JP4774228B2 - Pressure vessel and method for manufacturing the same - Google Patents

Pressure vessel and method for manufacturing the same Download PDF

Info

Publication number
JP4774228B2
JP4774228B2 JP2005109367A JP2005109367A JP4774228B2 JP 4774228 B2 JP4774228 B2 JP 4774228B2 JP 2005109367 A JP2005109367 A JP 2005109367A JP 2005109367 A JP2005109367 A JP 2005109367A JP 4774228 B2 JP4774228 B2 JP 4774228B2
Authority
JP
Japan
Prior art keywords
pressure vessel
reinforced
probe
constituent member
friction stir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005109367A
Other languages
Japanese (ja)
Other versions
JP2006291986A (en
Inventor
正敏 榎本
立美 竹花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005109367A priority Critical patent/JP4774228B2/en
Publication of JP2006291986A publication Critical patent/JP2006291986A/en
Application granted granted Critical
Publication of JP4774228B2 publication Critical patent/JP4774228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

この発明は、たとえば自動車産業、住宅産業、輸送機械産業等において、燃料となる水素ガスや天然ガスを貯蔵したり、酸素ガス供給システムにおいて酸素ガスを貯蔵したり、あるいは工業用ガスを貯蔵したりするのに用いられる圧力容器およびその製造方法に関する。   For example, in the automobile industry, the housing industry, and the transport machinery industry, the present invention stores hydrogen gas and natural gas as fuel, stores oxygen gas in an oxygen gas supply system, or stores industrial gas. The present invention relates to a pressure vessel used for manufacturing and a manufacturing method thereof.

この明細書および特許請求の範囲において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In this specification and claims, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

上述した圧力容器に入れられる高圧ガスの圧力は主として20〜35MPa程度であるが、将来的には70MPa程度になると考えられている。   The pressure of the high-pressure gas placed in the pressure vessel described above is mainly about 20 to 35 MPa, but is considered to be about 70 MPa in the future.

従来、この種の圧力容器として、たとえばJIS A6061などのアルミニウムからなるカップ状ブランクの胴部を熱間においてフローフォーミングにより軸方向にしごき加工して、底付きの円筒状中間ブランクを形成し、中間ブランクの開口側端部をスピニング成形して鏡部を一体に形成するとともにその中央部に口栓部を設け、口栓部に口金取付用の穴を形成し、その後熱処理が施されたものが知られている(たとえば特許文献1参照)。   Conventionally, as a pressure vessel of this type, for example, the body of a cup-shaped blank made of aluminum such as JIS A6061 is hot-worked in the axial direction by flow forming to form a cylindrical intermediate blank with a bottom, The opening side end of the blank is formed by spinning, and the mirror part is integrally formed, and a cap part is provided in the center part, a hole for attaching the base is formed in the plug part, and then heat treatment is performed. It is known (see, for example, Patent Document 1).

しかしながら、この圧力容器においては、熱間加工の後に熱処理を施しているので、スピニング成形のような強加工が施された部分、特に口栓部の結晶粒が粗大化し、衝撃値や疲労強度が低下する。したがって、この圧力容器においては、口栓部での破壊などの危険性が高まる。
特開平11−104762号公報
However, in this pressure vessel, since the heat treatment is performed after the hot working, the crystal grains of the portion subjected to strong processing such as spinning molding, particularly the plug portion, are coarsened, and the impact value and fatigue strength are increased. descend. Therefore, in this pressure vessel, there is an increased risk of destruction at the plug portion.
Japanese Patent Laid-Open No. 11-104762

この発明の目的は、上記問題を解決し、口金取付部の衝撃値や疲労強度が増大した圧力容器およびその製造方法を提供することにある。   An object of the present invention is to solve the above problems and provide a pressure vessel having an increased impact value and fatigue strength of a base mounting portion and a method for manufacturing the same.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)筒状の胴と、胴の両端開口を閉鎖する鏡板とよりなるとともに、いずれか一方の鏡板に口金取付部が一体に形成されており、口金取付部が形成された一方の鏡板を構成する第1構成部材と、胴および他方の鏡板を構成しかつ第1構成部材に接合された第2構成部材とよりなる圧力容器において、
口金取付部において母材となる金属に改質処理が施されて、結晶粒が微細化され、第1構成部材における第2構成部材との接合端部において全肉厚の50〜80%に改質処理が施されて、結晶粒が微細化されている圧力容器。
Configuration 1) a cylindrical body, it becomes more and end plate for closing both open ends of the cylinder, the mouthpiece attachment section to one of the end plates is integrally formed with, one of the end plate mouthpiece attachment portion is formed In the pressure vessel comprising the first component member and the second component member constituting the body and the other end plate and joined to the first component member ,
The metal that is the base material in the base mounting part is subjected to a modification process , the crystal grains are refined, and the first end of the first constituent member is modified to 50 to 80% of the total thickness. A pressure vessel that has been refined and crystal grains are refined .

2)口金取付部の全肉厚の50〜80%に改質処理が施され、結晶粒が微細化されている上記1)記載の圧力容器。   2) The pressure vessel as described in 1) above, wherein the reforming treatment is applied to 50 to 80% of the total thickness of the base mounting portion and the crystal grains are refined.

3)口金取付部の母材となる金属の改質処理が施された部分の結晶粒径が90μm以下である上記1)または2)記載の圧力容器。   3) The pressure vessel as described in 1) or 2) above, wherein the crystal grain size of the portion subjected to the metal modification treatment as a base material of the base mounting portion is 90 μm or less.

4)胴、両鏡板および口金取付部の母材となる金属がアルミニウムからなる上記1)〜3)のうちのいずれかに記載の圧力容器。   4) The pressure vessel according to any one of 1) to 3) above, wherein the metal used as a base material for the body, the two end plates, and the base mounting portion is made of aluminum.

5)口金取付部の改質処理が、摩擦攪拌接合用工具のプローブを用いて摩擦攪拌することにより行われている上記1)〜4)のうちのいずれかに記載の圧力容器。   5) The pressure vessel according to any one of the above 1) to 4), wherein the reforming treatment of the base attaching portion is performed by friction stirring using a probe of a friction stir welding tool.

6)第1構成部材における第2構成部材との接合端部の母材となる金属の改質処理が施された部分の結晶粒径が90μm以下である上記1)〜5)のうちのいずれかに記載の圧力容器。 6) Any one of the above 1) to 5), wherein the crystal grain size of the portion of the first constituent member that has undergone the metal modification treatment as the base material of the joint end with the second constituent member is 90 μm or less The pressure vessel according to crab .

7)第1構成部材における第2構成部材との接合端部の改質処理が、摩擦攪拌接合用工具のプローブを用いて摩擦攪拌することにより行われている上記1)〜6)のうちのいずれかに記載の圧力容器。 7) Of the above 1) to 6) , the modification treatment of the joining end portion of the first constituent member with the second constituent member is performed by friction stir using the probe of the friction stir welding tool The pressure vessel according to any one of the above.

8)上記1)〜7)のうちのいずれかに記載された圧力容器の外周面が、補強繊維に樹脂が含浸硬化させられてなる繊維強化樹脂層で覆われている強化圧力容器。 8) A reinforced pressure vessel in which the outer peripheral surface of the pressure vessel described in any one of 1) to 7) is covered with a fiber reinforced resin layer obtained by impregnating and curing a resin in a reinforcing fiber.

9)繊維強化樹脂層が、補強繊維を胴の長さ方向に対して傾斜するように巻き付けてなるヘリカル巻繊維層、および補強繊維を胴の周囲に巻き付けてなるフープ巻繊維層を備えている上記8)記載の強化圧力容器。 9) The fiber reinforced resin layer includes a helically wound fiber layer in which the reinforcing fiber is wound so as to be inclined with respect to the length direction of the trunk, and a hoop wound fiber layer in which the reinforcing fiber is wound around the trunk. The reinforced pressure vessel as described in 8) above.

10)内部に水素吸蔵物質が入れられている上記8)または9)記載の強化圧力容器。 10) The reinforced pressure vessel according to 8) or 9) above, wherein a hydrogen storage material is contained therein.

11)燃料水素用強化圧力容器、燃料電池、および燃料水素用強化圧力容器から燃料電池に燃料水素ガスを送る圧力配管を備えており、燃料水素用強化圧力容器が上記8)〜10)のうちのいずれかに記載の強化圧力容器からなる燃料電池システム。 11) Fuel hydrogen reinforcing the pressure vessel, a fuel cell, and has a reinforced pressure vessel for fuel hydrogen comprises a pressure line to send the fuel hydrogen gas to the fuel cell, the reinforcing fuel hydrogen pressure vessel is above 8) to 10) of the A fuel cell system comprising the reinforced pressure vessel according to any one of the above.

12)天然ガス用強化圧力容器および天然ガス用強化圧力容器から天然ガスを送り出す圧力配管を備えており、天然ガス用強化圧力容器が上記8)または9)記載の強化圧力容器からなる天然ガス供給システム。 12) Natural gas reinforced pressure vessel and a natural gas reinforced pressure vessel having a pressure pipe for delivering natural gas from the natural gas reinforced pressure vessel, wherein the natural gas reinforced pressure vessel comprises the reinforced pressure vessel described in 8) or 9) above system.

13)酸素ガス用強化圧力容器および酸素ガス用強化圧力容器から酸素ガスを送り出す圧力配管を備えており、酸素ガス用強化圧力容器が上記8)または9)記載の強化圧力容器からなる酸素ガス供給システム 13) An oxygen gas supply comprising an oxygen gas reinforced pressure vessel and a pressure pipe for sending oxygen gas from the oxygen gas reinforced pressure vessel, the oxygen gas reinforced pressure vessel comprising the reinforced pressure vessel described in 8) or 9) above System .

14)金属素材に熱間加工を施すことによって、一方の鏡板および鏡板に一体に形成された口金取付部からなる第1構成部材をつくるとともに、金属素材に熱間加工を施すことによって、胴および胴に一体に形成されかつ胴の一端開口を閉鎖する他方の鏡板からなる第2構成部材つくった後両構成部材に熱処理を施し、ついで摩擦攪拌接合用工具のプローブを回転させつつ外周面側から第1構成部材の口金取付部に埋入し、プローブと第1構成部材とを相対的に移動させることにより、口金取付部の母材となる金属を摩擦攪拌して結晶粒を微細化させる改質処理を施し、さらに摩擦攪拌接合用工具のプローブを回転させつつ外周面側から第1構成部材における第2構成部材との接合端部に埋入し、プローブと第1構成部材とを相対的に移動させることにより、第1構成部材における第2構成部材との接合端部の母材となる金属を摩擦攪拌して結晶粒を微細化させる改質処理を施し、その後第1構成部材と第2構成部材とを接合することを含む圧力容器の製造方法。 14) Hot working on the metal material creates a first component consisting of one end plate and a base mounting portion formed integrally with the end plate, and by hot working on the metal material, After the second structural member formed of the other end plate formed integrally with the cylinder and closing one end opening of the cylinder is formed, both components are subjected to heat treatment, and then the probe of the friction stir welding tool is rotated from the outer peripheral surface side. It is embedded in the base attachment part of the first component member, and the probe and the first component member are relatively moved, so that the metal that becomes the base material of the base attachment part is frictionally stirred to refine the crystal grains. In addition, while rotating the probe of the friction stir welding tool, it is embedded from the outer peripheral surface side into the joining end portion of the first constituent member with the second constituent member, and the probe and the first constituent member are relative to each other. Move to Then, the first constituent member and the second constituent member are subjected to a reforming process in which the metal that becomes the base material of the joint end portion of the first constituent member with the second constituent member is frictionally stirred to refine the crystal grains, and then the first constituent member and the second constituent member And a method of manufacturing a pressure vessel including joining.

15)摩擦攪拌接合用工具の円柱状回転子の端面におけるプローブの周囲に形成された肩部の直径をDmm、第1構成部材の口金取付部の肉厚をTmmとした場合、D≦3Tの条件を満たす上記14)記載の圧力容器の製造方法。 15) When the diameter of the shoulder portion formed around the probe on the end face of the cylindrical rotor of the friction stir welding tool is D mm and the thickness of the base mounting portion of the first component member is T mm, D ≦ 3T The method for producing a pressure vessel as described in 14) above, which satisfies a condition.

16)摩擦攪拌接合用工具のプローブ径と、第1構成部材の口金取付部の肉厚とを等しくしておく上記14)または15)記載の圧力容器の製造方法。 16) The method for producing a pressure vessel as described in 14) or 15) above, wherein the probe diameter of the friction stir welding tool is equal to the thickness of the cap mounting portion of the first component member.

17)口金取付部の全肉厚の50〜80%に改質処理を施す上記14)〜16)のうちのいずれかに記載の圧力容器の製造方法。 17) The method for producing a pressure vessel according to any one of the above 14) to 16) , wherein the reforming treatment is applied to 50 to 80% of the total thickness of the base mounting portion.

18)摩擦攪拌接合用工具の円柱状回転子の端面におけるプローブの周囲に形成された肩部の直径をdmm、第1構成部材における第2構成部材との接合端部の肉厚をtmmとした場合、d≦3tの条件を満たす上記14)〜17)のうちのいずれかに記載の圧力容器の製造方法。 18) The diameter of the shoulder formed around the probe on the end surface of the cylindrical rotor of the friction stir welding tool is dmm, and the thickness of the joint end of the first component with the second component is tmm. In the case, the method for producing a pressure vessel according to any one of the above 14) to 17) that satisfies a condition of d ≦ 3t.

19)第1構成部材における第2構成部材との接合端部の全肉厚の50〜80%に改質処理を施す上記14)〜18)のうちのいずれかに記載の圧力容器の製造方法。 19) The method for producing a pressure vessel according to any one of the above 14) to 18) , wherein the first structural member is subjected to a modification treatment on 50 to 80% of the total thickness of the joining end portion with the second structural member. .

20)金属素材が熱処理型アルミニウムからなる上記14)〜19)のうちのいずれかに記載の圧力容器の製造方法。 20) The method for producing a pressure vessel according to any one of 14) to 19) above, wherein the metal material is heat-treated aluminum.

上記1)の圧力容器によれば、口金取付部において母材となる金属に改質処理が施され、結晶粒が微細化されているので、口金取付部の衝撃値および疲労強度が増大し、この圧力容器の口金取付部での破壊の危険性が低下する。   According to the pressure vessel of 1) above, the metal that is the base material in the base mounting portion is subjected to a modification treatment, and the crystal grains are refined, so that the impact value and fatigue strength of the base mounting portion increase, The risk of destruction at the base mounting portion of the pressure vessel is reduced.

また、 上記1)の圧力容器によれば、第1構成部材における第2構成部材との接合端部において母材となる金属に改質処理が施され、結晶粒が微細化されているので、当該部分の衝撃値および疲労強度が増大し、この圧力容器の当該部分での破壊の危険性が低下する。さらに、第1構成部材における第2構成部材との接合端部での破壊の危険性が確実に低下する。
上記2)の圧力容器によれば、この圧力容器を用いた圧力容器の口金取付部での破壊の危険性が確実に低下する。
Further, according to the pressure vessel of 1) above, since the metal that becomes the base material is subjected to the modification process at the joint end portion of the first component member with the second component member, the crystal grains are refined. The impact value and fatigue strength of the part are increased, and the risk of breakage in the part of the pressure vessel is reduced. Furthermore, the risk of destruction at the joint end of the first component member with the second component member is reliably reduced.
According to the pressure vessel of 2) above, the risk of destruction at the base mounting portion of the pressure vessel using this pressure vessel is reliably reduced.

上記3)の圧力容器によれば、この圧力容器を用いた圧力容器の口金取付部での破壊の危険性が確実に低下する。   According to the pressure vessel of 3) above, the risk of destruction at the base attachment portion of the pressure vessel using this pressure vessel is surely reduced.

上記5)の圧力容器によれば、口金取付部の改質処理を比較的簡単に行うことができる。   According to the pressure vessel of 5) above, it is possible to relatively easily perform the modification process of the base mounting portion.

上記6)の圧力容器によれば、第1構成部材における第2構成部材との接合端部での破壊の危険性が確実に低下する。 According to the pressure vessel of 6) above, the risk of destruction at the joining end portion of the first component member with the second component member is reliably reduced.

上記7)の圧力容器によれば、第1構成部材における第2構成部材との接合端部の改質処理を比較的簡単に行うことができるAccording to the pressure vessel above 7), it can be subjected to modification treatment of joint ends of the second component in the first component relatively easily.

上記14)〜18)の圧力容器の製造方法によれば、上記1)、6)および7)の圧力容器を比較的簡単に製造することができる。 According to the pressure vessel manufacturing methods of 14) to 18) above, the pressure vessels of 1), 6) and 7) can be manufactured relatively easily.

上記19)の圧力容器の製造方法によれば、上記1)の圧力容器を比較的簡単に製造することができる。 According to the pressure vessel manufacturing method of the above 19), the pressure vessel of the above 1) can be manufactured relatively easily.

以下、この発明の実施形態を、図面を参照して説明する。なお、全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same part and the same thing through all drawings, and the overlapping description is abbreviate | omitted.

実施形態1
この実施形態は図1〜図5に示すものである。
Embodiment 1
This embodiment is shown in FIGS.

図1は実施形態1の圧力容器を示し、図2は圧力容器を使用した強化圧力容器を示す。図3〜図5は圧力容器の製造方法を示す。   FIG. 1 shows a pressure vessel according to Embodiment 1, and FIG. 2 shows a reinforced pressure vessel using the pressure vessel. 3 to 5 show a method for manufacturing a pressure vessel.

図1において、圧力容器(1)は、円筒状の胴(2)と、胴(2)の両端開口を閉鎖する鏡板(3)(4)と、いずれか一方の鏡板(3)に一体に形成されかつ圧力容器(1)の内外を通じさせる貫通穴(5a)を有する円筒状口金取付部(5)とよりなる。図示は省略したが、口金取付部(5)の貫通穴(5a)の内周面にはめねじが形成されている。   In FIG. 1, the pressure vessel (1) is integrated with a cylindrical body (2), an end plate (3) (4) that closes both ends of the body (2), and one of the end plates (3). A cylindrical base mounting part (5) having a through hole (5a) formed and passed through the inside and outside of the pressure vessel (1). Although not shown, a female screw is formed on the inner peripheral surface of the through hole (5a) of the base mounting portion (5).

圧力容器(1)は、たとえばJIS A6000系合金、JIS A2000系合金、JIS A7000系合金などの熱処理型アルミニウムにより、胴(2)、両鏡板(3)(4)および口金取付部(5)が一体に形成されている。   The pressure vessel (1) is made of heat-treatable aluminum such as JIS A6000 series alloy, JIS A2000 series alloy, JIS A7000 series alloy, etc., so that the body (2), both end plates (3) (4) and the base mounting part (5) It is integrally formed.

口金取付部(5)においては、その外周面側から母材となるアルミニウムに改質処理が施されて結晶粒が微細化されており、口金取付部(5)の衝撃値や疲労強度が増大している。改質処理部分を(X)で示す。口金取付部(5)の改質処理は、摩擦攪拌接合用工具のプローブを用いて摩擦攪拌することにより行われている。改質処理が施されて結晶粒が微細化されている範囲は、口金取付部(5)の外周面から全肉厚の50〜80%の範囲内であることが好ましい。改質処理が施されて結晶粒が微細化されている範囲が、口金取付部(5)の外周面から全肉厚の50%未満であると、口金取付部(5)の衝撃値や疲労強度を増大させる効果が十分ではないことがあり、80%を越えると口金取付部(5)の内径の寸法精度が低下するおそれがある。また、口金取付部(5)における改質処理が施された部分の結晶粒径は、衝撃値や疲労強度を増大させる効果が十分となるように、90μm以下であることが好ましい。なお、当該部分の結晶粒径の下限値は20μm程度である。   In the base mounting part (5), the aluminum which is the base material is modified from the outer peripheral surface side to refine the crystal grains, and the impact value and fatigue strength of the base mounting part (5) increase. is doing. The modified portion is indicated by (X). The reforming process of the base attaching portion (5) is performed by friction stir using a probe of a friction stir welding tool. The range in which the crystal grains are refined by the modification treatment is preferably in the range of 50 to 80% of the total thickness from the outer peripheral surface of the base attaching portion (5). If the range in which the crystal grains are refined by the modification treatment is less than 50% of the total thickness from the outer peripheral surface of the base mounting part (5), the impact value and fatigue of the base mounting part (5) The effect of increasing the strength may not be sufficient, and if it exceeds 80%, the dimensional accuracy of the inner diameter of the base attaching portion (5) may be lowered. Further, the crystal grain size of the portion subjected to the modification treatment in the base attaching portion (5) is preferably 90 μm or less so that the effect of increasing the impact value and the fatigue strength is sufficient. In addition, the lower limit of the crystal grain size of the part is about 20 μm.

圧力容器(1)は、たとえばスキューバダイビングのエアータンクに用いられる場合には、口金取付部(5)の貫通穴(5a)内周面のめねじを利用して口金バルブが取り付けられた状態で使用される。   For example, when the pressure vessel (1) is used in an air tank for scuba diving, the mouthpiece valve is attached using the female screw on the inner peripheral surface of the through hole (5a) of the mouthpiece mounting portion (5). used.

また、圧力容器(1)は、図2に示すように、周囲の全体が、たとえばカーボン繊維強化樹脂などからなる繊維強化樹脂層(6)で覆われ、強化圧力容器(7)として用いられる。図示は省略したが、繊維強化樹脂層(6)は、補強繊維を胴(2)の長さ方向とほぼ直角をなすように巻き付けてなるフープ巻繊維層に樹脂を含浸硬化させたフープ巻補強層と、補強繊維を胴(2)の長さ方向に対して傾斜するように巻き付けてなるヘリカル巻繊維層に樹脂を含浸硬化させたヘリカル巻補強層とよりなる。各補強層を構成する繊維としては、たとえばカーボン繊維、ガラス繊維、アラミド繊維などが用いられるが、カーボン繊維を用いることが好ましい。また、各補強層を構成する樹脂としては、たとえばエポキシ樹脂が用いられる。各補強層は、フィラメントワインディング法により樹脂を含浸させた補強繊維、あるいは樹脂を含浸させた補強繊維の束を巻き付けた後、樹脂を硬化させることにより形成される。   Further, as shown in FIG. 2, the entire pressure vessel (1) is covered with a fiber reinforced resin layer (6) made of, for example, carbon fiber reinforced resin, and used as a reinforced pressure vessel (7). Although not shown, the fiber reinforced resin layer (6) is a hoop wound reinforcement in which a resin is impregnated and cured in a hoop wound fiber layer in which reinforcing fibers are wound so as to be substantially perpendicular to the longitudinal direction of the trunk (2). And a helically wound reinforcing layer obtained by impregnating and curing a helically wound fiber layer obtained by winding reinforcing fibers so as to be inclined with respect to the length direction of the body (2). As the fiber constituting each reinforcing layer, for example, carbon fiber, glass fiber, aramid fiber and the like are used, and it is preferable to use carbon fiber. Moreover, as resin which comprises each reinforcement layer, an epoxy resin is used, for example. Each reinforcing layer is formed by winding a reinforcing fiber impregnated with a resin by a filament winding method or a bundle of reinforcing fibers impregnated with a resin and then curing the resin.

強化圧力容器(7)は、燃料水素ガス用強化圧力容器、燃料電池、および燃料水素ガス用強化圧力容器から燃料電池に燃料水素ガスを送る圧力配管を備えた燃料電池システムにおける燃料水素ガス用強化圧力容器として用いられる。燃料電池システムは、燃料電池自動車に搭載される。また、燃料電池システムはコージェネレーションシステムにも用いられる。   The enhanced pressure vessel (7) is an enhanced pressure vessel for fuel hydrogen gas in a fuel cell system equipped with an enhanced pressure vessel for fuel hydrogen gas, a fuel cell, and a pressure pipe for sending fuel hydrogen gas from the enhanced pressure vessel for fuel hydrogen gas to the fuel cell. Used as a pressure vessel. The fuel cell system is mounted on a fuel cell vehicle. The fuel cell system is also used for a cogeneration system.

また、強化圧力容器(7)は、天然ガス用強化圧力容器および天然ガス用強化圧力容器から天然ガスを送り出す圧力配管を備えた天然ガス供給システムにおける天然ガス用強化圧力容器として用いられる。天然ガス供給システムは、発電機および発電機駆動装置とともにコージェネレーションシステムに用いられる。また、天然ガス供給システムは、天然ガスを燃料とするエンジンを備えている天然ガス自動車に用いられる。   Further, the reinforced pressure vessel (7) is used as a reinforced pressure vessel for natural gas in a natural gas supply system including a reinforced pressure vessel for natural gas and a pressure pipe for sending out natural gas from the reinforced pressure vessel for natural gas. A natural gas supply system is used for a cogeneration system together with a generator and a generator driving device. The natural gas supply system is used for a natural gas vehicle including an engine using natural gas as fuel.

さらに、強化圧力容器(7)は、酸素ガス用強化圧力容器および酸素ガス用強化圧力容器から酸素ガスを送り出す圧力配管を備えた酸素ガス供給システムにおける酸素ガス用強化圧力容器として用いられる。   Further, the reinforced pressure vessel (7) is used as an oxygen gas reinforced pressure vessel in an oxygen gas supply system including an oxygen gas reinforced pressure vessel and a pressure pipe for sending oxygen gas from the oxygen gas reinforced pressure vessel.

以下、図3〜図5を参照して、圧力容器(1)の製造方法について説明する。   Hereinafter, the manufacturing method of the pressure vessel (1) will be described with reference to FIGS.

まず、円筒状のアルミニウム押出形材を所定の長さに切断して円筒状素材をつくった後、筒状素材の一端部に熱間スピニング加工を施すことにより、一方の鏡板(3)と、貫通穴(5a)を有する口金取付部(5)とを形成する。ここで、口金取付部(5)の長さは、図1に示す完成品の圧力容器(1)における口金取付部(5)の長さよりも長くしておく。また、筒状素材の他端部に熱間スピニング加工を施すことにより他方の鏡板(4)を形成する。こうして、胴(2)、両鏡板(3)(4)および口金取付部(5)からなる圧力容器半製品(10)を製造する。   First, after making a cylindrical material by cutting a cylindrical aluminum extruded profile into a predetermined length, by applying a hot spinning process to one end of the cylindrical material, one end plate (3), A base attaching part (5) having a through hole (5a) is formed. Here, the length of the base attaching portion (5) is set to be longer than the length of the base attaching portion (5) in the finished pressure vessel (1) shown in FIG. Further, the other end plate (4) is formed by subjecting the other end of the cylindrical material to hot spinning. In this way, the pressure vessel semi-finished product (10) comprising the body (2), the two end plates (3) and (4), and the base attaching portion (5) is manufactured.

ついで、圧力容器半製品(10)の口金取付部(5)に、摩擦攪拌接合用工具(11)を用いて改質処理を施し、結晶粒を微細化する(図3参照)。   Next, the base mounting portion (5) of the pressure vessel semi-finished product (10) is subjected to a modification treatment using the friction stir welding tool (11) to refine the crystal grains (see FIG. 3).

摩擦攪拌接合用工具(11)は、先端部にテーパ部を介して小径部(12a)が同軸上に一体に形成された円柱状回転子(12)と、回転子(12)の小径部(12a)の端面に小径部(12a)と同軸上に一体に形成されかつ小径部(12a)よりも小径であるピン状プローブ(13)とを備えている。回転子(12)およびプローブ(13)は、圧力容器半製品(10)よりも硬質でかつ摩擦攪拌時に発生する摩擦熱に耐えうる耐熱性を有する材料で形成されている。   The friction stir welding tool (11) includes a cylindrical rotor (12) in which a small-diameter portion (12a) is integrally formed coaxially with a tapered portion at a tip portion, and a small-diameter portion of the rotor (12) ( 12a) is provided with a pin-like probe (13) which is integrally formed coaxially with the small diameter portion (12a) and has a smaller diameter than the small diameter portion (12a). The rotor (12) and the probe (13) are formed of a material that is harder than the pressure vessel semi-finished product (10) and has heat resistance that can withstand frictional heat generated during friction stirring.

そして、摩擦攪拌接合用工具(11)の回転子(12)およびプローブ(13)を500〜3000rpmで回転させながら、圧力容器半製品(10)の口金取付部(5)の基端寄りの部分に外周面側からプローブ(13)を埋入する(図4参照)。ここで、摩擦攪拌接合用工具(11)の回転子(12)の端面におけるプローブ(13)の周囲に形成された肩部(12b)の直径をDmm、口金取付部(5)の肉厚をTmmとした場合、D≦3Tの条件を満たすことが好ましい。D>3Tの場合、口金取付部(5)への入熱量が過大となり、軟化域が大きくなって口金取付部(5)の変形が生じるおそれがある。また、プローブ(13)の径(P1)を口金取付部(5)の肉厚Tmmと等しくしておくことが好ましい。この場合、口金取付部(5)の厚み全体にわたってアルミニウムの十分な塑性流動層が得られる。また、プローブ(13)の長さは、口金取付部(5)の全肉厚の50〜80%の範囲に改質処理を施しうるような長さとしておくことが好ましい。   And while rotating the rotor (12) and the probe (13) of the friction stir welding tool (11) at 500 to 3000 rpm, the portion near the base end of the base attachment part (5) of the pressure vessel semi-finished product (10) The probe (13) is embedded in the outer peripheral surface side (see FIG. 4). Here, the diameter of the shoulder (12b) formed around the probe (13) on the end face of the rotor (12) of the friction stir welding tool (11) is Dmm, and the thickness of the base mounting part (5) is In the case of Tmm, it is preferable that the condition of D ≦ 3T is satisfied. In the case of D> 3T, the amount of heat input to the base attaching part (5) becomes excessive, and the softened area becomes large, which may cause deformation of the base attaching part (5). The diameter (P1) of the probe (13) is preferably equal to the wall thickness Tmm of the base mounting portion (5). In this case, a sufficient plastic fluidized layer of aluminum can be obtained over the entire thickness of the base attachment portion (5). The length of the probe (13) is preferably set such that the modification treatment can be performed in a range of 50 to 80% of the total thickness of the base attachment portion (5).

ついで、圧力容器半製品(10)を軸線の周りに回転させながら、摩擦攪拌接合用工具(11)を口金取付部(5)の先端側(図4の左側)に直線的に移動させる。ここで、圧力容器半製品(10)の軸線周りの回転は、口金取付部(5)の外周面の周速が10〜30cpmとなるように行うことが好ましい。すると、プローブ(13)の回転により発生する摩擦熱と、口金取付部(5)と肩部(12b)との摺動により発生する摩擦熱とによって、圧力容器半製品(10)の母材となる金属は軟化するとともに、この軟化部がプローブ(13)の回転力を受けて攪拌混合され、さらにこの軟化部がプローブ(13)の通過溝を埋めるように塑性流動した後、摩擦熱を急速に失って冷却固化するという現象が、プローブ(13)の移動に伴って繰り返されることにより、母材となる金属が摩擦攪拌混合され、改質されて結晶粒が微細化する。   Next, the friction stir welding tool (11) is linearly moved to the tip end side (left side in FIG. 4) of the base attaching portion (5) while rotating the pressure vessel semi-finished product (10) around the axis. Here, it is preferable to rotate the pressure vessel semi-finished product (10) around the axis so that the peripheral speed of the outer peripheral surface of the base attaching portion (5) is 10 to 30 cpm. Then, due to the frictional heat generated by the rotation of the probe (13) and the frictional heat generated by sliding between the base mounting part (5) and the shoulder (12b), the base material of the pressure vessel semi-finished product (10) The softened metal is stirred and mixed under the rotational force of the probe (13), and the softened part plastically flows to fill the passage groove of the probe (13). The phenomenon of losing and solidifying by cooling is repeated with the movement of the probe (13), whereby the base metal is friction-stirred and mixed, modified, and refined crystal grains.

そして、プローブ(13)が口金取付部(5)の先端部に至ったときに、プローブ(13)を引き抜く。プローブ(13)の引き抜きにより口金取付部(5)の外周面に穴(14)が形成されるので、口金取付部(5)の穴(14)が存在する部分を切断する(図5参照)。こうして、圧力容器(1)が製造される。   Then, when the probe (13) reaches the tip of the base mounting portion (5), the probe (13) is pulled out. Since the hole (14) is formed in the outer peripheral surface of the base attachment part (5) by pulling out the probe (13), the part of the base attachment part (5) where the hole (14) is present is cut (see FIG. 5). . Thus, the pressure vessel (1) is manufactured.

次に、実施形態1に関しての具体的実験例について説明する。   Next, a specific experimental example regarding the first embodiment will be described.

JIS A6061製アルミニウム押出形材からなる内径200mm、肉厚4.5mm、長さ800mmの円筒状素材を用意した後、円筒状素材の一端部に、スピニング温度を変えて熱間スピニング加工を施すことにより、一方の鏡板(3)と貫通穴(5a)を有する口金取付部(5)とを形成するとともに、円筒状素材の他端部に熱間スピニング加工を施すことにより他方の鏡板(4)を形成し、胴(2)、両鏡板(3)(4)および口金取付部(5)からなる圧力容器半製品(10)を製造した。ここで、口金取付部(5)の肉厚Tは10mm、長さは40mmである。ついで、圧力容器半製品(10)を530℃に加熱して焼入処理を施した後、180℃に8時間保持する焼戻し処理を施した。そして、口金取付部(5)の結晶粒径を測定した。   After preparing a cylindrical material with an inner diameter of 200 mm, a wall thickness of 4.5 mm, and a length of 800 mm made of JIS A6061 aluminum extruded profile, one end of the cylindrical material is subjected to hot spinning by changing the spinning temperature. By forming one end plate (3) and a base attachment portion (5) having a through hole (5a), the other end plate (4) by subjecting the other end of the cylindrical material to hot spinning A pressure vessel semi-finished product (10) consisting of a barrel (2), both end plates (3) and (4), and a base mounting portion (5) was produced. Here, the thickness T of the base mounting portion (5) is 10 mm, and the length is 40 mm. Subsequently, the pressure vessel semi-finished product (10) was heated to 530 ° C. and subjected to a quenching treatment, and then subjected to a tempering treatment for holding at 180 ° C. for 8 hours. Then, the crystal grain size of the base attaching part (5) was measured.

また、上記と同様にして得られた圧力容器半製品(10)を530℃に加熱して焼入処理を施した後、180℃に8時間保持する焼戻し処理を施した。ついで、プローブ(13)の直径10mm、プローブ(13)の長さ8mm、肩部(12b)の直径24mmである摩擦攪拌接合用工具(11)を使用し、回転子(12)およびプローブ(13)を1500rpmで回転させながら、圧力容器半製品(10)の口金取付部(5)の基端寄りの部分に外周面側からプローブ(13)を埋入した。ついで、圧力容器半製品(10)を、口金取付部(5)の外周面の周速が30cpmとなるように、軸線の周りに回転させながら、摩擦攪拌接合用工具(11)のプローブ(13)を口金取付部(5)の先端側に移動させ、口金取付部(5)を摩擦攪拌して改質処理を施した。その後、プローブ(13)が口金取付部(5)の先端部に至ったときに引き抜き、口金取付部(5)の穴(14)が存在する部分を切断した。そして、口金取付部(5)の結晶粒径を測定した。   In addition, the pressure vessel semi-finished product (10) obtained in the same manner as described above was subjected to a quenching treatment by heating to 530 ° C., and then a tempering treatment for holding at 180 ° C. for 8 hours. Next, a friction stir welding tool (11) having a probe (13) diameter of 10 mm, a probe (13) length of 8 mm, and a shoulder (12b) diameter of 24 mm was used. ) Was rotated at 1500 rpm, and the probe (13) was embedded from the outer peripheral surface side into a portion near the base end of the base attachment portion (5) of the pressure vessel semi-finished product (10). Next, the probe (13) of the friction stir welding tool (11) is rotated while rotating the pressure vessel semi-finished product (10) around the axis so that the peripheral speed of the outer peripheral surface of the base mounting portion (5) is 30 cpm. ) Was moved to the tip end side of the base attaching part (5), and the base attaching part (5) was subjected to reforming by friction stirring. Thereafter, the probe (13) was pulled out when it reached the tip of the base attaching part (5), and the part of the base attaching part (5) where the hole (14) was present was cut. Then, the crystal grain size of the base attaching part (5) was measured.

表1に、スピニング温度と、改質処理無しの場合および有りの場合の結晶粒径を示す。

Figure 0004774228
Table 1 shows the spinning temperature and the crystal grain size with and without the modification treatment.
Figure 0004774228

実施形態2
この実施形態は図6〜図9に示すものである。
Embodiment 2
This embodiment is shown in FIGS.

図6は実施形態2の圧力容器を示し、図7〜図9は圧力容器の製造方法を示す。   FIG. 6 shows a pressure vessel according to Embodiment 2, and FIGS. 7 to 9 show a method for manufacturing the pressure vessel.

図6において、圧力容器(20)は、一方の鏡板(3)および鏡板(3)に一体に形成された口金取付部(5)を構成する第1構成部材(21)と、胴(2)および胴(2)に一体に形成されかつ胴(2)の一端開口を閉鎖する他方の鏡板(4)を構成する第2構成部材(22)とよりなる。   In FIG. 6, the pressure vessel (20) includes one end plate (3) and a first component member (21) constituting a base attaching portion (5) formed integrally with the end plate (3), and a body (2). And a second component member (22) which is formed integrally with the body (2) and constitutes the other end plate (4) which closes one end opening of the body (2).

第1構成部材(21)は熱間鍛造により形成されたものであり、圧力容器(20)の内外を通じさせる貫通穴(5a)を有する口金取付部(5)が一体に形成されている。第2構成部材(22)はカップ状金属素材に熱間においてフローフォーミングによりしごき加工を施すことによって形成されたものであり、一端が開口するとともに他端が閉鎖された有底円筒状体である。第1構成部材(21)と第2構成部材(22)とは、両者の突き合わせ部において、適当な方法、たとえば摩擦攪拌接合法により全周にわたって接合されている。   The first component member (21) is formed by hot forging, and a base attachment portion (5) having a through hole (5a) through which the inside and outside of the pressure vessel (20) are passed is integrally formed. The second component member (22) is formed by subjecting the cup-shaped metal material to hot ironing by flow forming, and is a bottomed cylindrical body having one end opened and the other end closed. . The first component member (21) and the second component member (22) are joined over the entire circumference by an appropriate method, for example, a friction stir welding method, at the abutting portion between them.

両構成部材(21)(22)は、それぞれたとえばJIS A6000系合金、JIS A2000系合金、JIS A7000系合金などの熱処理型アルミニウムにより形成されている。両構成部材(21)(22)は同じ材料で形成されていてもよいし、あるいは異なる材料で形成されていてもよい。   Both the constituent members (21) and (22) are made of heat-treatable aluminum such as JIS A6000 series alloy, JIS A2000 series alloy, JIS A7000 series alloy, for example. Both the structural members (21) and (22) may be formed of the same material, or may be formed of different materials.

第1構成部材(21)の口金取付部(5)においては、実施形態1の場合と同様にして、その外周面側から母材となるアルミニウムに改質処理が施されて結晶粒が微細化されており、口金取付部(5)の衝撃値や疲労強度が増大している。   In the base mounting portion (5) of the first component member (21), in the same manner as in the case of the first embodiment, the aluminum as the base material is subjected to the modification treatment from the outer peripheral surface side to refine the crystal grains. Thus, the impact value and fatigue strength of the base mounting portion (5) are increased.

また、第1構成部材(21)における第2構成部材(22)との接合端部(23)においては、その外周面側から母材となるアルミニウムに改質処理が施されて結晶粒が微細化されており、接合端部(23)の衝撃値や疲労強度が増大している。改質処理部を(X1)で示す。第1構成部材(21)の接合端部(23)の改質処理は、摩擦攪拌接合用工具(11)のプローブ(13)を用いて摩擦攪拌することにより行われている。改質処理が施されて結晶粒が微細化されている範囲は、接合端部(23)の外周面から全肉厚の50〜80%の範囲内であることことが好ましい。改質処理が施されて結晶粒が微細化されている範囲が、接合端部(23)の外周面から全肉厚の50%未満であると、接合端部(23)の衝撃値や疲労強度を増大させる効果が十分ではないことがあり、80%を越えると接合端部(23)の内径の寸法精度が低下するおそれがある。また、接合端部(23)における改質処理が施された部分の結晶粒径は、衝撃値や疲労強度を増大させる効果が十分となるように、90μm以下であることが好ましい。なお、当該部分の結晶粒径の下限値は20μm程度である。   In addition, at the joint end portion (23) of the first component member (21) with the second component member (22), the aluminum that is the base material is subjected to a modification process from the outer peripheral surface side, so that the crystal grains are fine. The impact value and fatigue strength of the joint end (23) are increased. The modification processing unit is indicated by (X1). The modification process of the joining end portion (23) of the first component member (21) is performed by friction stirring using the probe (13) of the friction stir welding tool (11). The range in which the crystal grains are refined by the modification treatment is preferably in the range of 50 to 80% of the total thickness from the outer peripheral surface of the joining end portion (23). If the range in which crystal grains are refined by the modification treatment is less than 50% of the total thickness from the outer peripheral surface of the joint end (23), the impact value and fatigue of the joint end (23) The effect of increasing the strength may not be sufficient, and if it exceeds 80%, the dimensional accuracy of the inner diameter of the joint end (23) may be lowered. In addition, the crystal grain size of the portion subjected to the modification treatment at the joint end portion (23) is preferably 90 μm or less so that the effect of increasing the impact value and the fatigue strength is sufficient. In addition, the lower limit of the crystal grain size of the part is about 20 μm.

圧力容器(20)は、たとえばスキューバダイビングのエアータンクに用いられる場合には、口金取付部(5)の貫通穴(5a)の内周面のめねじを利用して口金バルブが取り付けられた状態で使用される。   When the pressure vessel (20) is used, for example, in an air tank for scuba diving, the cap valve is mounted using the female screw on the inner peripheral surface of the through hole (5a) of the cap mounting portion (5). Used in.

また、圧力容器(20)は、実施形態1の場合と同様に、周囲の全体が、たとえばカーボン繊維強化樹脂などからなる繊維強化樹脂層で覆われ、強化圧力容器として用いられる。   Further, as in the case of the first embodiment, the entire pressure vessel (20) is covered with a fiber reinforced resin layer made of, for example, carbon fiber reinforced resin, and used as a reinforced pressure vessel.

強化圧力容器は、燃料水素ガス用強化圧力容器、燃料電池、および燃料水素ガス用強化圧力容器から燃料電池に燃料水素ガスを送る圧力配管を備えた燃料電池システムにおける燃料水素ガス用強化圧力容器として用いられる。燃料電池システムは、燃料電池自動車に搭載される。また、燃料電池システムはコージェネレーションシステムにも用いられる。   The reinforced pressure vessel is a reinforced pressure vessel for fuel hydrogen gas in a fuel cell system including a reinforced pressure vessel for fuel hydrogen gas, a fuel cell, and a pressure pipe for sending fuel hydrogen gas from the reinforced pressure vessel for fuel hydrogen gas to the fuel cell. Used. The fuel cell system is mounted on a fuel cell vehicle. The fuel cell system is also used for a cogeneration system.

また、強化圧力容器は、天然ガス用強化圧力容器および天然ガス用強化圧力容器から天然ガスを送り出す圧力配管を備えた天然ガス供給システムにおける天然ガス用強化圧力容器として用いられる。天然ガス供給システムは、発電機および発電機駆動装置とともにコージェネレーションシステムに用いられる。また、天然ガス供給システムは、天然ガスを燃料とするエンジンを備えている天然ガス自動車に用いられる。   The reinforced pressure vessel is used as a reinforced pressure vessel for natural gas in a natural gas supply system including a reinforced pressure vessel for natural gas and a pressure pipe for sending out natural gas from the reinforced pressure vessel for natural gas. A natural gas supply system is used for a cogeneration system together with a generator and a generator driving device. The natural gas supply system is used for a natural gas vehicle including an engine using natural gas as fuel.

さらに、強化圧力容器は、酸素ガス用強化圧力容器および酸素ガス用強化圧力容器から酸素ガスを送り出す圧力配管を備えた酸素ガス供給システムにおける酸素ガス用強化圧力容器として用いられる。   Further, the enhanced pressure vessel is used as an enhanced pressure vessel for oxygen gas in an oxygen gas supply system including an enhanced pressure vessel for oxygen gas and a pressure pipe for sending oxygen gas from the enhanced pressure vessel for oxygen gas.

以下、図7〜図9を参照して、圧力容器(20)の製造方法について説明する。   Hereinafter, with reference to FIGS. 7-9, the manufacturing method of a pressure vessel (20) is demonstrated.

まず、アルミニウム製素材に熱間鍛造加工を施して、一方の鏡板(3)と口金取付部(5)とよりなる第1構成部材(21)をつくる。第1構成部材(21)の口金取付部(5)の長さは、図6に示す完成品の圧力容器(20)における口金取付部(5)の長さよりも長くしておく。また、第1構成部材(21)の口金取付部(5)とは反対側の端部の長さは、図6に示す完成品の圧力容器(20)における接合端部(23)の長さよりも長くしておく。一方、アルミニウム製カップ状素材に熱間においてフローフォーミングによりしごき加工を施して、胴(2)と他方の鏡板(4)とよりなる第2構成部材(22)をつくる。   First, hot forging is performed on an aluminum material to produce a first component member (21) composed of one end plate (3) and a base attaching portion (5). The length of the base attaching part (5) of the first component member (21) is set to be longer than the length of the base attaching part (5) in the pressure vessel (20) of the finished product shown in FIG. Further, the length of the end of the first component member (21) opposite to the base mounting portion (5) is longer than the length of the joint end (23) of the finished pressure vessel (20) shown in FIG. Also keep it long. On the other hand, an iron cup-shaped material is subjected to ironing by hot forming to produce a second component member (22) consisting of the body (2) and the other end plate (4).

ついで、第1構成部材(21)の口金取付部(5)に、実施形態1の場合と同様にして摩擦攪拌接合用工具(11)を用いて改質処理を施し、結晶粒を微細化する。また、第1構成部材(21)における第2構成部材(22)との接合端部(23)に、摩擦攪拌接合用工具(11)を用いて改質処理を施し、結晶粒を微細化する(図7参照)。すなわち、摩擦攪拌接合用工具(11)の回転子(12)およびプローブ(13)を500〜3000rpmで回転させながら、第1構成部材(21)の接合端部(23)の口金取付部(5)寄りの部分に外周面側からプローブ(13)を埋入する(図8参照)。ここで、摩擦攪拌接合用工具(11)の回転子(12)の端面におけるプローブ(13)の周囲に形成された肩部(12b)の直径をdmm、接合端部(23)の肉厚をtmmとした場合、d≦3tの条件を満たすことが好ましい。d>3tの場合、接合端部(23)への入熱量が過大となり、軟化域が大きくなって接合端部(23)の変形が生じるおそれがある。また、プローブ(13)の径(P2)を接合端部(23)の肉厚tmmと等しくしておくことが好ましい。この場合、接合端部(23)の厚み全体にわたってアルミニウムの十分な塑性流動層が得られる。また、プローブ(13)の長さは、上合端部(23)の全肉厚の50〜80%の範囲に改質処理を施しうるような長さとしておくことが好ましい。   Next, the base mounting portion (5) of the first component member (21) is subjected to a modification process using the friction stir welding tool (11) in the same manner as in the first embodiment, thereby refining the crystal grains. . Further, the first constituent member (21) is subjected to a modification treatment using the friction stir welding tool (11) on the joining end portion (23) with the second constituent member (22) to refine the crystal grains. (See FIG. 7). That is, while rotating the rotor (12) and the probe (13) of the friction stir welding tool (11) at 500 to 3000 rpm, the base mounting portion (5) of the joining end (23) of the first component member (21). ) The probe (13) is embedded in the portion closer to the outer peripheral surface (see FIG. 8). Here, the diameter of the shoulder (12b) formed around the probe (13) on the end surface of the rotor (12) of the friction stir welding tool (11) is dmm, and the thickness of the joint end (23) is When tmm is satisfied, it is preferable that d ≦ 3t is satisfied. When d> 3t, the amount of heat input to the joint end (23) becomes excessive, and the softened area becomes large, which may cause deformation of the joint end (23). The diameter (P2) of the probe (13) is preferably made equal to the wall thickness tmm of the joining end (23). In this case, a sufficient plastic fluidized layer of aluminum is obtained over the entire thickness of the joining end (23). The length of the probe (13) is preferably set such that the modification treatment can be performed in a range of 50 to 80% of the total thickness of the upper joint end (23).

ついで、第1構成部材(21)を軸線の周りに回転させながら、摩擦攪拌接合用工具(11)を接合端部(23)の第2構成部材(22)接合側(図8の右側)に直線的に移動させる。ここで、第1構成部材(21)の軸線周りの回転は、接合端部(23)の外周面の周速が10〜30cpmとなるように行うことが好ましい。すると、プローブ(13)の回転により発生する摩擦熱と、第1構成部材(21)と肩部(12b)との摺動により発生する摩擦熱とによって、第1構成部材(21)の母材となる金属は軟化するとともに、この軟化部がプローブ(13)の回転力を受けて攪拌混合され、さらにこの軟化部がプローブ(13)の通過溝を埋めるように塑性流動した後、摩擦熱を急速に失って冷却固化するという現象が、プローブ(13)の移動に伴って繰り返されることにより、母材となる金属が摩擦攪拌混合され、改質されて結晶粒が微細化する。   Next, while rotating the first component member (21) around the axis, the friction stir welding tool (11) is moved to the second component member (22) joining side (the right side in FIG. 8) of the joining end portion (23). Move linearly. Here, the rotation of the first component member (21) around the axis is preferably performed so that the peripheral speed of the outer peripheral surface of the joint end (23) is 10 to 30 cpm. Then, the base material of the first component member (21) is generated by the frictional heat generated by the rotation of the probe (13) and the frictional heat generated by sliding between the first component member (21) and the shoulder (12b). This softened part is stirred and mixed under the rotational force of the probe (13), and the softened part plastically flows to fill the passage groove of the probe (13). The phenomenon of rapid loss and solidification by cooling is repeated with the movement of the probe (13), whereby the base metal is friction-stirred and mixed and modified to refine the crystal grains.

そして、プローブ(13)が第1構成部材(21)の上記接合端部(23)の右端部に至ったときに、プローブ(13)を引き抜く。プローブ(13)の引き抜きにより第1構成部材(21)の外周面に穴(24)が形成されるので、第1構成部材(21)の穴(24)が存在する部分を切断する。こうして、第1構成部材(21)が製造される。   Then, when the probe (13) reaches the right end of the joint end (23) of the first component member (21), the probe (13) is pulled out. Since the hole (24) is formed in the outer peripheral surface of the first component member (21) by pulling out the probe (13), the portion of the first component member (21) where the hole (24) is present is cut. Thus, the first component member (21) is manufactured.

なお、第2構成部材(22)における第1構成部材(21)との接合端部(23)にも、第1構成部材(21)の場合と同様にして、摩擦攪拌接合用工具(11)を用いて改質処理を施し、結晶粒を微細化しておいてもよい。   The friction stir welding tool (11) is also applied to the joining end portion (23) of the second constituent member (22) with the first constituent member (21) in the same manner as in the case of the first constituent member (21). The crystal grains may be refined by performing a modification treatment using

その後、第1構成部材(21)と第2構成部材(22)とを、適当な方法、たとえば摩擦攪拌接合法により接合する。こうして、圧力容器(20)が製造される。   Thereafter, the first component member (21) and the second component member (22) are joined by an appropriate method, for example, a friction stir welding method. Thus, the pressure vessel (20) is manufactured.

上記実施形態2において、第2構成部材(22)としては、胴(2)と他方の鏡板(4)とが一体に形成されたものが用いられているが、これに代えて、別々に形成された胴(2)と鏡板(4)とが接合されたものが第2構成部材(22)として用いられてもよい。この場合、胴(2)はたとえばアルミニウム押出形材により形成され、鏡板(4)はアルミニウム素材に熱間鍛造加工を施すことにより形成される。また、この場合、鏡板(4)における胴(2)との接合端部(23)、および胴(2)における鏡板(4)との接合端部(23)に、それぞれ第1構成部材(21)の場合と同様にして、摩擦攪拌接合用工具(11)を用いて改質処理を施し、結晶粒を微細化しておいてもよい。   In the second embodiment, as the second component member (22), one in which the body (2) and the other end plate (4) are integrally formed is used, but instead, it is formed separately. The joined body (2) and end plate (4) may be used as the second component member (22). In this case, the body (2) is formed of, for example, an aluminum extruded profile, and the end plate (4) is formed by subjecting an aluminum material to hot forging. In this case, the first constituent member (21) is connected to the joining end (23) of the end plate (4) with the barrel (2) and the joining end (23) of the barrel (2) to the end plate (4). In the same manner as in the case of), the modification may be performed using the friction stir welding tool (11) to refine the crystal grains.

上記2つの実施形態において、圧力容器(1)(20)の胴(2)は円筒状であるが、これに限定されるものではなく、胴はたとえば横断面だ円形(数学的に定義されるだ円形だけではなく、だ円形に近い形状、たとえば長円形も含まれる。)であってもよい。   In the above two embodiments, the cylinder (2) of the pressure vessel (1) (20) is cylindrical, but the cylinder is not limited to this. For example, the cylinder is elliptical in cross section (defined mathematically). Not only an oval shape but also a shape close to an oval shape, for example, an oval shape may be included.

この発明の実施形態1の圧力容器を示す斜視図である。It is a perspective view which shows the pressure vessel of Embodiment 1 of this invention. 図1の圧力容器を用いた強化圧力容器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the reinforced pressure vessel using the pressure vessel of FIG. 図1の圧力容器を製造する方法を示し、圧力容器半製品の口金取付部に摩擦攪拌接合用工具のプローブを埋入する前の状態の斜視図である。It is a perspective view of the state before embedding the probe of the tool for friction stir welding in the base attachment part of a pressure vessel semi-finished product which shows the method of manufacturing the pressure vessel of FIG. 図1の圧力容器を製造する方法を示し、圧力容器半製品の口金取付部に摩擦攪拌接合用工具のプローブを埋入した状態の部分拡大縦断面図である。FIG. 2 is a partially enlarged longitudinal sectional view showing a method of manufacturing the pressure vessel of FIG. 1 and in a state where a probe of a friction stir welding tool is embedded in a base attaching portion of a pressure vessel semi-finished product. 図1の圧力容器を製造する方法を示し、圧力容器半製品の口金取付部から摩擦攪拌接合用工具のプローブを引き抜き、これにより形成される穴が存在する部分を切断した状態の斜視図である。FIG. 2 is a perspective view showing a method of manufacturing the pressure vessel of FIG. 1, in which a probe of a friction stir welding tool is pulled out from a base attaching portion of a pressure vessel semi-finished product, and a portion where a hole formed thereby is cut. . この発明の実施形態2の圧力容器を示す斜視図である。It is a perspective view which shows the pressure vessel of Embodiment 2 of this invention. 図6の圧力容器を製造する方法を示し、第1構成部材における第2構成部材との接合端部に摩擦攪拌接合用工具のプローブを埋入する前の状態の斜視図である。FIG. 7 is a perspective view of a state before the probe of the friction stir welding tool is embedded in the joining end portion of the first constituent member with the second constituent member, showing a method of manufacturing the pressure vessel of FIG. 6. 図6の圧力容器を製造する方法を示し、第1構成部材における第2構成部材との接合端部に摩擦攪拌接合用工具のプローブを埋入した状態の部分拡大縦断面図である。FIG. 7 is a partially enlarged longitudinal sectional view showing a method of manufacturing the pressure vessel of FIG. 6, in a state where a probe of a friction stir welding tool is embedded in a joining end portion of the first constituent member with a second constituent member. 図6の圧力容器を製造する方法を示し、第1構成部材における第2構成部材との接合端部から摩擦攪拌接合用工具のプローブを引き抜き、これにより形成される穴が存在する部分を切断した状態の斜視図である。6 shows a method of manufacturing the pressure vessel of FIG. 6, and the probe of the friction stir welding tool is pulled out from the joining end portion of the first constituent member with the second constituent member, and the portion where the hole formed thereby is cut. It is a perspective view of a state.

(1)(20):圧力容器
(2):胴
(3)(4):鏡板
(5):口金取付部
(6):繊維強化樹脂層
(7):強化圧力容器
(10):圧力容器半製品
(11):摩擦攪拌接合用工具
(12):回転子
(12b):肩部
(13):プローブ
(21):第1構成部材
(22):第2構成部材
(23):第1構成部材における第2構成部材との接合端部
(1) (20): Pressure vessel
(2): Torso
(3) (4): End plate
(5): Base mounting part
(6): Fiber reinforced resin layer
(7): Strengthened pressure vessel
(10): Pressure vessel semi-finished product
(11): Friction stir welding tool
(12): Rotor
(12b): Shoulder
(13): Probe
(21): First component
(22): Second component
(23): Joint end portion of the first component member with the second component member

Claims (20)

筒状の胴と、胴の両端開口を閉鎖する鏡板とよりなるとともに、いずれか一方の鏡板に口金取付部が一体に形成されており、口金取付部が形成された一方の鏡板を構成する第1構成部材と、胴および他方の鏡板を構成しかつ第1構成部材に接合された第2構成部材とよりなる圧力容器において、
口金取付部において母材となる金属に改質処理が施されて、結晶粒が微細化され、第1構成部材における第2構成部材との接合端部において全肉厚の50〜80%に改質処理が施されて、結晶粒が微細化されている圧力容器。
The constituting the tubular body, it becomes more and end plate for closing both open ends of the cylinder, the mouthpiece attachment section to one of the end plates is integrally formed with, one of the end plate mouthpiece attachment portion is formed In a pressure vessel comprising one component member and a second component member that constitutes the body and the other end plate and is joined to the first component member ,
The metal that is the base material in the base mounting part is subjected to a modification process , the crystal grains are refined, and the first end of the first constituent member is modified to 50 to 80% of the total thickness. A pressure vessel that has been refined and crystal grains are refined .
口金取付部の全肉厚の50〜80%に改質処理が施され、結晶粒が微細化されている請求項1記載の圧力容器。 The pressure vessel according to claim 1, wherein a reforming treatment is applied to 50 to 80% of the total thickness of the base mounting portion, and the crystal grains are refined. 口金取付部の母材となる金属の改質処理が施された部分の結晶粒径が90μm以下である請求項1または2記載の圧力容器。 The pressure vessel according to claim 1 or 2, wherein a crystal grain size of a portion subjected to a metal modification process as a base material of the base mounting portion is 90 µm or less. 胴、両鏡板および口金取付部の母材となる金属がアルミニウムからなる請求項1〜3のうちのいずれかに記載の圧力容器。 The pressure vessel according to any one of claims 1 to 3, wherein the metal used as a base material for the body, the two end plates, and the base mounting portion is made of aluminum. 口金取付部の改質処理が、摩擦攪拌接合用工具のプローブを用いて摩擦攪拌することにより行われている請求項1〜4のうちのいずれかに記載の圧力容器。 The pressure vessel according to any one of claims 1 to 4, wherein the modification of the base mounting portion is performed by friction stirring using a probe of a friction stir welding tool. 1構成部材における第2構成部材との接合端部の母材となる金属の改質処理が施された部分の結晶粒径が90μm以下である請求項1〜5のうちのいずれかに記載の圧力容器。 In any of the crystal grain size of the portion reforming process has been performed metal as a base material of the joint end portion of the preceding claims Ru der below 90μm and the second component in the first component The pressure vessel as described. 第1構成部材における第2構成部材との接合端部の改質処理が、摩擦攪拌接合用工具のプローブを用いて摩擦攪拌することにより行われている請求項1〜のうちのいずれかに記載の圧力容器。 Reforming process of the joining end of the second component in the first component is, in any one of claims 1-6, which is carried out by friction stir with a probe of a friction stir welding tool The pressure vessel as described. 請求項1〜7のうちのいずれかに記載された圧力容器の外周面が、補強繊維に樹脂が含浸硬化させられてなる繊維強化樹脂層で覆われている強化圧力容器。A reinforced pressure vessel in which an outer peripheral surface of the pressure vessel according to any one of claims 1 to 7 is covered with a fiber reinforced resin layer obtained by impregnating and curing a resin in a reinforcing fiber. 繊維強化樹脂層が、補強繊維を胴の長さ方向に対して傾斜するように巻き付けてなるヘリカル巻繊維層、および補強繊維を胴の周囲に巻き付けてなるフープ巻繊維層を備えている請求項8記載の強化圧力容器。The fiber-reinforced resin layer includes a helically wound fiber layer in which reinforcing fibers are wound so as to be inclined with respect to the length direction of the trunk, and a hoop wound fiber layer in which reinforcing fibers are wound around the circumference of the trunk. 8. The reinforced pressure vessel according to 8. 内部に水素吸蔵物質が入れられている請求項8または9記載の強化圧力容器。The reinforced pressure vessel according to claim 8 or 9, wherein a hydrogen storage material is contained therein. 燃料水素用強化圧力容器、燃料電池、および燃料水素用強化圧力容器から燃料電池に燃料水素ガスを送る圧力配管を備えており、燃料水素用強化圧力容器が請求項8〜10のうちのいずれかに記載の強化圧力容器からなる燃料電池システム。A fuel hydrogen reinforced pressure vessel, a fuel cell, and a pressure pipe for sending fuel hydrogen gas from the fuel hydrogen reinforced pressure vessel to the fuel cell are provided, and the fuel hydrogen reinforced pressure vessel is any one of claims 8 to 10. A fuel cell system comprising the reinforced pressure vessel described in 1. 天然ガス用強化圧力容器および天然ガス用強化圧力容器から天然ガスを送り出す圧力配管を備えており、天然ガス用強化圧力容器が請求項8または9記載の強化圧力容器からなる天然ガス供給システム。A natural gas supply system comprising a reinforced pressure vessel for natural gas and a pressure pipe for sending out natural gas from the reinforced pressure vessel for natural gas, wherein the reinforced pressure vessel for natural gas comprises the reinforced pressure vessel according to claim 8. 酸素ガス用強化圧力容器および酸素ガス用強化圧力容器から酸素ガスを送り出す圧力配管を備えており、酸素ガス用強化圧力容器が請求項8または9記載の強化圧力容器からなる酸素ガス供給システム。10. An oxygen gas supply system comprising an oxygen gas reinforced pressure vessel and a pressure pipe for sending oxygen gas from the oxygen gas reinforced pressure vessel, wherein the oxygen gas reinforced pressure vessel comprises the reinforced pressure vessel according to claim 8. 金属素材に熱間加工を施すことによって、一方の鏡板および鏡板に一体に形成された口金取付部からなる第1構成部材をつくるとともに、金属素材に熱間加工を施すことによって、胴および胴に一体に形成されかつ胴の一端開口を閉鎖する他方の鏡板からなる第2構成部材をつくった後両構成部材に熱処理を施し、ついで摩擦攪拌接合用工具のプローブを回転させつつ外周面側から第1構成部材の口金取付部に埋入し、プローブと第1構成部材とを相対的に移動させることにより、口金取付部の母材となる金属を摩擦攪拌して結晶粒を微細化させる改質処理を施し、さらに摩擦攪拌接合用工具のプローブを回転させつつ外周面側から第1構成部材における第2構成部材との接合端部に埋入し、プローブと第1構成部材とを相対的に移動させることにより、第1構成部材における第2構成部材との接合端部の母材となる金属を摩擦攪拌して結晶粒を微細化させる改質処理を施し、その後第1構成部材と第2構成部材とを接合することを含む圧力容器の製造方法 By subjecting the metal material to hot working, one end plate and a first component consisting of a base mounting portion formed integrally with the end plate are formed, and by subjecting the metal material to hot working, After forming the second component member formed of the other end plate that is integrally formed and closes one end opening of the barrel, both component members are subjected to heat treatment, and then the probe of the friction stir welding tool is rotated and the second component member is rotated from the outer peripheral surface side. Improving to refine crystal grains by embedding the metal that becomes the base material of the base mounting part by embedding it in the base mounting part of the one constituent member and relatively moving the probe and the first constituent member. Then, while rotating the probe of the friction stir welding tool, it is embedded from the outer peripheral surface into the joining end portion of the first constituent member with the second constituent member, and the probe and the first constituent member are relatively moved. Move Then, the first constituent member and the second constituent member are subjected to a reforming process in which the metal that becomes the base material of the joint end portion of the first constituent member with the second constituent member is frictionally stirred to refine the crystal grains, and then the first constituent member and the second constituent member And a method of manufacturing a pressure vessel including joining . 摩擦攪拌接合用工具の円柱状回転子の端面におけるプローブの周囲に形成された肩部の直径をDmm、第1構成部材の口金取付部の肉厚をTmmとした場合、D≦3Tの条件を満たす請求項14記載の圧力容器の製造方法 When the diameter of the shoulder formed around the probe on the end face of the cylindrical rotor of the friction stir welding tool is D mm and the thickness of the base mounting portion of the first component member is T mm, the condition of D ≦ 3T is satisfied. The method for manufacturing a pressure vessel according to claim 14, which is satisfied . 摩擦攪拌接合用工具のプローブ径と、第1構成部材の口金取付部の肉厚とを等しくしておく請求項14または15記載の圧力容器の製造方法 The method of manufacturing a pressure vessel according to claim 14 or 15, wherein the probe diameter of the friction stir welding tool and the thickness of the cap mounting portion of the first component member are made equal . 口金取付部の全肉厚の50〜80%に改質処理を施す請求項14〜16のうちのいずれかに記載の圧力容器の製造方法。 The manufacturing method of the pressure vessel in any one of Claims 14-16 which performs a modification process to 50 to 80% of the total thickness of a nozzle | cap | die attachment part . 摩擦攪拌接合用工具の円柱状回転子の端面におけるプローブの周囲に形成された肩部の直径をdmm、第1構成部材における第2構成部材との接合端部の肉厚をtmmとした場合、d≦3tの条件を満たす請求項14〜17のうちのいずれかに記載の圧力容器の製造方法。 When the diameter of the shoulder portion formed around the probe on the end face of the cylindrical rotor of the friction stir welding tool is dmm, and the thickness of the joining end portion of the first constituent member with the second constituent member is tmm, The manufacturing method of the pressure vessel in any one of Claims 14-17 which satisfy | fills the conditions of d <= 3t . 第1構成部材における第2構成部材との接合端部の全肉厚の50〜80%に改質処理を施す請求項14〜18のうちのいずれかに記載の圧力容器の製造方法。 The manufacturing method of the pressure vessel in any one of Claims 14-18 which performs a modification | reformation process to 50 to 80% of the total thickness of the joining edge part with the 2nd structural member in a 1st structural member . 金属素材が熱処理型アルミニウムからなる請求項14〜19のうちのいずれかに記載の圧力容器の製造方法。 The method for manufacturing a pressure vessel according to any one of claims 14 to 19 , wherein the metal material is heat-treated aluminum .
JP2005109367A 2005-04-06 2005-04-06 Pressure vessel and method for manufacturing the same Expired - Fee Related JP4774228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109367A JP4774228B2 (en) 2005-04-06 2005-04-06 Pressure vessel and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109367A JP4774228B2 (en) 2005-04-06 2005-04-06 Pressure vessel and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006291986A JP2006291986A (en) 2006-10-26
JP4774228B2 true JP4774228B2 (en) 2011-09-14

Family

ID=37412761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109367A Expired - Fee Related JP4774228B2 (en) 2005-04-06 2005-04-06 Pressure vessel and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4774228B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261352A (en) * 2007-04-10 2008-10-30 Showa Denko Kk Metal part with screw hole and method of manufacturing same and liner for pressure vessel and method of manufacturing same
FR3003190B1 (en) * 2013-03-14 2015-04-03 Luxfer Gas Cylinders Ltd PROCESS FOR MANUFACTURING LINERS FOR PRESSURE TANK
JP7270203B2 (en) 2018-10-17 2023-05-10 日本製鋼所M&E株式会社 gas accumulator
FR3099094B1 (en) * 2019-07-26 2023-04-28 Faurecia Systemes Dechappement Hydrogen storage system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663681A (en) * 1992-08-12 1994-03-08 Furukawa Alum Co Ltd Manufacture of aluminum alloy-made seamless small high pressure gas vessel
JP4006515B2 (en) * 2002-08-19 2007-11-14 独立行政法人産業技術総合研究所 Structure control of aluminum and aluminum alloys
JP2004324781A (en) * 2003-04-25 2004-11-18 Showa Denko Kk Liner for chemical cylinder and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006291986A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP3527737B1 (en) High-pressure tank using high-rigidity fiber and method for manufacturing the same
EP2418412B1 (en) Tank and fabrication method thereof
CN1325838C (en) High pressure gas cylinder made from carbon fiber composite material and manufacturing method thereof
JP4436148B2 (en) Pressure vessel liner and method of manufacturing the same
JP4774228B2 (en) Pressure vessel and method for manufacturing the same
KR101067033B1 (en) Tubular metal body, method of producing same, liner for pressure vessel and method of producing same
JP5909331B2 (en) High pressure gas container and manufacturing method thereof
CN100491805C (en) Method for producing carbon fiber composite material high pressure gas cylinder
US20080274383A1 (en) Process for Fabricating Pressure Vessel Liner
JP4940229B2 (en) Manufacturing method of liner component
KR20130116943A (en) Method for manufacturing hollow engine valve
CN106148956A (en) Rotor for high-speed motor constructs
JP2007113590A (en) Pressure container liner and its manufacturing method
EP2778499A1 (en) Boss structure
JP6958326B2 (en) How to manufacture high pressure tank
JP2012052588A (en) Method for manufacturing pressure vessel, and pressure vessel
JP2008261352A (en) Metal part with screw hole and method of manufacturing same and liner for pressure vessel and method of manufacturing same
KR101173054B1 (en) Alloy compound composite for connecting rod and menufacturing method for connecting rod using it
JP4257111B2 (en) Gas cylinder liner and method of manufacturing the same
US7137526B2 (en) High-pressure tank and method for fabricating the same
US6908006B2 (en) High-pressure tank and method for fabricating the same
JP4382536B2 (en) Pressure vessel, fuel tank and vehicle, pressure vessel manufacturing method, and fuel tank manufacturing method
JP2006300193A (en) Liner for pressure vessel
JP2005337392A (en) Manufacturing method of liner for gas cylinder, liner for gas cylinder and gas cylinder
JP2005009673A (en) Method of manufacture of pressure vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees