層耐え得る高圧タンクとなる。ま
た、補強カラーがライナー全体ではなく、応力が集中し
易い鏡部及びガス取出筒部にだけ部分的に嵌着されてい
るため、高圧タンクの重量がそれほど増加せず軽量化が
図られるとともに、加工の簡易化、低価格化が図られ
る。
In addition , the substantial thickness of the gas-extracting tube portion where stress is likely to be concentrated and the mirror portion in the vicinity thereof is increased by the thickness of the reinforcing collar to further secure the strength of the relevant portion.
The high-pressure tank can further withstand a high pressure of 75 MPa. Further, since the reinforcing collar is partially fitted not only to the entire liner but to the mirror portion and the gas extraction tube portion where stress is likely to concentrate, the weight of the high pressure tank does not increase so much and the weight is reduced, Simplification of processing and cost reduction can be achieved.

【0015】請求項に記載の発明は、請求項に記載
の発明において、補強カラーは、ガス取出筒部に嵌着さ
れる筒部と、この筒部の一端から外側方に張り出す張出
部とからなり、この張出部裏面には、リング状膨出部が
膨出して形成され、一方、鏡部のガス取出筒部との境目
近傍における外周には、上記補強カラーを上記ライナー
のガス取出筒部から鏡部にかけての外周に嵌着した状態
で、上記膨出部が嵌入するリング状嵌合凹部が形成され
ていることを特徴とする。
[0015] According to a second aspect of the invention, Zhang in the invention described in claim 1, the reinforcement collar which projects a cylindrical portion which is fitted to the gas extraction tube portion, from one end of the cylindrical portion outward A ring-shaped bulge is formed on the back surface of the bulge, and the reinforcing collar is provided on the outer periphery of the mirror near the boundary with the gas outlet cylinder. The ring-shaped fitting recess into which the bulging portion fits is formed in a state where the ring-shaped fitting concave portion is fitted in the outer periphery from the gas extraction cylinder portion to the mirror portion.

【0016】上記の構成により、請求項に記載の発明
では、補強カラーの膨出部がライナーの嵌合凹部に嵌入
することで、両者の嵌合状態が確実になる。また、上記
膨出部があることで当該部分の補強カラーの厚みが増大
し、その分だけ強度アップとなる。
With the above construction, in the invention according to the second aspect , the bulging portion of the reinforcing collar is fitted into the fitting concave portion of the liner, so that the fitted state of the both is secured. Further, the presence of the bulging portion increases the thickness of the reinforcing collar in that portion, and the strength is correspondingly increased.

【0017】請求項及びに記載の発明は、後者の高
剛性繊維を用いた高圧タンクの製造方法に関するもので
あり、そのうち、請求項に記載の発明は、アルミニウ
ム合金製の短筒状ブランク材を塑性変形させて筒状胴部
の一端に椀状鏡部を介してガス取出筒部が突設されて構
成され、このガス取出筒部は上記胴部の3倍以上の厚み
に設定され、上記鏡部は胴部からガス取出筒部に行くに
従って胴部の厚みからガス取出筒部の厚みに漸次増大
し、かつ上記ガス取出筒部から鏡部にかけての外周に金
属製の筒状補強カラーが嵌着されて35〜75MPaの
高圧ガスが充填される筒状の金属製ライナーを用意し、
まず、ヤング率350GPa以上で破断時の伸び0.7
%以上の高剛性繊維を偏平に集束して熱硬化性樹脂を含
浸させた繊維テープをプリプレグ状態で上記ライナー外
周面にフープ巻きして内側繊維層を形成し、次いで、ヤ
ング率280GPa以上350GPa未満で破断時の伸
び1.5%以上2.0%未満の繊維を偏平に集束して熱
硬化性樹脂を含浸させた繊維テープをプリプレグ状態で
上記内側繊維層外周面にヘリカル巻きして中間繊維層を
形成し、その後、ヤング率230GPa以上280GP
a未満で破断時の伸び2.0%以上の繊維を偏平に集束
して熱硬化性樹脂を含浸させた繊維テープをプリプレグ
状態で上記中間繊維層外周面にライナー中心線に対する
繊維角度が上記中間繊維層の繊維角度よりも大きくなる
ようにハイアングルヘリカル巻きして外側繊維層を形成
して、上記内側繊維層、中間繊維層及び外側繊維層で構
成された補強繊維層により上記ライナー外周面を被覆
し、しかる後、上記補強繊維層で被覆されたライナーを
乾燥室に搬入して加熱し、補強繊維層に含浸している熱
硬化性樹脂を硬化させることを特徴とする。
The invention described in claims 3 and 4 relates to a method for manufacturing a high-pressure tank using the latter high-rigidity fiber, of which the invention described in claim 3 is aluminum.
Tubular body made by plastically deforming a short tubular blank made of aluminum alloy
A gas extraction cylinder is projected from one end of the
The gas extraction cylinder is more than 3 times thicker than the body.
The mirror part is set to go to the gas extraction tube part from the body part.
Therefore, gradually increase from the thickness of the body to the thickness of the gas extraction cylinder.
In addition, the outer circumference from the gas extraction cylinder to the mirror is
With a tubular reinforcing collar made of metal,
Prepare a cylindrical metal liner filled with high pressure gas,
First, elongation at break is 0.7 at Young's modulus of 350 GPa or more.
% Or more by flatly focus the high-rigidity fiber fiber tape impregnated with thermosetting resin to form an inner fiber layer and winding hoop on the liner outer circumferential surface in a prepreg state and then, less than Young's modulus 280 GPa 350 GPa A fiber tape in which fibers having a breaking elongation of 1.5% or more and less than 2.0% are flatly bundled and impregnated with a thermosetting resin is helically wound around the outer peripheral surface of the inner fiber layer in a prepreg state to form an intermediate fiber. Layer, then Young's modulus of 230 GPa or more and 280 GP
A fiber tape which is less than a and has an elongation at break of 2.0% or more is flatly bundled and impregnated with a thermosetting resin. A high-angle helical winding is performed so as to be larger than the fiber angle of the fiber layer to form an outer fiber layer, and the liner outer peripheral surface is formed by the reinforcing fiber layer composed of the inner fiber layer, the intermediate fiber layer and the outer fiber layer. It is characterized in that the liner coated with the reinforcing fiber layer is carried into a drying chamber and heated to cure the thermosetting resin impregnated in the reinforcing fiber layer.

【0018】上記の構成により、請求項に記載の発明
では、繊維をまとめてテープ状の形態でライナーに巻き
付けることから、巻付け作業が簡単に行われる。また、
繊維をウェットワインディング法でライナー外周面に巻
き付ける場合は、液状の熱硬化性樹脂が作業場に滴り落
ちて作業環境が悪化するが、この発明では、熱硬化性樹
脂がある程度硬化してプリプレグ状態(B状態)となっ
た繊維テープをライナーに巻き付けるため、熱硬化性樹
脂が作業場に滴り落ちず、作業環境が悪化しない。
With the above structure, in the invention according to the third aspect , the fibers are bundled and wound around the liner in the form of a tape, so that the winding operation is easily performed. Also,
When the fibers are wound around the outer peripheral surface of the liner by the wet winding method, the liquid thermosetting resin drips into the work place to deteriorate the working environment. However, in the present invention, the thermosetting resin is cured to some extent and the prepreg state (B Since the fiber tape in the (state) is wrapped around the liner, the thermosetting resin does not drip into the workplace and the working environment does not deteriorate.

【0019】請求項に記載の発明は、請求項に記載
の発明において、乾燥室に搬入されたライナーを内外か
ら加熱することを特徴とする。
A fourth aspect of the present invention is characterized in that, in the third aspect of the invention, the liner carried into the drying chamber is heated from inside and outside.

【0020】上記の構成により、請求項に記載の発明
では、補強繊維層の熱硬化性樹脂を外側からのみ加熱す
る場合には、熱硬化性樹脂は外側から内側へと順に硬化
し、硬化に伴って収縮する。この際、内側の未硬化樹脂
は外側の硬化樹脂から圧縮力を受け、上記内側の未硬化
樹脂が絡まっている繊維に弛みが生ずる。このように、
繊維に弛みが生ずると、ガス充填圧によってライナーに
作用する引張応力を全繊維に均等に配分できず、早期破
断に至るが、この発明では、補強繊維層の熱硬化性樹脂
は、層内外両側からほぼ同時に硬化するため、内側の繊
維に弛みが生ずる事態が極力回避され、引張応力が全繊
維に均等に分配されて早期破断に至らない。
With the above construction, in the invention according to claim 4, when the thermosetting resin of the reinforcing fiber layer is heated only from the outer side, the thermosetting resin is cured from the outer side to the inner side in order and is cured. Contracts with. At this time, the uncured resin on the inner side receives a compressive force from the cured resin on the outer side, and the fibers entangled with the uncured resin on the inner side are loosened. in this way,
When the fiber is loosened, the tensile stress acting on the liner due to the gas filling pressure cannot be evenly distributed to all the fibers, leading to early fracture. However, in the present invention, the thermosetting resin of the reinforcing fiber layer is Since the fibers harden almost at the same time, the occurrence of slack in the inner fibers is avoided as much as possible, and the tensile stress is evenly distributed to all the fibers, and premature rupture does not occur.

【発明の効果】【The invention's effect】

【0021】請求項1に係る発明によれば、ヤング率3
50GPa以上で破断時の伸び0.7%以上の伸び難い
高剛性繊維からなるフープ巻きの内側繊維層により、3
5〜75MPaの高圧がライナーに掛かることによって
生ずるライナー径方向の引張応力に十分に抗し得てライ
ナーの耐疲労性を向上させることができる。また、高剛
性繊維であるがために劣る耐衝撃性をその外側のヤング
率230GPa以上280GPa未満で破断時の伸び
2.0%以上の繊維からなるハイアングルヘリカル巻き
の外側繊維層により補うことができる。さらに、ヤング
率280GPa以上350GPa未満で破断時の伸び
1.5%以上2.0%未満の繊維からなるヘリカル巻き
の中間繊維層によりライナー中心線方向の耐力を層厚を
必要以上に厚くしないで向上させることができる。した
がって、タンク容量が小さくかつライナーの厚みが薄く
て小型で軽量の35〜75MPaの高圧ガスに耐え得る
高圧タンクとすることができる
According to the invention of claim 1, the Young's modulus is 3
3 due to the inner fiber layer of the hoop winding, which consists of highly rigid fibers with elongation at break of 0.7% or more at 50 GPa or more
It is possible to sufficiently resist the tensile stress in the radial direction of the liner caused by applying a high pressure of 5 to 75 MPa to the liner, and improve the fatigue resistance of the liner. Further, since the fiber is a high-rigidity fiber, inferior impact resistance can be supplemented by an outer fiber layer of a high-angle helical winding having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more. it can. Further, the intermediate fiber layer of the helical winding, which has a Young's modulus of 280 GPa or more and less than 350 GPa and an elongation at break of 1.5% or more and less than 2.0%, does not increase the yield strength in the liner center line direction more than necessary. Can be improved. Therefore, it is possible to provide a high-pressure tank having a small tank capacity, a thin liner thickness, a small size, and a light weight and capable of withstanding a high-pressure gas of 35 to 75 MPa .

【0022】に、硬くて巻き難い高剛性繊維を偏平な
テープ状の形態として用いているので、繊維を弛みなく
ライナーに巻き付けて引張応力を全繊維に均等配分して
ライナーの耐疲労性を向上させることができる。
[0022] In particular, because of the use of hard and winding hard rigid fiber as flat tape-like configuration, the tensile stress is wound around the slack without liner fibers evenly distributed to all fiber fatigue resistance of liner Can be improved.

【0023】さらに、ガス取出筒部を円筒形の胴部の3
倍以上の厚みに設定し、そこから椀状鏡部を漸次薄くし
て胴部に続かせているので、上記ガス取出筒部及び鏡部
の強度を確保でき、35〜75MPaの高圧に十分に耐
え得る高圧タンクとすることができる。また、上記胴部
が薄くてもガス取出筒部及び鏡部を厚くして強度を確保
できるので、胴部が薄い分だけ高圧タンクを軽量化でき
るとともに、コストダウンを図ることができる。
Further , the gas take-out tube portion is a cylindrical body portion 3
Since the thickness of the bowl-shaped mirror portion is set to be more than double, and the bowl-shaped mirror portion is gradually thinned from there to continue to the body portion, it is possible to secure the strength of the gas extraction cylinder portion and the mirror portion, and to sufficiently withstand a high pressure of 35 to 75 MPa. It can be a high-pressure tank that can withstand. Further, even if the body portion is thin, the gas extraction cylinder portion and the mirror portion can be thickened to secure the strength, so that the high-pressure tank can be made lighter and the cost can be reduced due to the thinner body portion.

【0024】加えて、ライナーの応力が集中し易い鏡部
及びガス取出筒部に補強カラーを嵌着したので、上記ガ
ス取出筒部及びその近傍の鏡部の厚みを補強カラーの厚
みで補って当該箇所を十分に強化して、35〜75MP
aの高圧に一段と耐え得る高圧タンクとすることができ
る。また、上記補強カラーをライナーに部分的に嵌着す
るだけなので、高圧タンクの軽量化、加工の簡易化及び
低価格化を達成することができる。
In addition, since the reinforcing collar is fitted to the mirror portion and the gas extraction cylinder portion where the stress of the liner tends to concentrate, the thickness of the gas extraction cylinder portion and the mirror portion in the vicinity thereof is supplemented by the thickness of the reinforcement collar. Fully strengthening the part, 35-75MP
A high-pressure tank that can further withstand the high pressure of a can be provided. Further, since the reinforcing collar is only partially fitted to the liner, it is possible to reduce the weight of the high-pressure tank, simplify the processing, and reduce the cost.

【0025】請求項に係る発明によれば、補強カラー
の膨出部をライナーの嵌合凹部に嵌入させたので、両者
を確実に嵌合させることができる。また、上記膨出部が
あることで当該部分の補強カラーの厚みを増大してその
分だけ強度アップを図ることができる。
According to the second aspect of the invention, since the bulging portion of the reinforcing collar is fitted in the fitting concave portion of the liner, the both can be fitted securely. In addition, the presence of the bulging portion can increase the thickness of the reinforcing collar in that portion and increase the strength accordingly.

【0026】請求項に係る発明によれば、繊維をまと
めてテープ状の形態でライナーに巻き付けるので、巻付
け作業を簡単に行うことができる。また、繊維に含浸す
る熱硬化性樹脂を液状ではなく硬化がある程度進行した
プリプレグ状態にしているので、熱硬化性樹脂が作業場
に滴下することによる作業環境の悪化を防止することが
できる。
According to the third aspect of the present invention, the fibers are bundled and wound around the liner in the form of a tape, so that the winding operation can be easily performed. Further, since the thermosetting resin impregnating the fibers is not in a liquid state but in a prepreg state in which the curing has progressed to some extent, it is possible to prevent the working environment from being deteriorated due to the thermosetting resin being dropped into the work place.

【0027】請求項に係る発明によれば、乾燥室でラ
イナーを内外から加熱して、補強繊維層の熱硬化性樹脂
の硬化を層内外両側からほぼ同時に進行させるので、内
側の繊維を弛まないようにすることができ、引張応力を
全繊維に均等分配して早期破断を防止することができ
る。
According to the fourth aspect of the present invention, the liner is heated from the inside and outside in the drying chamber to cure the thermosetting resin of the reinforcing fiber layer from both inside and outside of the layer at substantially the same time. The tensile stress can be evenly distributed over all fibers to prevent premature rupture.

【発明を実施するための最良の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0028】以下、この発明の実施の形態について図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0029】(実施の形態1) 図1及び図2はこの発明の実施の形態1に係る高剛性繊
維を用いた高圧タンク1を示す。この高圧タンク1は、
水素ガス等の35〜75MPaの高圧ガスが充填される
タンク本体であるライナー2を備え、このライナー2
は、横断面円形の筒状胴部3の一端に椀状鏡部4を介し
て小径で横断面円形のガス取出筒部5が一体に突設さ
れ、このガス取出筒部5側から高圧ガスを高圧タンク1
(ライナー2)内に充填したり、あるいは高圧タンク1
(ライナー2)から取り出したりするようになってい
る。上記ガス取出筒部5にはネジ孔6が形成され、この
ネジ孔6にバルブ装置7が装着されている。このバルブ
装置7は、図示しないが開閉バルブと減圧バルブとを備
えたバルブ機構8がカプセル9内に収容されて構成さ
れ、フランジ10を上記ガス取出筒部5の開口端に当接
させて上記カプセル9(バルブ機構8)を高圧タンク1
内に収容した内蔵タイプ、いわゆるインタンクバルブで
ある。このバルブ装置7の高圧タンク1外には、高圧タ
ンク1に低圧ガス配管を接続するための配管接続部11
が突設されている。一方、上記胴部3の他端にも、椀状
鏡部12を介して小径で横断面円形の筒部13が一体に
突設され、この筒部13にもネジ孔14が形成され、こ
のネジ孔14に高圧ガスに対する気密性を保持するため
の盲プラグ15が装着され、これにより、ライナー2内
に高圧ガスを収容する密閉された中空部16が形成され
ている。
(Embodiment 1) FIGS. 1 and 2 show a high-pressure tank 1 using high-rigidity fiber according to Embodiment 1 of the present invention. This high pressure tank 1
A liner 2 which is a tank body filled with a high pressure gas of 35 to 75 MPa such as hydrogen gas is provided.
Is a cylindrical body 3 having a circular cross section, and a small-diameter circular gas cross-section 5 is integrally projected from one end of the cylindrical mirror 3 through a bowl-shaped mirror 4. High pressure tank 1
Fill inside (liner 2), or high pressure tank 1
It is designed to be taken out from (liner 2). A screw hole 6 is formed in the gas take-out cylinder portion 5, and a valve device 7 is attached to the screw hole 6. The valve device 7 is configured by accommodating a valve mechanism 8 including an opening / closing valve and a pressure reducing valve, which are not shown, in a capsule 9. Capsule 9 (valve mechanism 8) in high pressure tank 1
It is a built-in type, so-called in-tank valve, housed inside. Outside the high pressure tank 1 of the valve device 7, a pipe connecting portion 11 for connecting a low pressure gas pipe to the high pressure tank 1.
Is projected. On the other hand, a cylindrical portion 13 having a small diameter and a circular cross section is integrally provided on the other end of the body portion 3 via a bowl-shaped mirror portion 12, and a screw hole 14 is also formed in this cylindrical portion 13. A blind plug 15 for maintaining airtightness with respect to high pressure gas is attached to the screw hole 14, thereby forming a sealed hollow portion 16 for containing the high pressure gas in the liner 2.

【0030】上記高圧タンク1は、例えば、JIS A
6061やJIS A 6062等のアルミニウム合金か
らなる金属製で、成形後にT6処理等の熱処理が施され
てなるものであり、短筒状ブランク材を塑性変形させて
成形され、上記鏡部4,12、ガス取出筒部5及び筒部
13は胴部3の3倍以上の厚みに形成されている。特
に、上記鏡部4,12は、胴部3からガス取出筒部5及
び筒部13に近づくに従って胴部3の厚みからガス取出
筒部5及び筒部13の厚みに漸次増大しており、これに
より、応力が集中し易い鏡部4,12を強化している。
The high-pressure tank 1 is, for example, JIS A
It is made of a metal such as 6061 or JIS A 6062 made of an aluminum alloy, and is formed by subjecting it to heat treatment such as T6 treatment after molding. The gas extraction tubular portion 5 and the tubular portion 13 are formed to have a thickness three times or more that of the body portion 3. In particular, the mirror portions 4 and 12 gradually increase from the thickness of the body portion 3 to the thicknesses of the gas outlet tubular portion 5 and the tubular portion 13 as they approach the gas outlet tubular portion 5 and the tubular portion 13 from the barrel portion 3, This strengthens the mirror portions 4 and 12 where stress is easily concentrated.

【0031】上記ライナー2のガス取出筒部5及び筒部
13から鏡部4,12にかけての外周には、焼ばめによ
り金属製の筒状補強カラー18が一体に嵌着されてい
る。この補強カラー18は、上記ガス取出筒部5及び筒
部13とほぼ厚みが等しい横断面円形の筒部19と、こ
の筒部19の一端に一体に形成されて外側方に張り出し
た張出部20とからなり、この張出部20の厚みは外端
に近づくに従って薄くなっており、これにより、張出部
20外端が段差なく鏡部4,12外表面に沿うようにな
っている。また、上記補強カラー18の内部には、上記
筒部19及び張出部20を上下に貫通する嵌合孔22が
形成されている。この補強カラー18は、例えば、SN
CM440、SCM440、SKD61等の合金鋼又は
チタン合金からなる金属製で、鍛造成形や旋削加工され
てなるものであるが、これに限定されず、強度/重量比
がアルミニウムよりも高いものであればよく、これによ
れば、重量軽減に大きく貢献することができる。そし
て、上記補強カラー18は、その嵌合孔22に上記ライ
ナー2のガス取出筒部5及び筒部13を挿入した状態
で、上記筒部19が焼ばめによりガス取出筒部5及び筒
部13に一体に外嵌合されているとともに、上記張出部
21が鏡部4,12外表面に一体に接合されている。
A metal cylindrical reinforcing collar 18 is integrally fitted to the outer circumference of the liner 2 from the gas extracting cylinder portion 5 and the cylinder portion 13 to the mirror portions 4 and 12 by shrink fitting. The reinforcing collar 18 is a tubular portion 19 having a circular cross section with a thickness substantially equal to that of the gas take-out tubular portion 5 and the tubular portion 13, and an overhanging portion formed integrally with one end of the tubular portion 19 and projecting outward. The thickness of the overhanging portion 20 becomes thinner toward the outer end, so that the outer end of the overhanging portion 20 follows the outer surfaces of the mirror portions 4 and 12 without a step. In addition, a fitting hole 22 is formed inside the reinforcing collar 18 so as to vertically pass through the tubular portion 19 and the protruding portion 20. This reinforcing collar 18 is, for example, SN
The metal is made of alloy steel such as CM440, SCM440, SKD61 or titanium alloy, and is formed by forging or turning, but is not limited to this, and the strength / weight ratio is higher than that of aluminum. Well, this can greatly contribute to weight reduction. The reinforcing collar 18 is fitted with a fitting hole 22 into which the gas take-out cylinder 5 and the cylinder 13 of the liner 2 are inserted, and the cylinder 19 is shrink-fitted into the gas take-out cylinder 5 and the cylinder 13. The protrusion 13 is integrally fitted on the outer surface of the mirror portion 13, and is integrally joined to the outer surfaces of the mirror portions 4 and 12.

【0032】上記ライナー2外周面は補強繊維層23で
被覆されている。この補強繊維層23は、ライナー2外
周面に繊維を巻き付けることによって形成される。この
補強繊維層23は、上記ライナー2の胴部3外周面と接
触し胴部3を被覆する内側繊維層24と、この内側繊維
層24外周面から筒部19にかけて接触しライナー2の
ほぼ全体を被覆する中間繊維層25と、この中間繊維層
25外周面と接触しライナー2の胴部3から鏡部4,1
2の途中にかけてを被覆する外側繊維層26とで構成さ
れている。
The outer peripheral surface of the liner 2 is covered with a reinforcing fiber layer 23. The reinforcing fiber layer 23 is formed by winding fibers around the outer peripheral surface of the liner 2. The reinforcing fiber layer 23 is in contact with the outer peripheral surface of the body portion 3 of the liner 2 and covers the inner portion of the body portion 3 and the inner fiber layer 24 is in contact with the outer peripheral surface of the inner fiber layer 24 to the tubular portion 19 and almost the entire liner 2. The intermediate fiber layer 25 for covering the intermediate fiber layer 25 and the outer peripheral surface of the intermediate fiber layer 25 and the body portion 3 of the liner 2 to the mirror portions 4, 1
2 and the outer fiber layer 26 that covers the middle of the two.

【0033】この発明の特徴として、上記内側繊維層2
4は、ヤング率350GPa以上で破断時の伸び0.7
%以上の高剛性繊維をフープ巻きしてなり、エポキシ樹
脂等の熱硬化性樹脂が含浸硬化されている。上記高剛性
繊維としては、例えば、ポリアクリロニトリル(PA
N)を原料にした下記の炭素繊維を挙げることができ
る。この高剛性繊維は伸び難く、相当の高圧であっても
十分に耐え得る。
A feature of the present invention is that the inner fiber layer 2 described above is used.
No. 4 has a Young's modulus of 350 GPa or more and an elongation at break of 0.7
% Of high-rigidity fiber is wound in a hoop, and thermosetting resin such as epoxy resin is impregnated and cured. Examples of the high-rigidity fiber include polyacrylonitrile (PA
The following carbon fibers made from N) can be mentioned. The high-rigidity fiber is difficult to stretch and can withstand even a considerably high pressure.

【0034】<東レ製 高性能炭素繊維トレカ(R)
M46JB> ヤング率 436GPa 引張強度 4.2GPa 破断時の伸び 1.0% また、上記中間繊維層25は、ヤング率280GPa以
上350GPa未満で破断時の伸び1.5%以上2.0
%未満の繊維をヘリカル巻きしてなり、エポキシ樹脂等
の熱硬化性樹脂が含浸硬化されている。上記繊維として
は、例えば、ポリアクリロニトリル(PAN)を原料に
した下記の炭素繊維を挙げることができる。この繊維の
剛性は、ヘリカル巻きが可能になるように上記高剛性繊
維よりは低いが、コスト面から層厚を必要以上に厚くし
なくてもよいように外側繊維層26よりは高くなってい
る。つまり、このヘリカル巻きの中間繊維層25は、フ
ープ巻きの内側繊維層24に比べて荷重分担が約半分で
よいので、それほど高剛性は要求されず、したがって、
巻き易さとコスト面を考慮して内側繊維層24と外側繊
維層26との中間の剛性に設定しているのである。
<Toray high performance carbon fiber trading card (R)
M46JB>Young's modulus 436 GPa Tensile strength 4.2 GPa Elongation at break 1.0% Further, the intermediate fiber layer 25 has a Young's modulus 280 GPa or more and less than 350 GPa and an elongation at break 1.5% or more 2.0.
% Of fibers are helically wound, and a thermosetting resin such as an epoxy resin is impregnated and cured. Examples of the fibers include the following carbon fibers made of polyacrylonitrile (PAN) as a raw material. The rigidity of this fiber is lower than that of the above-mentioned high-rigidity fiber to enable helical winding, but is higher than that of the outer fiber layer 26 so that the layer thickness does not need to be unnecessarily increased from the viewpoint of cost. . That is, the helically-wound intermediate fiber layer 25 needs only half the load as compared with the hoop-wound inner fiber layer 24, and therefore does not require so high rigidity.
The rigidity is set to an intermediate value between the inner fiber layer 24 and the outer fiber layer 26 in consideration of easiness of winding and cost.

【0035】<東レ製 高性能炭素繊維トレカ(R)
T800HB> ヤング率 294GPa 引張強度 5.49GPa 破断時の伸び 1.9% さらに、上記外側繊維層26は、ヤング率230GPa
以上280GPa未満で破断時の伸び2.0%以上の繊
維をライナー中心線に対する繊維角度が上記中間繊維層
の繊維角度よりも大きくなるようにハイアングルヘリカ
ル巻きしてなり、エポキシ樹脂等の熱硬化性樹脂が含浸
硬化されている。上記繊維としては、例えば、ポリアク
リロニトリル(PAN)を原料にした下記の炭素繊維
や、ポリパラフェニレンベンゾビスオキサゾール(PB
O)を原料とした下記の繊維を挙げることができる。こ
れら繊維は上記の内側繊維層24を構成する高剛性繊維
に比べて伸び易いという性質を備えており、高剛性繊維
が伸び難いことの裏返しとして低下する耐衝撃性を補う
ことができる。
<Toray high-performance carbon fiber trading card (R)
T800HB>Young's modulus 294 GPa Tensile strength 5.49 GPa Elongation at break 1.9% Further, the outer fiber layer 26 has a Young's modulus of 230 GPa.
Fibers having an elongation at break of 2.0% or more at less than 280 GPa are high-angle helically wound so that the fiber angle with respect to the centerline of the liner is larger than the fiber angle of the intermediate fiber layer, and thermosetting epoxy resin or the like. Resin is impregnated and cured. Examples of the fibers include the following carbon fibers made of polyacrylonitrile (PAN) as a raw material, and polyparaphenylene benzobisoxazole (PB).
The following fibers made from O) can be mentioned. These fibers have the property of being easily stretched as compared with the high-rigidity fibers that form the inner fiber layer 24, and can supplement the impact resistance that decreases as the inside out of the fact that the high-rigidity fibers are difficult to stretch.

【0036】<東レ製 高性能炭素繊維トレカ(R)
T700> ヤング率 230GPa 引張強度 4.9GPa 破断時の伸び 2.1% <東洋紡製 ZYLON−HM(R)> ヤング率 270GPa 引張強度 5.8GPa 破断時の伸び 2.5% 上記内側繊維層24は、繊維をライナー2の胴部3外周
面にライナー中心線方向と直交する円周方向にフープ巻
きした繊維層であり、上記中間繊維層25は、繊維をラ
イナー2外周面ほぼ全体にライナー中心線方向に螺旋状
にヘリカル巻きした繊維層であり、上記外側繊維層26
は、繊維をライナー2外周面の胴部3から鏡部4,12
の途中にかけてライナー中心線に対して75°前後でハ
イアングルヘリカル巻きした繊維層である。
<Toray high-performance carbon fiber trading card (R)
T700>Young's modulus 230 GPa Tensile strength 4.9 GPa Elongation at break 2.1% <Toyobo ZYLON-HM (R)>Young's modulus 270 GPa Tensile strength 5.8 GPa Elongation at break 2.5% The inner fiber layer 24 is Is a fiber layer obtained by hoop-winding fibers on the outer peripheral surface of the body portion 3 of the liner 2 in a circumferential direction orthogonal to the liner centerline direction, and the intermediate fiber layer 25 includes the fibers on almost the entire outer peripheral surface of the liner 2. The outer fiber layer 26, which is a fiber layer that is helically wound in a spiral direction.
Is the fiber from the body 3 on the outer peripheral surface of the liner 2 to the mirrors 4, 12
A high-angle helically wound fiber layer around 75 ° with respect to the centerline of the liner midway through.

【0037】また、上記補強繊維層23を構成する各繊
維層24,25,26は、繊維を偏平に集束してエポキ
シ樹脂等の熱硬化性樹脂を含浸させた繊維テープをプリ
プレグ状態で巻き付けて上記熱硬化性樹脂を硬化させて
構成されている。上記プリプレグ状態とは、熱硬化性樹
脂がある程度硬化を進めて生乾きした状態でB状態とい
われる状態であり、このようなプレプレグ状態の繊維テ
ープは、使用するまでは乾燥しないように冷蔵室等で保
管しておく。
Each of the fiber layers 24, 25, and 26 constituting the reinforcing fiber layer 23 is formed by bundling fibers in a prepreg state in which fibers are flatly bundled and impregnated with a thermosetting resin such as epoxy resin. It is configured by curing the thermosetting resin. The prepreg state is a state in which the thermosetting resin is cured to a certain degree and is said to be in a state of being dried in a dry state. The fiber tape in such a prepreg state is kept in a refrigerating room or the like so as not to be dried until it is used. Keep it.

【0038】次に、上述の如く構成された高圧タンク1
の製造要領の一例を図3に基づき説明する。
Next, the high pressure tank 1 configured as described above.
An example of the manufacturing procedure will be described with reference to FIG.

【0039】まず、パイプカット工程S1で、アルミニ
ウム合金製の長尺パイプ材Pを所定寸法に切断して両端
が開口した短筒状ブランク材Bを形成する。
First, in the pipe cutting step S1, a long pipe material P made of an aluminum alloy is cut into a predetermined size to form a short tubular blank material B having open ends.

【0040】次いで、フローフォーミング工程S2で、
図示しないが、上記短筒状ブランク材Bをマンドレルに
外嵌合して取り付け、該マンドレルをその軸心回りに回
転させて短筒状ブランク材Bを一体に回転させ、成形ロ
ーラを上記短筒状ブランク材B外周面に圧接させること
で回転させながら短筒状ブランク材B外周面を軸心方向
にしごき、短筒状ブランク材Bをフローフォーミングす
る。これにより、短筒状ブランク材Bが塑性変形して長
筒状ブランク材B′が成形される。この段階で、開口端
から所定領域を除いた長筒状ブランク材B′の厚みが、
完成品としての高圧タンク1のライナー2の胴部3の厚
みと等しくなっている。また、上記長筒状ブランク材
B′の開口端から所定領域は、開口端に近づくに従って
厚みが漸次増大している。
Then, in the flow forming step S2,
Although not shown, the short tubular blank material B is externally fitted and attached to a mandrel, the mandrel is rotated about its axis to integrally rotate the short tubular blank material B, and the forming roller is set to the short tube. The outer peripheral surface of the short tubular blank B is urged in the axial direction while being rotated by being pressed against the outer peripheral surface of the blank blank B, and the short tubular blank B is flow-formed. As a result, the short tubular blank B is plastically deformed to form the long tubular blank B ′. At this stage, the thickness of the long tubular blank B'excluding the predetermined region from the opening end is
It is equal to the thickness of the body portion 3 of the liner 2 of the high-pressure tank 1 as a finished product. Further, the thickness of the predetermined region from the opening end of the long tubular blank B ′ gradually increases as it approaches the opening end.

【0041】その後、スピニング工程S3で、図示しな
いが、上記長筒状ブランク材B′をチャック装置で保持
してその軸心回りに回転させ、成形ローラを長筒状ブラ
ンク材B′の一方の開口端近傍から開口端にかけて傾け
て圧接させることで回転させながら長筒状ブランク材
B′の軸心に対して斜めに移動させてしごき、長筒状ブ
ランク材B′の一方の開口端から所定領域をスピニング
により口絞りする。これにより、長筒状ブランク材B′
の開口端から所定領域が塑性変形して筒状胴部3の一端
に椀状鏡部4を介してガス取出筒部5が一体に突設され
る。そして、上述の如きスピニングによる口絞り成形に
より、鏡部4の厚みが胴部3からガス取出筒部5に近づ
くに従って漸次増大するように成形され、かつガス取出
筒部5は胴部3の3倍以上厚みに設定されている。長筒
状ブランク材B′の他方の開口端側も、同様のスピニン
グによる口絞り成形を行い、胴部3の他端に椀状鏡部1
2を介して筒部13が一体に突設され、ここでも、鏡部
12の厚みが胴部3から筒部13に近づくに従って漸次
増大するように成形され、かつ筒部13は胴部3の3倍
以上厚みに設定されている。これにより、一端にガス取
出筒部5が他端に筒部13が突設されたライナー2が得
られる。
Thereafter, in a spinning step S3, although not shown, the long tubular blank material B'is held by a chuck device and rotated about its axis, and the forming roller is moved to one of the long tubular blank material B '. While tilting from the vicinity of the open end to the open end and pressing it, the iron rod is slanted with respect to the axial center of the long tubular blank material B ′ while rotating, and is squeezed from one open end of the long tubular blank material B ′. Narrow the area by spinning. As a result, the long tubular blank B '
A predetermined region is plastically deformed from the opening end of the gas extraction cylinder 5, and a gas extraction cylinder 5 is integrally provided at one end of the cylinder body 3 via the bowl-shaped mirror 4. Then, the thickness of the mirror portion 4 is formed so as to gradually increase as it comes closer to the gas extraction tubular portion 5 from the body portion 3 by the mouth-drawing forming by the spinning as described above, and the gas extraction tubular portion 5 is formed in the body portion 3 The thickness is set to more than double. The other open end side of the long tubular blank B ′ is also subjected to mouth-drawing molding by similar spinning, and the bowl-shaped mirror portion 1 is attached to the other end of the body portion 3.
The cylindrical portion 13 is integrally projecting via the via 2, and the thickness of the mirror portion 12 is also formed so as to gradually increase from the body portion 3 toward the cylindrical portion 13, and the cylindrical portion 13 is formed so that the thickness of the mirror portion 12 gradually increases. The thickness is set to 3 times or more. As a result, the liner 2 having the gas extraction tubular portion 5 at one end and the tubular portion 13 at the other end is provided.

【0042】一方、別途鍛造成形や旋削加工した合金鋼
製又はチタン合金製等の補強カラー18を用意する。こ
の補強カラー18は、上述の如く筒部19の一端に張出
部20が一体に形成されているとともに、内部に筒部1
9及び張出部20を上下に貫通する嵌合孔22が形成さ
れている。この嵌合孔22の内径は、ガス取出筒部5及
び筒部13の外径との関係において焼ばめによる締め代
を考慮して設定されている。
On the other hand, a reinforcing collar 18 made of alloy steel, titanium alloy or the like, which is separately forged and turned, is prepared. As described above, the reinforcing collar 18 has the protruding portion 20 integrally formed at one end of the cylindrical portion 19 and has the cylindrical portion 1 inside.
A fitting hole 22 is formed so as to vertically penetrate through 9 and the overhanging portion 20. The inner diameter of the fitting hole 22 is set in consideration of the interference due to shrinkage fitting in relation to the outer diameters of the gas extraction cylinder portion 5 and the cylinder portion 13.

【0043】次に、補強カラー焼きばめ工程S4で、上
述の如く構成された補強カラー18をライナー2のガス
取出筒部5及び筒部13にそれぞれ外嵌合させ、焼ばめ
により上記補強カラー18をライナー2のガス取出筒部
5及び筒部13から鏡部4,12にかけての外周にそれ
ぞれ一体に嵌着させる。
Next, in the reinforcement collar shrink-fitting step S4, the reinforcement collars 18 configured as described above are respectively fitted to the gas extraction cylinder portion 5 and the cylinder portion 13 of the liner 2 and the above-mentioned reinforcement is performed by shrink-fitting. The collar 18 is integrally fitted to the outer peripheries of the liner 2 from the gas extraction cylinder portion 5 and the cylinder portion 13 to the mirror portions 4 and 12, respectively.

【0044】これに引き続いて、ワインディング工程S
5で、ヤング率350GPa以上で破断時の伸び0.7
%以上の高剛性繊維を偏平に集束してエポキシ樹脂等の
熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態
で上記ライナー2の胴部3外周面にフープ巻きして内側
繊維層24を形成する。
Following this, the winding step S
5, Young's modulus of 350 GPa or more and elongation at break of 0.7
% Of high-rigidity fibers are flatly bundled and impregnated with a thermosetting resin such as an epoxy resin, and the inner fiber layer 24 is formed by hooping the outer peripheral surface of the body 3 of the liner 2 in a prepreg state. To do.

【0045】その後、ヤング率280GPa以上350
GPa未満で破断時の伸び1.5%以上2.0%未満の
繊維からなる繊維テープを内側繊維層24の上からライ
ナー2のほぼ全体にヘリカル巻きして中間繊維層25を
形成する。
Thereafter, Young's modulus of 280 GPa or more and 350
The intermediate fiber layer 25 is formed by helically winding a fiber tape made of fibers having a elongation at break of 1.5% or more and less than 2.0% at less than GPa over the inner fiber layer 24 substantially over the entire liner 2.

【0046】さらに、その上にヤング率230GPa以
上280GPa未満で破断時の伸び2.0%以上の繊維
を偏平に集束してエポキシ樹脂等の熱硬化性樹脂を含浸
させた繊維テープをプリプレグ状態で上記中間繊維層2
5の上からライナー2の胴部3から鏡部4,12の途中
にかけての外周面にライナー中心線に対して75°前後
でハイアングルヘリカル巻きして外側繊維層26を形成
して、これら内側繊維層24、中間繊維層25及び外側
繊維層26で構成された補強繊維層23により上記ライ
ナー2外周面を被覆する(各繊維層24,24,25は
図1に表れる)。
Further, a fiber tape in which fibers having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more are flatly bundled and impregnated with a thermosetting resin such as an epoxy resin is prepared in a prepreg state. The intermediate fiber layer 2
5, the outer fiber layer 26 is formed on the outer peripheral surface from the trunk 3 of the liner 2 to the middle of the mirrors 4 and 12 by high-angle helical winding at about 75 ° with respect to the liner center line. The outer peripheral surface of the liner 2 is covered with the reinforcing fiber layer 23 composed of the fiber layer 24, the intermediate fiber layer 25, and the outer fiber layer 26 (each fiber layer 24, 24, 25 appears in FIG. 1).

【0047】この補強繊維層23の厚みは、タンク容量
やガス充填圧によって決まるが、例えば、タンク容量約
34リットル、ライナー2の胴部3の厚み4.0mm、
ライナー2の外径280mm、ライナー2の長さ830
mm、ガス充填圧70MPaの場合に、約9mmであ
る。なお、内側繊維層24と中間繊維層25とを交互に
形成してその外側に外側繊維層26を形成してもよい。
The thickness of the reinforcing fiber layer 23 is determined by the tank capacity and the gas filling pressure. For example, the tank capacity is about 34 liters, the thickness of the body portion 3 of the liner 2 is 4.0 mm,
Outer diameter of liner 2 is 280 mm, length of liner 2 is 830
mm and a gas filling pressure of 70 MPa, it is about 9 mm. The inner fiber layers 24 and the intermediate fiber layers 25 may be alternately formed, and the outer fiber layers 26 may be formed on the outer side thereof.

【0048】しかる後、乾燥工程S6で、上記補強繊維
層23で被覆されたライナー2を乾燥室27に搬入し、
ライナー2の外側及びライナー2内側に配置されたヒー
ター28の放射熱で、ライナー2を回転させながら内外
から加熱して補強繊維層23に含浸している熱硬化性樹
脂を加熱硬化させ、ライナー2外周面に繊維が巻き付け
られてライナー2外周面が補強繊維層23で被覆された
高圧タンク1を得る。なお、ヒーター28の代わりに熱
風をライナー2の内外に導入してライナー2を回転させ
ながら内外から加熱して補強繊維層23に含浸している
熱硬化性樹脂を加熱硬化させてもよい。
Thereafter, in the drying step S6, the liner 2 covered with the reinforcing fiber layer 23 is carried into the drying chamber 27,
The thermosetting resin impregnated in the reinforcing fiber layer 23 is heated and cured by radiant heat of the heater 28 arranged outside the liner 2 and inside the liner 2 while rotating the liner 2 to heat and cure the liner 2. The high-pressure tank 1 in which fibers are wound around the outer peripheral surface and the outer peripheral surface of the liner 2 is covered with the reinforcing fiber layer 23 is obtained. Instead of the heater 28, hot air may be introduced into and out of the liner 2 to heat the liner 2 from inside and outside while rotating the liner 2 to heat and cure the thermosetting resin impregnated in the reinforcing fiber layer 23.

【0049】このようにして製造された高圧タンク1に
対して、バルブ装置7をガス取出筒部5に装着するとと
もに、盲プラグ15を筒部13に装着して完成品とす
る。
With respect to the high-pressure tank 1 manufactured as described above, the valve device 7 is attached to the gas take-out tube portion 5 and the blind plug 15 is attached to the tube portion 13 to complete the product.

【0050】このように、この実施の形態では、ヤング
率350GPa以上で破断時の伸び0.7%以上の高剛
性繊維からなるフープ巻きの内側繊維層24と、ヤング
率280GPa以上350GPa未満で破断時の伸び
1.5%以上2.0%未満の繊維からなるヘリカル巻き
の中間繊維層25と、ヤング率230GPa以上280
GPa未満で破断時の伸び2.0%以上の繊維からなる
ハイアングルヘリカル巻きの外側繊維層26とで構成さ
れた補強繊維層23をライナー2外周面に被覆している
ことから、高剛性繊維からなる内側繊維層24でガス充
填圧によってライナー2に作用するライナー径方向の引
張応力に十分に抗し得てライナー2の耐疲労性を向上さ
せることができるとともに、その耐衝撃性に劣る欠点を
伸びのある繊維からなる外側繊維層26で補うことがで
き、さらには、ヘリカル巻きの中間繊維層25により、
ライナー中心線方向の耐力を必要以上に層厚を厚くする
ことなく向上させることができる。したがって、タンク
容量が小さくかつライナーの厚みが薄くても、35〜7
5MPaの高圧ガスを充填することができ、小型で軽く
しかも耐圧性に優れた高圧タンク1を実現することがで
きる。
As described above, in this embodiment, the hoop-wound inner fiber layer 24 made of high-rigidity fiber having a Young's modulus of 350 GPa or more and an elongation at break of 0.7% or more, and a Young's modulus of 280 GPa or more and less than 350 GPa are broken. Helically wound intermediate fiber layer 25 made of fibers having an elongation of 1.5% or more and less than 2.0% and a Young's modulus of 230 GPa or more and 280
Since the outer peripheral surface of the liner 2 is covered with the reinforcing fiber layer 23 composed of the high-angle helically wound outer fiber layer 26 made of fibers having a elongation at break of 2.0% or more at less than GPa, a high-rigidity fiber The inner fiber layer 24 consisting of can sufficiently resist the tensile stress in the radial direction of the liner acting on the liner 2 due to the gas filling pressure, and can improve the fatigue resistance of the liner 2, and its inferior impact resistance. Can be supplemented by an outer fiber layer 26 made of stretchable fibers, and further by a helically wound intermediate fiber layer 25,
It is possible to improve the yield strength in the direction of the center line of the liner without increasing the layer thickness more than necessary. Therefore, even if the tank capacity is small and the liner thickness is thin,
It is possible to fill the high-pressure gas of 5 MPa, and it is possible to realize the small-sized, light-weight high-pressure tank 1 excellent in pressure resistance.

【0051】さらに、補強繊維層23を構成する各繊維
層24,25,26を、繊維を偏平に集束して熱硬化性
樹脂を含浸させた繊維テープをプリプレグ状態で巻き付
けて上記熱硬化性樹脂を硬化させて構成していることか
ら、硬い高剛性繊維を滑り易くてライナー2に巻き難く
弛みが生じてライナー2に作用する引張応力を全繊維に
均等に分配し辛い紐状の形態で用いる場合に比べ、高剛
性繊維が偏平なテープ状の形態であってライナー2に沿
わせ易く、ライナー2に弛みなく巻き付けることができ
て上記引張応力を全繊維に均等に分配して、ライナー2
の耐疲労性向上を容易に実現することができる。
Further, each of the fiber layers 24, 25, and 26 constituting the reinforcing fiber layer 23 is wound in a prepreg state with a fiber tape in which the fibers are flatly bundled and impregnated with a thermosetting resin, and the thermosetting resin is formed. Since the hardened and hardened fibers are hard to be slipped, the liner 2 is hard to wind and loosened, and the tensile stress acting on the liner 2 is evenly distributed to all the fibers and used in a difficult string-like form. Compared with the case, the high-rigidity fiber is in the form of a flat tape and can be easily fitted along the liner 2, and can be wound around the liner 2 without slack, and the tensile stress is evenly distributed to all the fibers.
It is possible to easily improve the fatigue resistance of the.

【0052】また、ガス取出筒部5及び筒部13を胴部
3の3倍以上の厚みに設定し、そこから鏡部4,12を
漸次薄くして胴部3に続かせていることから、上記ガス
取出筒部5、筒部13及び鏡部4,12の強度を確保す
ることができ、上述の補強繊維層23によるライナー2
の耐疲労性向上及び耐衝撃性確保と相俟って、35〜7
5MPaの高圧に一層に耐え得る高圧タンク1とするこ
とができる。また、上記胴部3が薄くてもガス取出筒部
5、筒部13及び鏡部4,12を厚くして強度を確保し
ているので、胴部3が薄い分だけ高圧タンク1全体の重
量を軽減することができ、かつ材料費もあまり掛けない
ようにすることができる。
Further, since the gas take-out tube portion 5 and the tube portion 13 are set to have a thickness three times or more that of the body portion 3, the mirror portions 4 and 12 are gradually thinned from there to continue to the body portion 3. It is possible to secure the strength of the gas extraction cylinder portion 5, the cylinder portion 13 and the mirror portions 4 and 12, and the liner 2 by the reinforcing fiber layer 23 described above.
Combined with improving fatigue resistance and ensuring impact resistance,
The high pressure tank 1 can further withstand a high pressure of 5 MPa. Further, even if the body portion 3 is thin, the gas extraction cylinder portion 5, the cylinder portion 13 and the mirror portions 4 and 12 are thickened to secure the strength. Can be reduced, and the material cost can be reduced.

【0053】加えて、ライナー2のガス取出筒部5及び
筒部13から鏡部4,12にかけての外周に補強カラー
18を嵌着していることから、応力が集中し易いガス取
出筒部5、筒部13及びその近傍の鏡部4,12の実質
的な厚みを上記補強カラー18の厚みにより増大させて
当該箇所の強度を十分に確保することができ、35〜7
5MPaの高圧に一段と耐え得る高圧タンク1とするこ
とができる。また、補強カラー18をライナー2全体で
はなく、応力が集中し易い鏡部4,12、ガス取出筒部
5及び筒部13にだけ部分的に嵌着させているので、高
圧タンク1の重量をそれほど増加させず軽量化を図るこ
とができるとともに、加工の簡易化、低価格化を図るこ
とができる。
In addition, since the reinforcing collar 18 is fitted to the outer periphery of the liner 2 from the gas take-out tube portion 5 and the tube portion 13 to the mirror portions 4 and 12, the gas take-out tube portion 5 where stress is easily concentrated. It is possible to increase the substantial thickness of the cylindrical portion 13 and the mirror portions 4 and 12 in the vicinity thereof by the thickness of the reinforcing collar 18 and sufficiently secure the strength of the relevant portion.
The high-pressure tank 1 can further withstand a high pressure of 5 MPa. Further, since the reinforcing collar 18 is partially fitted not only to the entire liner 2 but only to the mirror portions 4 and 12 where the stress is likely to concentrate, the gas extraction cylinder portion 5 and the cylinder portion 13, the weight of the high pressure tank 1 is reduced. The weight can be reduced without increasing so much, and the processing can be simplified and the cost can be reduced.

【0054】さらにまた、繊維をまとめてテープ状の形
態でライナー2に巻き付けることから、巻付け作業を簡
単に行うことができる。また、熱硬化性樹脂がある程度
してプリプレグ状態(B状態)となった繊維テープをラ
イナー2に巻き付けるため、液状の熱硬化性樹脂が作業
場に滴り落ちて作業環境が悪化するウェットワインディ
ング法の場合に比べ、熱硬化性樹脂が作業場に滴り落ち
ず、作業環境の悪化を防止することができる。
Furthermore, since the fibers are bundled and wound around the liner 2 in the form of a tape, the winding operation can be easily performed. Further, in the case of the wet winding method in which the liquid thermosetting resin drips into the work place and the working environment is deteriorated because the fiber tape in which the thermosetting resin is in a prepreg state (B state) is wound around the liner 2 to some extent. Compared with the above, the thermosetting resin does not drip into the workplace, and the deterioration of the working environment can be prevented.

【0055】また、乾燥室27に搬入されたライナー2
を内外から加熱するので、補強繊維層23の熱硬化性樹
脂が層内外両側からほぼ同時に硬化し、これにより、補
強繊維層23の熱硬化性樹脂を外側からのみ加熱する場
合において、熱硬化性樹脂が外側から内側へと順に硬化
収縮して内側の未硬化樹脂が外側の硬化樹脂から圧縮力
を受けて繊維に弛みが生ずる事態を回避することがで
き、ガス充填圧によってライナー2に作用する引張応力
を全繊維に均等に分配して早期破断に至らないようにす
ることができる。
Also, the liner 2 carried into the drying chamber 27
Since the resin is heated from the inside and outside, the thermosetting resin of the reinforcing fiber layer 23 is cured substantially at the same time from both inside and outside of the layer, whereby the thermosetting resin of the reinforcing fiber layer 23 is heated only from the outside. It is possible to avoid a situation in which the resin is cured and shrunk in order from the outer side to the inner side, and the uncured resin on the inner side receives a compressive force from the cured resin on the outer side to cause slack in the fiber, and acts on the liner 2 by the gas filling pressure. The tensile stress can be evenly distributed over all fibers to prevent premature rupture.

【0056】(実施の形態2) 図4はこの発明の実施の形態2に係る高剛性繊維を用い
た高圧タンク1を示す。この高圧タンク1は補強カラー
18の形状が実施の形態1と異なっている。つまり、上
記補強カラー18の張出部20の裏面にリング状膨出部
21が一体に膨出して形成されている。これに伴い、ラ
イナー2における鏡部4のガス取出筒部5との境目近傍
における外周にリング状嵌合凹部17が形成されてい
る。そして、上記補強カラー18の張出部20は、その
膨出部21を上記鏡部4の嵌合凹部17に嵌入した状態
で焼ばめにより鏡部4外表面に一体に接合されている。
図示しないが、反対側の鏡部12の筒部13にも同様に
補強カラー18を嵌合している。そのほかは、実施の形
態1と同様に構成されているので、同一の構成箇所には
同一の符号を付してその詳細な説明を省略する。
(Embodiment 2) FIG. 4 shows a high-pressure tank 1 using high-rigidity fibers according to Embodiment 2 of the present invention. The high-pressure tank 1 is different from the first embodiment in the shape of the reinforcing collar 18. That is, the ring-shaped bulging portion 21 is integrally bulged and formed on the back surface of the bulging portion 20 of the reinforcing collar 18. Along with this, a ring-shaped fitting concave portion 17 is formed on the outer periphery of the liner 2 near the boundary between the mirror portion 4 and the gas extraction cylinder portion 5. The overhanging portion 20 of the reinforcing collar 18 is integrally joined to the outer surface of the mirror portion 4 by shrink fitting with the bulging portion 21 fitted in the fitting recess 17 of the mirror portion 4.
Although not shown, a reinforcing collar 18 is also fitted to the cylindrical portion 13 of the mirror portion 12 on the opposite side. Other than that, the configuration is the same as that of the first embodiment, and thus the same components are denoted by the same reference numerals and detailed description thereof is omitted.

【0057】したがって、この実施の形態2では、上記
の実施の形態1と同様の作用効果を奏することができ
る。
Therefore, in the second embodiment, the same operational effect as that of the first embodiment can be obtained.

【0058】加えて、この実施の形態2では、補強カラ
ー18の張出部20に膨出形成したリング状膨出部21
を、鏡部4,12のガス取出筒部5及び筒部13との境
目近傍における外周に形成したリング状嵌合凹部17に
嵌入して焼ばめにより接合しているので、補強カラー1
8とライナー2とを確実に嵌合させることができる。ま
た、上記膨出部21があることで当該部分の補強カラー
18の厚みが増大し、その分だけ強度アップを図ること
ができる。
In addition, in the second embodiment, the ring-shaped bulging portion 21 formed by bulging the bulging portion 20 of the reinforcing collar 18 is used.
Is fitted into a ring-shaped fitting recess 17 formed on the outer periphery in the vicinity of the boundary between the mirror parts 4 and 12 and the gas-extracting cylinder part 5 and the cylinder part 13, and is joined by shrink-fitting.
8 and the liner 2 can be fitted securely. Further, the presence of the bulging portion 21 increases the thickness of the reinforcing collar 18 in that portion, and the strength can be increased accordingly.

【0059】なお、上記の実施の形態1,2では、フロ
ーフォーミングに供する短筒状ブランク材Bとして、両
端が開口した円筒体のものを例示したが、有底筒状のも
のであってもよい。
In the first and second embodiments described above, as the short tubular blank material B used for flow forming, a cylindrical body having open ends is illustrated, but a tubular material with a bottom may be used. Good.

【産業上の利用可能性】[Industrial availability]

【0060】この発明は、小型で軽量でありながら35
〜75MPaの高圧ガスに耐え得る自動車用水素燃料タ
ンク等の高圧タンクとして有用である。
The present invention is compact and lightweight, yet 35
It is useful as a high pressure tank such as a hydrogen fuel tank for automobiles that can withstand high pressure gas of up to 75 MPa.

【図面の簡単な説明】[Brief description of drawings]

【0061】[0061]

【図1】この発明の実施の形態1に係る高剛性繊維を用
いた高圧タンクのガス取出筒部側を拡大して示す断面図
である。
FIG. 1 is an enlarged cross-sectional view showing a gas extraction cylinder portion side of a high-pressure tank using high-rigidity fiber according to Embodiment 1 of the present invention.

【図2】この発明の実施の形態1に係る高剛性繊維を用
いた高圧タンク全体の断面図である。
FIG. 2 is a sectional view of the entire high-pressure tank using the high-rigidity fiber according to the first embodiment of the present invention.

【図3】この発明の実施の形態1に係る高剛性繊維を用
いた高圧タンクの製造工程図である。
FIG. 3 is a manufacturing process diagram of a high-pressure tank using the high-rigidity fiber according to the first embodiment of the present invention.

【図4】この発明の実施の形態2に係る高剛性繊維を用
いた高圧タンクの図1相当図である。
FIG. 4 is a view corresponding to FIG. 1 of a high-pressure tank using high-rigidity fibers according to Embodiment 2 of the present invention.

【符号の説明】[Explanation of symbols]

【0062】 1 高圧タンク 2 ライナー 3 胴部 4 鏡部 5 ガス取出筒部 17 嵌合凹部 18 補強カラー 19 筒部 20 張出部 21 膨出部 23 補強繊維層 24 内側繊維層 25 中間繊維層 26 外側繊維層 27 乾燥室 28 ヒーター B′ 長筒状ブランク材[0062] 1 high pressure tank 2 liner 3 torso 4 Mirror 5 Gas extraction cylinder 17 Fitting recess 18 Reinforcement collar 19 Tube 20 Overhang 21 bulge 23 Reinforcing fiber layer 24 Inner fiber layer 25 Intermediate fiber layer 26 Outer fiber layer 27 Drying room 28 heater B'Long tubular blank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阪口 直樹 アメリカ合衆国 カリフォルニア州 90746,カーソン,イースト ドミンゲ ス ストリート 1130 サムテック イ ンターナショナル インコーポレーテッ ド内 (72)発明者 山本 猛 アメリカ合衆国 カリフォルニア州 90746,カーソン,イースト ドミンゲ ス ストリート 1130 サムテック イ ンターナショナル インコーポレーテッ ド内 (56)参考文献 特開 平6−213398(JP,A) 特開2002−5397(JP,A) 特開 平10−220691(JP,A) 米国特許5499739(US,A) (58)調査した分野(Int.Cl.7,DB名) F17C 1/00 - 13/12 B29C 70/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoki Sakaguchi, United States 90746, Carson, East Dominguez Street, California 1130 Samtech International Inc. (72) Inventor Takeshi Yamamoto, California 90746, Carson, East Dominguez, USA Street 1130 Samtech International Incorporated (56) References JP-A-6-213398 (JP, A) JP-A-2002-5397 (JP, A) JP-A-10-220691 (JP, A) US Patent 5499739 ( (US, A) (58) Fields investigated (Int.Cl. 7 , DB name) F17C 1/00-13/12 B29C 70/16

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム合金製の短筒状ブランク材
を塑性変形させて筒状胴部の一端に椀状鏡部を介してガ
ス取出筒部が突設されて構成され、このガス取出筒部は
上記胴部の3倍以上の厚みに設定され、上記鏡部は胴部
からガス取出筒部に行くに従って胴部の厚みからガス取
出筒部の厚みに漸次増大していて35〜75MPaの高
圧ガスが充填される筒状の金属製ライナーと、上記ライナーのガス取出筒部から鏡部にかけての外周に
嵌着された金属製の筒状補強カラーと、 上記 ライナー外周面を被覆する補強繊維層とを備え、 上記補強繊維層は、ヤング率350GPa以上で破断時
の伸び0.7%以上の高剛性繊維をフープ巻きしてなり
熱硬化性樹脂が含浸硬化された内側繊維層と、 ヤング率280GPa以上350GPa未満で破断時の
伸び1.5%以上2.0%未満の繊維をヘリカル巻きし
てなり熱硬化性樹脂が含浸硬化された中間繊維層と、 ヤング率230GPa以上280GPa未満で破断時の
伸び2.0%以上の繊維をライナー中心線に対する繊維
角度が上記中間繊維層の繊維角度よりも大きくなるよう
にハイアングルヘリカル巻きしてなり熱硬化性樹脂が含
浸硬化された外側繊維層とで構成され 上記補強繊維層を構成する各繊維層は、繊維を偏平に集
束して熱硬化性樹脂を含浸させた繊維テープをプリプレ
グ状態で巻き付けて上記熱硬化性樹脂を硬化させて構成
され ていることを特徴とする高剛性繊維を用いた高圧タ
ンク。
1. A short tubular blank made of an aluminum alloy.
Plastic deformation of the cylindrical body and insert it into one end of the cylindrical body through the bowl-shaped mirror.
The gas extraction cylinder is constructed by projecting it.
The thickness is set to 3 times or more the thickness of the body, and the mirror is
From the thickness of the body part
The thickness of the barrel is gradually increasing, and it is as high as 35 to 75 MPa.
A cylindrical metal liner filled with pressurized gas and the outer circumference of the liner from the gas extraction cylinder to the mirror.
And fitted to a metallic tubular reinforcement collar, and a reinforcing fiber layer covering the liner outer circumferential surface, the reinforcing fiber layer, high rigidity elongation of 0.7% or more at break above Young's modulus 350GPa It is made by helically winding an inner fiber layer obtained by hoop winding of fibers and impregnated with a thermosetting resin, and a fiber having Young's modulus of 280 GPa or more and less than 350 GPa and elongation at break of 1.5% or more and less than 2.0%. An intermediate fiber layer impregnated with a thermosetting resin and a fiber having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more are larger than the fiber angle of the intermediate fiber layer with respect to the center liner of the liner. high angle helical winding to be thermosetting resin is composed of an outer fibrous layer which is cured impregnated so, each fiber layer constituting the reinforcing fiber layer is flatly collecting the fibers
Pre-prepare fiber tape bundled and impregnated with thermosetting resin.
Wrapped in a rolled state and cured by hardening the thermosetting resin
High-pressure tank using the high-rigidity fibers, characterized in that it is.
【請求項2】 請求項に記載の高剛性繊維を用いた高
圧タンクにおいて、 補強カラーは、ガス取出筒部に嵌着される筒部と、この
筒部の一端から外側方に張り出す張出部とからなり、こ
の張出部裏面には、リング状膨出部が膨出して形成さ
れ、 一方、鏡部のガス取出筒部との境目近傍における外周に
は、上記補強カラーを上記ライナーのガス取出筒部から
鏡部にかけての外周に嵌着した状態で、上記膨出部が嵌
入するリング状嵌合凹部が形成されていることを特徴と
する高剛性繊維を用いた高圧タンク。
2. The high-pressure tank using the high-rigidity fiber according to claim 1 , wherein the reinforcing collar has a tubular portion fitted to the gas take-out tubular portion, and a tension extending outward from one end of the tubular portion. A ring-shaped bulge is formed on the rear surface of the bulge, and the reinforcing collar is provided on the outer periphery of the mirror near the boundary with the gas take-out cylinder. 1. A high-pressure tank using high-rigidity fiber, characterized in that a ring-shaped fitting concave portion into which the bulging portion is fitted is formed in a state where the ring-shaped fitting concave portion is fitted to the outer periphery from the gas extraction cylinder portion to the mirror portion.
【請求項3】 アルミニウム合金製の短筒状ブランク材
を塑性変形させて筒状胴部の一端に椀状鏡部を介してガ
ス取出筒部が突設されて構成され、このガス取出筒部は
上記胴部の3倍以上の厚みに設定され、上記鏡部は胴部
からガス取出筒部に行くに従って胴部の厚みからガス取
出筒部の厚みに漸次増大し、かつ上記ガス取出筒部から
鏡部にかけての外周に金属製の筒状補強カラーが嵌着さ
れて35〜75MPaの高圧ガスが充填される筒状の金
属製ライナーを用意し、 ヤング率350GPa以上で破断時の伸び0.7%以上
の高剛性繊維を偏平に集束して熱硬化性樹脂を含浸させ
た繊維テープをプリプレグ状態で上記ライナー外周面に
フープ巻きして内側繊維層を形成し、 次いで、ヤング率280GPa以上350GPa未満で
破断時の伸び1.5%以上2.0%未満の繊維を偏平に
集束して熱硬化性樹脂を含浸させた繊維テープをプリプ
レグ状態で上記内側繊維層外周面にヘリカル巻きして中
間繊維層を形成し、 その後、ヤング率230GPa以上280GPa未満で
破断時の伸び2.0%以上の繊維を偏平に集束して熱硬
化性樹脂を含浸させた繊維テープをプリプレグ状態で上
記中間繊維層外周面にライナー中心線に対する繊維角度
が上記中間繊維層の繊維角度よりも大きくなるようにハ
イアングルヘリカル巻きして外側繊維層を形成して、上
記内側繊維層、中間繊維層及び外側繊維層で構成された
補強繊維層により上記ライナー外周面を被覆し、 しかる後、上記補強繊維層で被覆されたライナーを乾燥
室に搬入して加熱し、補強繊維層に含浸している熱硬化
性樹脂を硬化させることを特徴とする高剛性繊維を用い
た高圧タンクの製造方法。
3. A short tubular blank made of an aluminum alloy.
Plastic deformation of the cylindrical body and insert it into one end of the cylindrical body through the bowl-shaped mirror.
The gas extraction cylinder is constructed by projecting it.
The thickness is set to 3 times or more the thickness of the body, and the mirror is
From the thickness of the body part
The thickness of the outlet cylinder gradually increases, and
A metal tubular reinforcing collar is fitted around the outer periphery of the mirror.
Tubular gold filled with high pressure gas of 35 to 75 MPa
Providing a genus liner, fibers tape was flattened focused impregnated with a thermosetting resin with high rigidity fiber elongation of 0.7% or more at break above Young's modulus 350GPa to the liner outer circumferential surface in a prepreg state Hoop winding is performed to form an inner fiber layer, and then fibers having a Young's modulus of 280 GPa or more and less than 350 GPa and an elongation at break of 1.5% or more and less than 2.0% are flatly bundled and impregnated with a thermosetting resin. A fiber tape is helically wound around the outer peripheral surface of the inner fiber layer in a prepreg state to form an intermediate fiber layer, and then fibers having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more are flatly bundled. In the prepreg state of the fiber tape impregnated with the thermosetting resin, the fiber angle with respect to the liner center line on the outer peripheral surface of the intermediate fiber layer is larger than the fiber angle of the intermediate fiber layer. As described above, the outer fiber layer is formed by high-angle helical winding, and the outer peripheral surface of the liner is covered with the reinforcing fiber layer composed of the inner fiber layer, the intermediate fiber layer and the outer fiber layer. A method for producing a high-pressure tank using high-rigidity fibers, characterized in that a liner coated with a layer is carried into a drying chamber and heated to cure the thermosetting resin impregnated in the reinforcing fiber layer.
【請求項4】 請求項に記載の高剛性繊維を用いた高
圧タンクの製造方法において、 乾燥室に搬入されたライナーを内外から加熱することを
特徴とする高剛性繊維を用いた高圧タンクの製造方法。
4. The method for manufacturing a high-pressure tank using high-rigidity fibers according to claim 3 , wherein the liner carried into the drying chamber is heated from inside and outside, and a high-pressure tank using high-rigidity fibers is provided. Production method.
JP2003275438A 2003-07-16 2003-07-16 High-pressure tank using high-rigidity fiber and method for manufacturing the same Expired - Fee Related JP3534743B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003275438A JP3534743B1 (en) 2003-07-16 2003-07-16 High-pressure tank using high-rigidity fiber and method for manufacturing the same
DE10345159A DE10345159B4 (en) 2003-07-16 2003-09-29 High pressure tank using high stiffness fibers and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275438A JP3534743B1 (en) 2003-07-16 2003-07-16 High-pressure tank using high-rigidity fiber and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP3534743B1 true JP3534743B1 (en) 2004-06-07
JP2005036918A JP2005036918A (en) 2005-02-10

Family

ID=32821721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275438A Expired - Fee Related JP3534743B1 (en) 2003-07-16 2003-07-16 High-pressure tank using high-rigidity fiber and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP3534743B1 (en)
DE (1) DE10345159B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060708A (en) * 2020-07-31 2022-02-18 丰田自动车株式会社 High-pressure tank and method for manufacturing high-pressure tank
CN114646015A (en) * 2020-12-17 2022-06-21 丰田自动车株式会社 High-pressure tank and method for manufacturing same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759729B2 (en) * 2005-04-20 2011-08-31 国立大学法人九州大学 High pressure tank manufacturing apparatus and high pressure tank manufacturing method
DE102006043582B3 (en) * 2006-09-16 2008-03-06 Xperion Gmbh pressure vessel
CN100430640C (en) * 2006-11-06 2008-11-05 哈尔滨工业大学 High pressure nitrogen storage bottle made of PBO fiber and carbon fiber composite material and its preparation method
CN100430641C (en) * 2006-11-06 2008-11-05 哈尔滨工业大学 High pressure hydrogen storage bottle made of PBO fiber and carbon fiber mixed composite material and preparation method
US8474647B2 (en) * 2008-02-08 2013-07-02 Vinjamuri Innovations, Llc Metallic liner with metal end caps for a fiber wrapped gas tank
EP2288840B1 (en) 2008-06-24 2013-12-25 DSM IP Assets B.V. Reinforcing member and an article, such as a pressure vessel containing thereof
DE102008059591B4 (en) * 2008-11-28 2011-01-27 Xperion Gmbh container
JP2010236587A (en) * 2009-03-31 2010-10-21 Jfe Container Co Ltd Fiber-reinforced plastic pressure vessel
CN102388256B (en) * 2009-04-10 2015-03-18 丰田自动车株式会社 Tank and fabrication method thereof
JP2010270878A (en) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd Pressure vessel structure
CN102085724A (en) * 2009-12-02 2011-06-08 上海康巴赛特科技发展有限公司 Wet fully-winding and curing process for preparing hydrogen cylinder with carbon fiber lining
US9091395B2 (en) 2010-03-10 2015-07-28 GM Global Technology Operations LLC Process for forming a vessel
DE102010002881A1 (en) * 2010-03-15 2011-09-15 Benteler Sgl Gmbh & Co. Kg Container for use as liquid gas tank of motor car, has outer wall region partly or completely surrounding inner wall region, where outer wall region is attached to outer side of liner and formed from carbon fiber reinforced material
DE102010023923B4 (en) * 2010-06-16 2012-05-16 Benteler Sgl Gmbh & Co. Kg Pressure gas tank
DE102010017413B4 (en) 2010-06-17 2012-08-30 Xperion Gmbh Pressure vessel for storing a fluid
US9683700B2 (en) * 2014-05-20 2017-06-20 Steelhead Composites, Llc. Metallic liner pressure vessel comprising polar boss
JP6623722B2 (en) * 2015-09-03 2019-12-25 日本製鉄株式会社 High pressure tank
CN105333302B (en) * 2015-09-25 2018-01-02 石家庄安瑞科气体机械有限公司 A kind of preparation method of Large Copacity high-pressure hydrogen storage winding composite shell
JP6512153B2 (en) * 2015-10-08 2019-05-15 トヨタ自動車株式会社 Method of manufacturing high pressure tank
JP6749629B2 (en) * 2016-06-01 2020-09-02 サムテック株式会社 Composite container
KR20180017377A (en) * 2016-08-09 2018-02-21 현대자동차주식회사 High pressure tank
DE102017200302A1 (en) * 2017-01-10 2018-07-12 Bayerische Motoren Werke Aktiengesellschaft Method for producing a pressure tank and a corresponding pressure tank
KR102322373B1 (en) 2017-05-26 2021-11-05 현대자동차주식회사 High-pressure tank having hoop layers and helical layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499739A (en) 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8408506U1 (en) * 1984-03-20 1985-02-07 Felten & Guilleaume Energietechnik GmbH, 5000 Köln COMPRESSED GAS BOTTLE WITH A FIBER REINFORCED PLASTIC COVER
US6190481B1 (en) * 1995-12-04 2001-02-20 Toray Industries, Inc. Pressure vessel and process for producing the same
JP4180676B2 (en) * 1997-04-18 2008-11-12 高圧ガス工業株式会社 Natural gas automotive fuel device composite container
DE19952611A1 (en) * 1999-11-02 2001-05-23 Eberhard Haack High pressure container for the food industry comprises a metal inner layer with fiber reinforced layers of progressively increasing modulus wound around the outside

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499739A (en) 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060708A (en) * 2020-07-31 2022-02-18 丰田自动车株式会社 High-pressure tank and method for manufacturing high-pressure tank
CN114060708B (en) * 2020-07-31 2023-06-23 丰田自动车株式会社 High-pressure tank and method for manufacturing high-pressure tank
CN114646015A (en) * 2020-12-17 2022-06-21 丰田自动车株式会社 High-pressure tank and method for manufacturing same

Also Published As

Publication number Publication date
DE10345159B4 (en) 2005-09-15
JP2005036918A (en) 2005-02-10
DE10345159A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP3534743B1 (en) High-pressure tank using high-rigidity fiber and method for manufacturing the same
JP3527737B1 (en) High-pressure tank using high-rigidity fiber and method for manufacturing the same
US9884458B2 (en) Manufacturing method of tank
EP2418412B1 (en) Tank and fabrication method thereof
US8474647B2 (en) Metallic liner with metal end caps for a fiber wrapped gas tank
CN108291688B (en) Pressure vessel, motor vehicle and method for producing a pressure vessel
US20060096993A1 (en) Pressure vessel, hydrogen storage tank and method for manufacturing pressure vessel
WO2017073108A1 (en) Composite container
WO2013005676A1 (en) High-pressure gas container and production method for high-pressure gas container
US20160348839A1 (en) High-pressure composite vessel and the method of manufacturing high-pressure composite vessel
CN108351073A (en) Pressure vessel, motor vehicle with load ring and the method for manufacturing pressure vessel
JPH10152U (en) Pressure vessel for storing pressure medium
JP6958326B2 (en) How to manufacture high pressure tank
JPH06331032A (en) Pressure vessel
JP2004263827A (en) Pressure container, and method for manufacturing the same
US7137526B2 (en) High-pressure tank and method for fabricating the same
US6908006B2 (en) High-pressure tank and method for fabricating the same
JP2013002492A (en) Pressure vessel
US12055268B2 (en) High-pressure container and method of manufacturing high-pressure container
JP4774228B2 (en) Pressure vessel and method for manufacturing the same
JP7548139B2 (en) Tank and its manufacturing method
JP2002106787A (en) High pressure gas container and manufacturing method thereof
JP2018035913A (en) tank
JP2017145962A (en) High pressure tank and method of manufacturing high pressure tank
KR20220052322A (en) Pressure vessel and manufacturing method of pressure vessel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040309

R150 Certificate of patent or registration of utility model

Ref document number: 3534743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees