JP3527737B1 - High-pressure tank using high-rigidity fiber and method for manufacturing the same - Google Patents

High-pressure tank using high-rigidity fiber and method for manufacturing the same

Info

Publication number
JP3527737B1
JP3527737B1 JP2003083072A JP2003083072A JP3527737B1 JP 3527737 B1 JP3527737 B1 JP 3527737B1 JP 2003083072 A JP2003083072 A JP 2003083072A JP 2003083072 A JP2003083072 A JP 2003083072A JP 3527737 B1 JP3527737 B1 JP 3527737B1
Authority
JP
Japan
Prior art keywords
fiber layer
liner
fiber
gas
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003083072A
Other languages
Japanese (ja)
Other versions
JP2004293571A (en
Inventor
善樹 阪口
直樹 阪口
猛 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samtech Corp
Original Assignee
Samtech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samtech Corp filed Critical Samtech Corp
Priority to JP2003083072A priority Critical patent/JP3527737B1/en
Priority to DE10325598A priority patent/DE10325598B4/en
Application granted granted Critical
Publication of JP3527737B1 publication Critical patent/JP3527737B1/en
Publication of JP2004293571A publication Critical patent/JP2004293571A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/202Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • B29C63/08Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0617Single wall with one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0665Synthetics in form of fibers or filaments radially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/067Synthetics in form of fibers or filaments helically wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • F17C2205/0397Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/224Press-fitting; Shrink-fitting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/018Adapting dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

【要約】 【課題】 小型で軽くしかも耐圧性に優れた高圧タンク
にする。 【解決手段】 高圧タンク1のライナー2外周面を被覆
する補強繊維層23を、ヤング率300GPa以上で引
張強度3GPa以上の高剛性繊維からなり熱硬化性樹脂
が含浸硬化された第1内側繊維層24及び第2内側繊維
層25と、破断時の伸び2%以上の繊維からなり熱硬化
性樹脂が含浸硬化された外側繊維層26とで構成する。
A high pressure tank that is small, light, and excellent in pressure resistance. SOLUTION: A reinforcing fiber layer 23 covering an outer peripheral surface of a liner 2 of a high-pressure tank 1 is made of a high-rigidity fiber having a Young's modulus of 300 GPa or more and a tensile strength of 3 GPa or more, and a first inner fiber layer impregnated and cured with a thermosetting resin. 24 and a second inner fiber layer 25, and an outer fiber layer 26 made of fibers having an elongation at break of 2% or more and impregnated and cured with a thermosetting resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、自動車用水素燃
料タンク等に適用される高剛性繊維を用いた高圧タンク
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-pressure tank using high-rigidity fiber applied to a hydrogen fuel tank for automobiles and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】この種の高圧タンクは、アルミニウム合
金等の金属製ライナー外周面を炭素繊維等からなる補強
繊維層で被覆して構成されている。この補強繊維層は、
フィラメントワインディング法により、エポキシ樹脂等
の熱硬化性樹脂を含浸させた炭素繊維等の繊維をライナ
ー外周面に巻き付け、上記熱硬化性樹脂を硬化させるこ
とによって構成される(例えば、特許文献1)。
2. Description of the Related Art This type of high-pressure tank is constructed by coating the outer peripheral surface of a metal liner made of aluminum alloy or the like with a reinforcing fiber layer made of carbon fiber or the like. This reinforcing fiber layer is
A filament winding method is used to wind a fiber such as a carbon fiber impregnated with a thermosetting resin such as an epoxy resin around the outer peripheral surface of the liner and cure the thermosetting resin (for example, Patent Document 1).

【0003】[0003]

【特許文献1】特開平10−292899号公報(第3
頁、図1,4)
[Patent Document 1] Japanese Patent Laid-Open No. 10-292899 (3rd
(Page, Figure 1, 4)

【0004】[0004]

【発明が解決しようとする課題】ところで、上記の特許
文献1の高圧タンクは、高圧タンクとはいっても、精々
20MPa程度のガス充填圧クラスであり、これを例え
ば自動車の水素燃料タンクとして適用した場合、1回の
ガス充填で走行できる距離は実用レベルに達していな
い。因みに、容量100リットルの高圧タンクに水素ガ
スを25MPa充填した場合、走行距離は約180km
で、実用レベルである500kmにはほど遠いのが現実
である。
The high-pressure tank of Patent Document 1 is a gas filling pressure class of about 20 MPa at best even though it is a high-pressure tank, and it was applied as a hydrogen fuel tank for automobiles, for example. In this case, the distance that can be traveled by filling the gas once has not reached the practical level. By the way, if a high-pressure tank with a capacity of 100 liters is filled with hydrogen gas at 25 MPa, the traveling distance is about 180 km.
The reality is that it is far from the practical level of 500 km.

【0005】そこで、1回のガス充填で走行距離を長く
するには、タンク容量を大きくするか、あるいはガス充
填圧を高くする必要がある。
Therefore, in order to extend the traveling distance with one gas filling, it is necessary to increase the tank capacity or increase the gas filling pressure.

【0006】しかし、タンク容量を大きくすると積載重
量が増大して好ましくなく、また、占有空間が大きくな
るため、設置スペースに限界がある自動車には不向きで
ある。
However, increasing the tank capacity undesirably increases the loading weight, and also occupies a large space, which is not suitable for an automobile having a limited installation space.

【0007】一方、ガス充填圧を高めるには、タンク本
体を構成するライナーの厚みを厚くする必要があるが、
この場合も、積載重量が増大するため好ましくない。
On the other hand, in order to increase the gas filling pressure, it is necessary to increase the thickness of the liner constituting the tank body.
Also in this case, the loaded weight increases, which is not preferable.

【0008】この発明はかかる点に鑑みてなされたもの
であり、その目的とするところは、小型で軽くしかも耐
圧性に優れた高圧タンクを開発することである。
The present invention has been made in view of the above points, and an object of the present invention is to develop a high-pressure tank that is small in size, light in weight and excellent in pressure resistance.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、この発明は、ライナーの外周面を被覆する補強繊維
層を強化したことを特徴とする。
In order to achieve the above object, the present invention is characterized in that a reinforcing fiber layer covering the outer peripheral surface of a liner is reinforced.

【0010】具体的には、この発明は、補強繊維層に高
剛性繊維を用いた高圧タンク及びその製造方法を対象と
し、次のような解決手段を講じた。
Specifically, the present invention is directed to a high-pressure tank using a high-strength fiber in a reinforcing fiber layer and a manufacturing method thereof, and has taken the following means for solving the problems.

【0011】すなわち、請求項1及び2に記載の発明
は、前者の高剛性繊維を用いた高圧タンクに関するもの
であり、そのうち、請求項1に記載の発明は、アルミニ
ウム合金製の短筒状ブランク材を塑性変形させて筒状胴
部の一端に椀状鏡部を介してガス取出筒部が突設されて
構成され、該ガス取出筒部は上記胴部の3倍以上の厚み
に設定され、上記鏡部は胴部からガス取出筒部に行くに
従って胴部の厚みからガス取出筒部の厚みに漸次増大し
ていて35〜75MPaの高圧ガスが充填される筒状の
金属製ライナーと、上記ライナーのガス取出筒部から鏡
部にかけての外周に嵌着された金属製の筒状補強カラー
と、上記ライナー外周面を被覆する補強繊維層とを備
え、上記補強繊維層は、ヤング率300GPa以上で引
張強度3GPa以上の高剛性繊維からなり熱硬化性樹脂
が含浸硬化された内側繊維層と、破断時の伸び2%以上
の繊維からなり熱硬化性樹脂が含浸硬化された外側繊維
層とで構成され、上記内側繊維層は、フープ巻き繊維層
とヘリカル巻き繊維層との複合層であり、上記外側繊維
層は、ハイアングルヘリカル巻き繊維層であり、上記各
繊維層は、繊維を偏平に集 束して熱硬化性樹脂を含浸さ
せた繊維テープをプリプレグ状態で巻き付けて上記熱硬
化性樹脂を硬化させて構成されていることを特徴とす
る。
[0011] That is, the invention described in claim 1 and 2 relates to a high-pressure tank using the high-rigidity fiber in the former, of which, a first aspect of the present invention, Arumini
Cylindrical body made by plastically deforming a short tubular blank made of um alloy
A gas extraction cylinder is projected at one end of the chamber through a bowl-shaped mirror.
The gas take-out tube portion is three times or more as thick as the body portion.
The mirror part is set to go to the gas extraction tube part from the body part.
Therefore, it gradually increases from the thickness of the body to the thickness of the gas extraction cylinder.
And a cylindrical metal liner filled with a high pressure gas of 35 to 75 MPa, and a mirror from the gas extraction cylinder of the liner.
Metallic tubular reinforcement collar fitted around the outer part
And a reinforcing fiber layer covering the outer peripheral surface of the liner, the reinforcing fiber layer being an inner fiber layer made of high-rigidity fiber having a Young's modulus of 300 GPa or more and a tensile strength of 3 GPa or more impregnated and cured with a thermosetting resin. And an outer fiber layer made of fibers having an elongation at break of 2% or more and impregnated with a thermosetting resin , and the inner fiber layer is a hoop wound fiber layer.
And a helically wound fiber layer, which is a composite layer,
The layer is a high angle helical wound fiber layer,
Fiber layer is to flatly converging bundle of fibers is impregnated with a thermosetting resin
Wrap the wound fiber tape in a prepreg state and
It is characterized in that it is constituted by curing a chemical resin .

【0012】上記の構成により、請求項1に記載の発明
では、ヤング率300GPa以上で引張強度3GPa以
上の高剛性繊維は、ライナーに35〜75MPaの高圧
が加わっても伸び難いため、この高剛性繊維からなる内
側繊維層がガス充填圧によってライナーに作用する引張
応力に十分に抗し得てライナーの耐疲労性が向上する。
この伸び難い高剛性繊維は反面、耐衝撃性に劣るが、内
側繊維層の外周面を取り巻く外側繊維層の破断時の伸び
2%以上の繊維により耐衝撃性が確保される。
With the above structure, in the invention according to claim 1, the high-rigidity fiber having a Young's modulus of 300 GPa or more and a tensile strength of 3 GPa or more is difficult to extend even when a high pressure of 35 to 75 MPa is applied to the liner, so that the high rigidity is obtained. The inner fiber layer made of fibers can sufficiently withstand the tensile stress acting on the liner due to the gas filling pressure, and the fatigue resistance of the liner is improved.
Although this highly rigid fiber that is difficult to stretch is inferior in impact resistance, impact resistance is secured by fibers having an elongation of 2% or more when the outer fiber layer surrounding the outer peripheral surface of the inner fiber layer breaks.

【0013】したがって、タンク容量が小さくかつライ
ナーの厚みが薄くても、35〜75MPaの高圧ガスの
充填が可能になり、小型で軽くしかも耐圧性に優れた高
圧タンクが実現される。
Therefore, even if the tank capacity is small and the liner thickness is thin, high-pressure gas of 35 to 75 MPa can be filled, and a small-sized, light-weight high-pressure tank excellent in pressure resistance can be realized.

【0014】また、フープ巻き繊維層によりライナーの
径方向の耐力が向上するとともに、ヘリカル巻き繊維層
によりライナーの中心線方向の耐力が向上し、さらに、
ハイアングルヘリカル巻き繊維層により外部からの耐衝
撃性が向上する。
[0014] Further, the strength in the radial direction of the liner is improved by hoop winding fiber layer, strength of the center line direction of the liner is improved by helical winding fiber layer, further,
The high-angle helically wound fiber layer improves the impact resistance from the outside.

【0015】さらに、一般に、高剛性繊維は硬いため、
紐状の形態では滑り易くてライナーに巻き難く、弛みが
生じてライナーに作用する引張応力を全繊維に均等に分
配し辛いが、この発明では、特に、高剛性繊維を偏平な
テープにして用いるため、ライナーに沿わせ易く、ライ
ナーに弛みなく巻き付けることが可能で上記引張応力が
全繊維に均等に分配され、ライナーの耐疲労性向上が容
易に実現される。
Further , since high-rigidity fibers are generally hard,
The string-like form is slippery and difficult to wind on the liner, and it is difficult to evenly distribute the tensile stress acting on the liner to all the fibers, but in the present invention, particularly, the high-rigidity fiber is used as a flat tape. Therefore, it is easy to fit the liner, can be wound around the liner without slack, and the tensile stress is evenly distributed to all the fibers, so that the fatigue resistance of the liner can be easily improved.

【0016】加えて、ガス取出筒部が胴部の3倍以上の
厚みに設定され、そこから鏡部が漸次薄くなって胴部に
続いているため、上記ガス取出筒部及び鏡部の強度が確
保され、上述の補強繊維層によるライナーの耐疲労性向
上及び耐衝撃性確保と相俟って、35〜75MPaの高
圧に十分に耐え得る高圧タンクとなる。また、上記胴部
が薄くてもガス取出筒部及び鏡部が厚くなって強度が確
保されるため、胴部が薄い分だけ高圧タンク全体の重量
が軽減し、かつ材料費もあまり掛からない。
In addition, since the gas take-out cylinder is set to have a thickness three times or more that of the barrel, and the mirror gradually becomes thinner from there and continues to the barrel, the strength of the gas take-out barrel and the mirror is high. In combination with improving the fatigue resistance and securing the impact resistance of the liner by the above-mentioned reinforcing fiber layer, the high pressure tank can sufficiently withstand the high pressure of 35 to 75 MPa. Further, even if the body is thin, the gas extraction cylinder and the mirror are thickened to secure the strength. Therefore, the weight of the high-pressure tank is reduced due to the thinner body, and the material cost is not so high.

【0017】さらにまた、応力が集中し易いガス取出筒
部及びその近傍の鏡部の実質的な厚みが補強カラーの厚
みにより増大して当該箇所の強度がさらに確保され、3
5〜75MPaの高圧に一層耐え得る高圧タンクとな
る。また、補強カラーがライナー全体ではなく、応力が
集中し易い鏡部及びガス取出筒部にだけ部分的に嵌着さ
れているため、高圧タンクの重量がそれほど増加せず軽
量化が図られるとともに、加工の簡易化、低価格化が図
られる。
Furthermore , the substantial thickness of the gas take-out tube portion where stress is likely to be concentrated and the mirror portion in the vicinity thereof is increased by the thickness of the reinforcing collar, so that the strength of the portion is further secured.
The high-pressure tank can further withstand a high pressure of 5 to 75 MPa. Further, since the reinforcing collar is partially fitted not only to the entire liner but to the mirror portion and the gas extraction tube portion where stress is likely to concentrate, the weight of the high pressure tank does not increase so much and the weight is reduced, Simplification of processing and cost reduction can be achieved.

【0018】請求項に記載の発明は、請求項に記載
の発明において、補強カラーは、ガス取出筒部に嵌着さ
れる筒部と、該筒部の一端から外側方に張り出す張出部
とからなり、該張出部裏面には、リング状膨出部が膨出
して形成され、一方、鏡部のガス取出筒部との境目近傍
における外周には、上記補強カラーを上記ライナーのガ
ス取出筒部から鏡部にかけての外周に嵌着した状態で、
上記膨出部が嵌入するリング状嵌合凹部が形成されてい
ることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention, the reinforcing collar includes a tubular portion fitted to the gas take-out tubular portion, and a tension extending outward from one end of the tubular portion. A ring-shaped bulging portion is formed on the back surface of the bulging portion by bulging. On the other hand, the reinforcing collar is provided on the outer periphery of the mirror portion near the boundary between the bulging portion and the gas outlet tube. In the state that it is fitted on the outer circumference from the gas extraction cylinder part to the mirror part,
A ring-shaped fitting recess into which the bulging portion is fitted is formed.

【0019】上記の構成により、請求項に記載の発明
では、補強カラーの膨出部がライナーの嵌合凹部に嵌入
することで、両者の嵌合状態が確実になる。また、上記
膨出部があることで当該部分の補強カラーの厚みが増大
し、その分だけ強度アップとなる。
With the above construction, in the invention according to the second aspect , the bulging portion of the reinforcing collar is fitted into the fitting concave portion of the liner, so that the fitted state of the both is secured. Further, the presence of the bulging portion increases the thickness of the reinforcing collar in that portion, and the strength is correspondingly increased.

【0020】請求項及びに記載の発明は、後者の高
剛性繊維を用いた高圧タンクの製造方法に関するもので
あり、そのうち、請求項に記載の発明は、アルミニウ
ム合金製の短筒状ブラ ンク材を塑性変形させて筒状胴部
の一端に椀状鏡部を介してガス取出筒部が突設されて構
成され、該ガス取出筒部は上記胴部の3倍以上の厚みに
設定され、上記鏡部は胴部からガス取出筒部に行くに従
って胴部の厚みからガス取出筒部の厚みに漸次増大し、
かつ上記ガス取出筒部から鏡部にかけての外周に金属製
の筒状補強カラーが嵌着されて35〜75MPaの高圧
ガスが充填される筒状の金属製ライナーを用意し、ま
ず、ヤング率300GPa以上、引張強度3GPa以上
の高剛性繊維を偏平に集束して熱硬化性樹脂を含浸させ
た繊維テープをプリプレグ状態で上記ライナー外周面に
フープ巻きとヘリカル巻きとに巻き付けて複合層の内側
繊維層を形成し、次いで、破断時の伸び2%以上の繊維
を偏平に集束して熱硬化性樹脂を含浸させた繊維テープ
をプリプレグ状態で上記内側繊維層外周面にハイアング
ルヘリカル巻きに巻き付けて外側繊維層を形成して、該
外側繊維層と上記内側繊維層とで構成された補強繊維層
で上記ライナー外周面を被覆し、その後、上記補強繊維
層で被覆されたライナーを乾燥室に搬入して加熱し、補
強繊維層に含浸している熱硬化性樹脂を硬化させること
を特徴とする。
The invention described in claims 3 and 4 relates to a method for manufacturing a high-pressure tank using the latter high-rigidity fiber, of which the invention described in claim 3 is aluminum.
The short tubular blank material made of arm alloy is plastically deformed cylindrical body
A gas extraction cylinder is projected from one end of the
The thickness of the gas extraction cylinder is three times or more than that of the body.
The mirror part is set to the gas extraction tube part from the body part.
Gradually increase from the thickness of the body to the thickness of the gas extraction cylinder,
In addition, the outer circumference from the gas extraction cylinder part to the mirror part is made of metal.
High pressure of 35-75MPa with the tubular reinforcement collar
Prepare a tubular metal liner filled with gas and
Not, the Young's modulus 300GPa or more, the tensile fiber tape strength 3GPa or more by flatly focus the high-rigidity fibers impregnated with a thermosetting resin to the liner outer circumferential surface in a prepreg state
The inner fiber layer of the composite layer is formed by winding it around a hoop winding and a helical winding, and then a fiber tape impregnated with a thermosetting resin by flatly concentrating fibers having an elongation at break of 2% or more in a prepreg state. Haiangu to the inner fibrous layer peripheral surface
An outer fiber layer is formed by winding in a helical winding, and the outer peripheral surface of the liner is covered with a reinforcing fiber layer composed of the outer fiber layer and the inner fiber layer, and then the liner covered with the reinforcing fiber layer. Is carried into a drying chamber and heated to cure the thermosetting resin impregnated in the reinforcing fiber layer.

【0021】上記の構成により、請求項に記載の発明
では、繊維をまとめてテープ状の形態でライナーに巻き
付けることから、巻付け作業が簡単に行われる。
With the above structure, in the invention according to the third aspect , the fibers are collected and wound around the liner in the form of a tape, so that the winding operation is easily performed.

【0022】また、繊維をウェットワインディング法で
ライナー外周面に巻き付ける場合は、液状の熱硬化性樹
脂が作業場に滴り落ちて作業環境が悪化するが、この発
明では、熱硬化性樹脂がある程度硬化してプリプレグ状
態(B状態)となった繊維テープをライナーに巻き付け
るため、熱硬化性樹脂が作業場に滴り落ちず、作業環境
が悪化しない。
When the fibers are wound around the outer peripheral surface of the liner by the wet winding method, the liquid thermosetting resin drips into the work place to deteriorate the working environment. However, in the present invention, the thermosetting resin is cured to some extent. Since the fiber tape in the prepreg state (B state) is wound around the liner, the thermosetting resin does not drip into the work place and the work environment does not deteriorate.

【0023】請求項に記載の発明は、請求項に記載
の発明において、乾燥室に搬入されたライナーを内外か
ら加熱することを特徴とする。
The invention described in claim 4 is characterized in that, in the invention described in claim 3 , the liner carried into the drying chamber is heated from the inside and outside.

【0024】上記の構成により、請求項に記載の発明
では、補強繊維層の熱硬化性樹脂を外側からのみ加熱す
る場合には、熱硬化性樹脂は外側から内側へと順に硬化
し、硬化に伴って収縮する。この際、内側の未硬化樹脂
は外側の硬化樹脂から圧縮力を受け、上記内側の未硬化
樹脂が絡まっている繊維に弛みが生ずる。このように、
繊維に弛みが生ずると、ガス充填圧によってライナーに
作用する引張応力を全繊維に均等に配分できず、早期破
断に至るが、この発明では、補強繊維層の熱硬化性樹脂
は、層内外両側からほぼ同時に硬化するため、内側の繊
維に弛みが生ずる事態が極力回避され、引張応力が全繊
維に均等に分配されて早期破断に至らない。
With the above construction, in the invention according to claim 4, when the thermosetting resin of the reinforcing fiber layer is heated only from the outer side, the thermosetting resin is cured from the outer side to the inner side in order and is cured. Contracts with. At this time, the uncured resin on the inner side receives a compressive force from the cured resin on the outer side, and the fibers entangled with the uncured resin on the inner side are loosened. in this way,
When the fiber is loosened, the tensile stress acting on the liner due to the gas filling pressure cannot be evenly distributed to all the fibers, leading to early fracture. However, in the present invention, the thermosetting resin of the reinforcing fiber layer is Since the fibers harden almost at the same time, the occurrence of slack in the inner fibers is avoided as much as possible, and the tensile stress is evenly distributed to all the fibers, and premature rupture does not occur.

【0025】[0025]

【発明の実施の形態】以下、この発明の実施の形態につ
いて図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0026】(実施の形態1) 図1及び図2はこの発明の実施の形態1に係る高剛性繊
維を用いた高圧タンク1を示す。この高圧タンク1は、
水素ガス等の35〜75MPaの高圧ガスが充填される
タンク本体であるライナー2を備え、該ライナー2は、
横断面円形の筒状胴部3の一端に椀状鏡部4を介して小
径で横断面円形のガス取出筒部5が一体に突設され、こ
のガス取出筒部5側から高圧ガスを高圧タンク1(ライ
ナー2)内に充填したり、あるいは高圧タンク1(ライ
ナー2)から取り出したりするようになっている。上記
ガス取出筒部5にはネジ孔6が形成され、このネジ孔6
にバルブ装置7が装着されている。該バルブ装置7は、
図示しないが開閉バルブと減圧バルブとを備えたバルブ
機構8がカプセル9内に収容されて構成され、フランジ
10を上記ガス取出筒部5の開口端に当接させて上記カ
プセル9(バルブ機構8)を高圧タンク1内に収容した
内蔵タイプ、いわゆるインタンクバルブである。このバ
ルブ装置7の高圧タンク1外には、高圧タンク1に低圧
ガス配管を接続するための配管接続部11が突設されて
いる。一方、上記胴部3の他端にも、椀状鏡部12を介
して小径で横断面円形の筒部13が一体に突設され、該
筒部13にもネジ孔14が形成され、このネジ孔14に
高圧ガスに対する気密性を保持するための盲プラグ15
が装着され、これにより、ライナー2内に高圧ガスを収
容する密閉された中空部16が形成されている。
(Embodiment 1) FIGS. 1 and 2 show a high-pressure tank 1 using high-rigidity fiber according to Embodiment 1 of the present invention. This high pressure tank 1
A liner 2, which is a tank body filled with high-pressure gas of 35 to 75 MPa such as hydrogen gas, is provided.
A gas take-out tube portion 5 having a small diameter and a circular cross-section is integrally projectingly provided at one end of a tubular body portion 3 having a circular cross-section through a bowl-shaped mirror portion 4, and a high-pressure gas is pressurized from the gas take-out tube portion 5 side. It can be filled in the tank 1 (liner 2) or taken out from the high-pressure tank 1 (liner 2). A screw hole 6 is formed in the gas extraction cylinder portion 5, and the screw hole 6
The valve device 7 is attached to the. The valve device 7 is
Although not shown, a valve mechanism 8 including an opening / closing valve and a pressure reducing valve is housed in a capsule 9, and the flange 10 is brought into contact with the open end of the gas take-out tube portion 5 so that the capsule 9 (valve mechanism 8 ) Is housed in the high-pressure tank 1, a so-called in-tank valve. Outside the high-pressure tank 1 of the valve device 7, a pipe connection portion 11 for connecting a low-pressure gas pipe to the high-pressure tank 1 is provided in a protruding manner. On the other hand, a cylindrical portion 13 having a small diameter and a circular cross-section is integrally projectingly provided at the other end of the body portion 3 via a bowl-shaped mirror portion 12, and a screw hole 14 is also formed in the cylindrical portion 13. Blind plug 15 for maintaining airtightness against high pressure gas in the screw hole 14.
Is installed, thereby forming a sealed hollow portion 16 for containing the high-pressure gas in the liner 2.

【0027】上記高圧タンク1は、例えば、JIS A
6061やJIS A 6062等のアルミニウム合金か
らなる金属製で、成形後にT6処理等の熱処理が施され
てなるものであり、短筒状ブランク材を塑性変形させて
成形され、上記鏡部4,12、ガス取出筒部5及び筒部
13は胴部3の3倍以上の厚みに形成されている。特
に、上記鏡部4,12は、胴部3からガス取出筒部5及
び筒部13に近づくに従って胴部3の厚みからガス取出
筒部5及び筒部13の厚みに漸次増大しており、これに
より、応力が集中し易い鏡部4,12を強化している。
The high-pressure tank 1 is, for example, JIS A
It is made of a metal such as 6061 or JIS A 6062 made of an aluminum alloy, and is formed by subjecting it to heat treatment such as T6 treatment after molding. The gas extraction tubular portion 5 and the tubular portion 13 are formed to have a thickness three times or more that of the body portion 3. In particular, the mirror portions 4 and 12 gradually increase from the thickness of the body portion 3 to the thicknesses of the gas outlet tubular portion 5 and the tubular portion 13 as they approach the gas outlet tubular portion 5 and the tubular portion 13 from the barrel portion 3, This strengthens the mirror portions 4 and 12 where stress is easily concentrated.

【0028】上記ライナー2のガス取出筒部5及び筒部
13から鏡部4,12にかけての外周には、焼ばめによ
り金属製の筒状補強カラー18が一体に嵌着されてい
る。この補強カラー18は、上記ガス取出筒部5及び筒
部13とほぼ厚みが等しい横断面円形の筒部19と、該
筒部19の一端に一体に形成されて外側方に張り出した
張出部20とからなり、該張出部20の厚みは外端に近
づくに従って薄くなっており、これにより、張出部20
外端が段差なく鏡部4,12外表面に沿うようになって
いる。また、上記補強カラー18の内部には、上記筒部
19及び張出部20を上下に貫通する嵌合孔22が形成
されている。この補強カラー18は、例えば、SNCM
440、SCM440、SKD61等の合金鋼又はチタ
ン合金からなる金属製で、鍛造成形や旋削加工されてな
るものであるが、これに限定されず、強度/重量比がア
ルミニウムよりも高いものであればよく、これによれ
ば、重量軽減に大きく貢献することができる。そして、
上記補強カラー18は、その嵌合孔22に上記ライナー
2のガス取出筒部5及び筒部13を挿入した状態で、上
記筒部19が焼ばめによりガス取出筒部5及び筒部13
に一体に外嵌合されているとともに、上記張出部21が
鏡部4,12外表面に一体に接合されている。
On the outer circumference of the liner 2 from the gas extraction cylinder 5 and cylinder 13 to the mirrors 4 and 12, a metal cylindrical reinforcing collar 18 is integrally fitted by shrink fitting. The reinforcing collar 18 includes a tubular portion 19 having a circular cross-section with a thickness substantially equal to that of the gas take-out tubular portion 5 and the tubular portion 13, and an overhanging portion formed integrally with one end of the tubular portion 19 and projecting outward. 20 and the thickness of the overhanging portion 20 becomes thinner toward the outer end, whereby the overhanging portion 20 is formed.
The outer ends are arranged along the outer surfaces of the mirror portions 4 and 12 without any step. In addition, a fitting hole 22 is formed inside the reinforcing collar 18 so as to vertically pass through the tubular portion 19 and the protruding portion 20. The reinforcing collar 18 is, for example, an SNCM.
440, SCM440, SKD61, or other metal made of alloy steel or titanium alloy, which is formed by forging or turning, but is not limited to this, and has a strength / weight ratio higher than that of aluminum. Well, this can greatly contribute to weight reduction. And
The reinforcing collar 18 is fitted with the gas take-out cylinder 5 and the cylinder 13 of the liner 2 into the fitting hole 22, and the cylinder 19 is shrink-fitted to fit the gas take-out cylinder 5 and the cylinder 13 together.
And the protruding portion 21 is integrally joined to the outer surfaces of the mirror portions 4 and 12.

【0029】上記ライナー2外周面は補強繊維層23で
被覆されている。該補強繊維層23は、ライナー2外周
面に繊維を巻き付けることによって形成される。この補
強繊維層23は、上記ライナー2の胴部3外周面と接触
し胴部3を被覆する第1内側繊維層24と、該第1内側
繊維層24外周面から筒部19にかけて接触しライナー
2のほぼ全体を被覆する第2内側繊維層25と、該第2
内側繊維層25外周面と接触しライナー2の胴部3から
鏡部4,12の途中にかけてを被覆する外側繊維層26
とで構成されている。
The outer peripheral surface of the liner 2 is covered with a reinforcing fiber layer 23. The reinforcing fiber layer 23 is formed by winding fibers around the outer peripheral surface of the liner 2. The reinforcing fiber layer 23 is in contact with the outer peripheral surface of the body portion 3 of the liner 2 and the first inner fiber layer 24 that covers the body portion 3, and is in contact from the outer peripheral surface of the first inner fiber layer 24 to the tubular portion 19 and the liner. A second inner fibrous layer 25 covering substantially the entire area of
Inner fiber layer 25 Outer fiber layer 26 that contacts the outer peripheral surface and covers the trunk portion 3 of the liner 2 from the middle of the mirror portions 4 and 12
It consists of and.

【0030】この発明の特徴の1つとして、上記第1内
側繊維層24及び第2内側繊維層25は共に、ヤング率
300GPa以上で引張強度3GPa以上の高剛性繊維
からなり、エポキシ樹脂等の熱硬化性樹脂が含浸硬化さ
れている。上記高剛性繊維としては、例えば、ポリアク
リロニトリル(PAN)を原料にした下記の炭素繊維を
挙げることができる。この高剛性繊維は伸び難く、相当
の高圧であっても十分に耐え得る。
One of the features of the present invention is that both the first inner fiber layer 24 and the second inner fiber layer 25 are made of high-rigidity fiber having a Young's modulus of 300 GPa or more and a tensile strength of 3 GPa or more, and are made of epoxy resin or the like. The curable resin is impregnated and cured. Examples of the high-rigidity fibers include the following carbon fibers made of polyacrylonitrile (PAN) as a raw material. The high-rigidity fiber is difficult to stretch and can withstand even a considerably high pressure.

【0031】<東レ製 高性能炭素繊維トレカ(R)
M46JB> ヤング率 436GPa 引張強度 4.2GPa 破断時の伸び 1.0% また、この発明の別の特徴として、上記外側繊維層26
は、破断時の伸び2%以上の繊維からなり、エポキシ樹
脂等の熱硬化性樹脂が含浸硬化されている。この繊維と
しては、例えば、下記の繊維である。この繊維は上記の
高剛性繊維に比べて伸び易いという性質を備えており、
高剛性繊維が伸び難いことの裏返しとして低下する耐衝
撃性を補うことができる。
<Toray high performance carbon fiber trading card (R)
M46JB>Young's modulus 436 GPa Tensile strength 4.2 GPa Elongation at break 1.0% Further, as another feature of the present invention, the outer fiber layer 26 is used.
Is made of fibers having an elongation at break of 2% or more, and is impregnated and cured with a thermosetting resin such as an epoxy resin. The fibers are, for example, the following fibers. This fiber has the property of being easily stretched compared to the above high rigidity fiber,
It is possible to supplement the impact resistance, which decreases as the inside out of the fact that the high-rigidity fiber is difficult to stretch.

【0032】<東レ製 高性能炭素繊維トレカ(R)
T700> ヤング率 230GPa 引張強度 5GPa 破断時の伸び 2.1% 上記第1内側繊維層24は、繊維をライナー2の胴部3
外周面にライナー中心線方向と直交する円周方向に巻き
付けたフープ巻き繊維層であり、上記第2内側繊維層2
5は、繊維をライナー2外周面ほぼ全体にライナー中心
線方向に螺旋状に巻き付けたヘリカル巻き繊維層であ
り、上記外側繊維層26は、繊維をライナー2外周面の
胴部3から鏡部4,12の途中にかけてライナー中心線
に対して75°前後で巻き付けたハイアングルヘリカル
巻き繊維層である。
<Toray high-performance carbon fiber trading card (R)
T700>Young's modulus 230 GPa Tensile strength 5 GPa Elongation at break 2.1% The first inner fiber layer 24 includes fibers for the body 3 of the liner 2.
The second inner fiber layer 2 is a hoop-wound fiber layer wound around the outer peripheral surface in a circumferential direction orthogonal to the liner centerline direction.
Reference numeral 5 denotes a helically wound fiber layer in which fibers are spirally wound around the entire outer peripheral surface of the liner 2 in the direction of the liner center line, and the outer fiber layer 26 is used for the outer fiber layer 26. , 12 is a high-angle helically wound fiber layer wound at about 75 ° with respect to the liner center line.

【0033】また、上記補強繊維層23を構成する各繊
維層24,25,26は、繊維を偏平に集束してエポキ
シ樹脂等の熱硬化性樹脂を含浸させた繊維テープをプリ
プレグ状態で巻き付けて上記熱硬化性樹脂を硬化させて
構成されている。上記プリプレグ状態とは、熱硬化性樹
脂がある程度硬化を進めて生乾きした状態でB状態とい
われる状態であり、このようなプレプレグ状態の繊維テ
ープは、使用するまでは乾燥しないように冷蔵室等で保
管しておく。
Each of the fiber layers 24, 25, and 26 constituting the reinforcing fiber layer 23 is obtained by bundling fibers in a prepreg state with a fiber tape that is flatly bundled and impregnated with a thermosetting resin such as epoxy resin. It is configured by curing the thermosetting resin. The prepreg state is a state in which the thermosetting resin is cured to a certain degree and is said to be in a state of being dried in a dry state. The fiber tape in such a prepreg state is kept in a refrigerating room or the like so as not to be dried until it is used. Keep it.

【0034】次に、上述の如く構成された高圧タンク1
の製造要領の一例を図3に基づき説明する。
Next, the high pressure tank 1 constructed as described above.
An example of the manufacturing procedure will be described with reference to FIG.

【0035】まず、パイプカット工程S1で、アルミニ
ウム合金製の長尺パイプ材Pを所定寸法に切断して両端
が開口した短筒状ブランク材Bを形成する。
First, in a pipe cutting step S1, a long pipe material P made of an aluminum alloy is cut into a predetermined size to form a short tubular blank material B having open ends.

【0036】次いで、フローフォーミング工程S2で、
図示しないが、上記短筒状ブランク材Bをマンドレルに
外嵌合して取り付け、該マンドレルをその軸心回りに回
転させて短筒状ブランク材Bを一体に回転させ、成形ロ
ーラを上記短筒状ブランク材B外周面に圧接させること
で回転させながら短筒状ブランク材B外周面を軸心方向
にしごき、短筒状ブランク材Bをフローフォーミングす
る。これにより、短筒状ブランク材Bが塑性変形して長
筒状ブランク材B′が成形される。この段階で、開口端
から所定領域を除いた長筒状ブランク材B′の厚みが、
完成品としての高圧タンク1のライナー2の胴部3の厚
みと等しくなっている。また、上記長筒状ブランク材
B′の開口端から所定領域は、開口端に近づくに従って
厚みが漸次増大している。
Then, in the flow forming step S2,
Although not shown, the short tubular blank material B is externally fitted and attached to a mandrel, the mandrel is rotated about its axis to integrally rotate the short tubular blank material B, and the forming roller is set to the short tube. The outer peripheral surface of the short tubular blank B is urged in the axial direction while being rotated by being pressed against the outer peripheral surface of the blank blank B, and the short tubular blank B is flow-formed. As a result, the short tubular blank B is plastically deformed to form the long tubular blank B ′. At this stage, the thickness of the long tubular blank B'excluding the predetermined region from the opening end is
It is equal to the thickness of the body portion 3 of the liner 2 of the high-pressure tank 1 as a finished product. Further, the thickness of the predetermined region from the opening end of the long tubular blank B ′ gradually increases as it approaches the opening end.

【0037】その後、スピニング工程S3で、図示しな
いが、上記長筒状ブランク材B′をチャック装置で保持
してその軸心回りに回転させ、成形ローラを長筒状ブラ
ンク材B′の一方の開口端近傍から開口端にかけて傾け
て圧接させることで回転させながら長筒状ブランク材
B′の軸心に対して斜めに移動させてしごき、長筒状ブ
ランク材B′の一方の開口端から所定領域をスピニング
により口絞りする。これにより、長筒状ブランク材B′
の開口端から所定領域が塑性変形して筒状胴部3の一端
に椀状鏡部4を介してガス取出筒部5が一体に突設され
る。そして、上述の如きスピニングによる口絞り成形に
より、鏡部4の厚みが胴部3からガス取出筒部5に近づ
くに従って漸次増大するように成形され、かつガス取出
筒部5は胴部3の3倍以上厚みに設定されている。長筒
状ブランク材B′の他方の開口端側も、同様のスピニン
グによる口絞り成形を行い、胴部3の他端に椀状鏡部1
2を介して筒部13が一体に突設され、ここでも、鏡部
12の厚みが胴部3から筒部13に近づくに従って漸次
増大するように成形され、かつ筒部13は胴部3の3倍
以上厚みに設定されている。これにより、一端にガス取
出筒部5が他端に筒部13が突設されたライナー2が得
られる。
Thereafter, in a spinning step S3, although not shown, the long tubular blank material B'is held by a chuck device and rotated about its axis, and the forming roller is moved to one of the long tubular blank material B '. While tilting from the vicinity of the open end to the open end and pressing it, the iron rod is slanted with respect to the axial center of the long tubular blank material B ′ while rotating, and is squeezed from one open end of the long tubular blank material B ′. Narrow the area by spinning. As a result, the long tubular blank B '
A predetermined region is plastically deformed from the opening end of the gas extraction cylinder 5, and a gas extraction cylinder 5 is integrally provided at one end of the cylinder body 3 via the bowl-shaped mirror 4. Then, the thickness of the mirror portion 4 is formed so as to gradually increase as it comes closer to the gas extraction tubular portion 5 from the body portion 3 by the mouth-drawing forming by the spinning as described above, and the gas extraction tubular portion 5 is formed in the body portion 3 The thickness is set to more than double. The other open end side of the long tubular blank B ′ is also subjected to mouth-drawing molding by similar spinning, and the bowl-shaped mirror portion 1 is attached to the other end of the body portion 3.
The cylindrical portion 13 is integrally projecting via the via 2, and the thickness of the mirror portion 12 is also formed so as to gradually increase from the body portion 3 toward the cylindrical portion 13, and the cylindrical portion 13 is formed so that the thickness of the mirror portion 12 gradually increases. The thickness is set to 3 times or more. As a result, the liner 2 having the gas extraction tubular portion 5 at one end and the tubular portion 13 at the other end is provided.

【0038】一方、別途鍛造成形や旋削加工した合金鋼
製又はチタン合金製等の補強カラー18を用意する。こ
の補強カラー18は、上述の如く筒部19の一端に張出
部20が一体に形成されているとともに、内部に筒部1
9及び張出部20を上下に貫通する嵌合孔22が形成さ
れている。この嵌合孔22の内径は、ガス取出筒部5及
び筒部13の外径との関係において焼ばめによる締め代
を考慮して設定されている。
On the other hand, a reinforcing collar 18 made of alloy steel, titanium alloy or the like, which is separately forged and turned, is prepared. As described above, the reinforcing collar 18 has the protruding portion 20 integrally formed at one end of the cylindrical portion 19 and has the cylindrical portion 1 inside.
A fitting hole 22 is formed so as to vertically penetrate through 9 and the overhanging portion 20. The inner diameter of the fitting hole 22 is set in consideration of the interference due to shrinkage fitting in relation to the outer diameters of the gas extraction cylinder portion 5 and the cylinder portion 13.

【0039】次に、補強カラー焼きばめ工程S4で、上
述の如く構成された補強カラー18をライナー2のガス
取出筒部5及び筒部13にそれぞれ外嵌合させ、焼ばめ
により上記補強カラー18をライナー2のガス取出筒部
5及び筒部13から鏡部4,12にかけての外周にそれ
ぞれ一体に嵌着させる。
Next, in the reinforcing collar shrink-fitting step S4, the reinforcing collar 18 configured as described above is fitted outside the gas extraction cylinder portion 5 and the cylinder portion 13 of the liner 2, respectively, and the above-mentioned reinforcement is performed by shrink-fitting. The collar 18 is integrally fitted to the outer peripheries of the liner 2 from the gas extraction cylinder portion 5 and the cylinder portion 13 to the mirror portions 4 and 12, respectively.

【0040】これに引き続いて、ワインディング工程S
5で、ヤング率300GPa以上、引張強度3GPa以
上の高剛性繊維を偏平に集束してエポキシ樹脂等の熱硬
化性樹脂を含浸させた繊維テープをプリプレグ状態で上
記ライナー2の胴部3外周面にフープ巻きして第1内側
繊維層24を形成した後、これと同じ高剛性繊維からな
る繊維テープを第1内側繊維層24の上からライナー2
のほぼ全体にヘリカル巻きして第2内側繊維層25を形
成し、さらに、その上に破断時の伸び2%以上の繊維を
偏平に集束してエポキシ樹脂等の熱硬化性樹脂を含浸さ
せた繊維テープをプリプレグ状態で上記第2内側繊維層
25の上からライナー2の胴部3から鏡部4,12の途
中にかけての外周面にライナー中心線に対して75°前
後でハイアングルヘリカル巻きして外側繊維層26を形
成して、該外側繊維層26と上記第1内側繊維層24及
び第2内側繊維層25とで構成された補強繊維層23で
上記ライナー2外周面を被覆する(各繊維層24,2
4,25は図1に表れる)。この補強繊維層23の厚み
は、タンク容量やガス充填圧によって決まるが、例え
ば、タンク容量約34リットル、ライナー2の胴部3の
厚み4.0mm、ライナー2の外径280mm、ライナ
ー2の長さ830mm、ガス充填圧70MPaの場合
に、約9mmである。また、第1内側繊維層24を形成
した後に第2内側繊維層25を形成する場合に限らず、
第1内側繊維層24と第2内側繊維層25とを交互に形
成してもよい。
Following this, the winding step S
5, the fiber tape impregnated with a thermosetting resin such as an epoxy resin is flatly bundled with high-rigidity fibers having a Young's modulus of 300 GPa or more and a tensile strength of 3 GPa or more on the outer peripheral surface of the body portion 3 of the liner 2 in a prepreg state. After forming the first inner fiber layer 24 by hoop winding, a fiber tape made of the same high-rigidity fiber as the first inner fiber layer 24 is placed on the liner 2 from above the first inner fiber layer 24.
The second inner fiber layer 25 is formed by helically winding the whole of the above, and fibers having an elongation at break of 2% or more are flatly converged on the second inner fiber layer 25 and impregnated with a thermosetting resin such as an epoxy resin. A high-angle helical winding of a fiber tape in a prepreg state on the outer surface of the second inner fiber layer 25 from the trunk 3 of the liner 2 to the middle of the mirrors 4 and 12 at about 75 ° with respect to the liner center line. To form an outer fiber layer 26 and cover the outer peripheral surface of the liner 2 with a reinforcing fiber layer 23 composed of the outer fiber layer 26 and the first inner fiber layer 24 and the second inner fiber layer 25 (each). Fiber layers 24, 2
4, 25 appear in FIG. 1). Although the thickness of the reinforcing fiber layer 23 is determined by the tank capacity and the gas filling pressure, for example, the tank capacity is about 34 liters, the thickness of the body 3 of the liner 2 is 4.0 mm, the outer diameter of the liner 2 is 280 mm, and the length of the liner 2 is long. It is about 9 mm when the length is 830 mm and the gas filling pressure is 70 MPa. Further, not only when the second inner fiber layer 25 is formed after the first inner fiber layer 24 is formed,
The first inner fiber layers 24 and the second inner fiber layers 25 may be alternately formed.

【0041】その後、乾燥工程S6で、上記補強繊維層
23で被覆されたライナー2を乾燥室27に搬入し、ラ
イナー2の外側及びライナー2内側に配置されたヒータ
ー28の放射熱で、ライナー2を回転させながら内外か
ら加熱して補強繊維層23に含浸している熱硬化性樹脂
を加熱硬化させ、ライナー2外周面に繊維が巻き付けら
れて該ライナー2外周面が補強繊維層23で被覆された
高圧タンク1を得る。なお、ヒーター28の代わりに熱
風をライナー2の内外に導入してライナー2を回転させ
ながら内外から加熱して補強繊維層23に含浸している
熱硬化性樹脂を加熱硬化させてもよい。
Then, in the drying step S6, the liner 2 covered with the reinforcing fiber layer 23 is carried into the drying chamber 27, and the liner 2 is exposed to the radiation heat of the heater 28 arranged outside the liner 2 and inside the liner 2. The thermosetting resin impregnated in the reinforcing fiber layer 23 is heated and cured by rotating from inside to outside, and fibers are wound around the outer peripheral surface of the liner 2 and the outer peripheral surface of the liner 2 is covered with the reinforcing fiber layer 23. A high-pressure tank 1 is obtained. Instead of the heater 28, hot air may be introduced into and out of the liner 2 to heat the liner 2 from inside and outside while rotating the liner 2 to heat and cure the thermosetting resin impregnated in the reinforcing fiber layer 23.

【0042】このようにして製造された高圧タンク1に
対して、バルブ装置7をガス取出筒部5に装着するとと
もに、盲プラグ15を筒部13に装着して完成品とす
る。
With respect to the high-pressure tank 1 manufactured as described above, the valve device 7 is attached to the gas take-out cylinder portion 5 and the blind plug 15 is attached to the cylinder portion 13 to complete the product.

【0043】このように、この実施の形態では、ヤング
率300GPa以上で引張強度3GPa以上の高剛性繊
維からなり熱硬化性樹脂が含浸硬化された第1内側繊維
層24及び第2内側繊維層25と、破断時の伸び2%以
上の繊維からなり熱硬化性樹脂が含浸硬化された外側繊
維層26とで構成された補強繊維層23をライナー2外
周面に被覆していることから、高剛性繊維からなる第1
内側繊維層24及び第2内側繊維層25でガス充填圧に
よってライナー2に作用する引張応力に十分に抗し得て
ライナー2の耐疲労性を向上させることができるととも
に、その耐衝撃性に劣る欠点を伸びのある繊維からなる
外側繊維層26で補うことができる。したがって、タン
ク容量が小さくかつライナーの厚みが薄くても、35〜
75MPaの高圧ガスを充填することができ、小型で軽
くしかも耐圧性に優れた高圧タンク1を実現することが
できる。
As described above, in this embodiment, the first inner fiber layer 24 and the second inner fiber layer 25, which are made of high-rigidity fibers having a Young's modulus of 300 GPa or more and a tensile strength of 3 GPa or more, are impregnated and cured with a thermosetting resin. Since the outer peripheral surface of the liner 2 is covered with the reinforcing fiber layer 23 composed of the outer fiber layer 26 which is made of fibers having an elongation at break of 2% or more and which is impregnated and cured with the thermosetting resin, the outer peripheral surface of the liner 2 has high rigidity. First made of fiber
The inner fiber layer 24 and the second inner fiber layer 25 can sufficiently withstand the tensile stress acting on the liner 2 due to the gas filling pressure, can improve the fatigue resistance of the liner 2, and have poor impact resistance. The deficiencies can be compensated by an outer fiber layer 26 consisting of stretchable fibers. Therefore, even if the tank capacity is small and the liner thickness is thin,
It is possible to realize a high-pressure tank 1 that can be filled with a high-pressure gas of 75 MPa, is small, is light, and has excellent pressure resistance.

【0044】また、第1内側繊維層24をフープ巻きに
するとともに、第2内側繊維層25をヘリカル巻きに
し、さらに、外側繊維層26をハイアングルヘリカル巻
きにしていることから、フープ巻きである第1内側繊維
層24によりライナー2の径方向の耐力を向上させるこ
とができるとともに、ヘリカル巻きである第2内側繊維
層25によりライナー2の中心線方向の耐力を向上させ
ることができる。さらに、ハイアングルヘリカル巻きで
ある外側繊維層26により外部からの耐衝撃性を向上さ
せることができる。
The first inner fiber layer 24 is hoop-wound, the second inner fiber layer 25 is helically wound, and the outer fiber layer 26 is high-angle helical, so that the hoop winding is performed. The first inner fiber layer 24 can improve the radial yield strength of the liner 2, and the helically wound second inner fiber layer 25 can improve the yield strength of the liner 2 in the centerline direction. Furthermore, impact resistance from the outside can be improved by the outer fiber layer 26 which is a high angle helical winding.

【0045】さらに、補強繊維層23を構成する各繊維
層24,25,26を、繊維を偏平に集束して熱硬化性
樹脂を含浸させた繊維テープをプリプレグ状態で巻き付
けて上記熱硬化性樹脂を硬化させて構成していることか
ら、硬い高剛性繊維を滑り易くてライナー2に巻き難く
弛みが生じてライナー2に作用する引張応力を全繊維に
均等に分配し辛い紐状の形態で用いる場合に比べ、高剛
性繊維が偏平なテープ状の形態であってライナー2に沿
わせ易く、ライナー2に弛みなく巻き付けることができ
て上記引張応力を全繊維に均等に分配して、ライナー2
の耐疲労性向上を容易に実現することができる。
Further, the fiber layers 24, 25, and 26 constituting the reinforcing fiber layer 23 are wound in a prepreg state with a fiber tape in which the fibers are flatly bundled and impregnated with the thermosetting resin, and the above thermosetting resin is formed. Since the hardened and hardened fibers are hard to be slipped, the liner 2 is hard to wind and loosened, and the tensile stress acting on the liner 2 is evenly distributed to all the fibers and used in a difficult string-like form. Compared with the case, the high-rigidity fiber is in the form of a flat tape and can be easily fitted along the liner 2, and can be wound around the liner 2 without slack, and the tensile stress is evenly distributed to all the fibers.
It is possible to easily improve the fatigue resistance of the.

【0046】加えて、ガス取出筒部5及び筒部13を胴
部3の3倍以上の厚みに設定し、そこから鏡部4,12
を漸次薄くして胴部3に続かせていることから、上記ガ
ス取出筒部5、筒部13及び鏡部4,12の強度を確保
することができ、上述の補強繊維層23によるライナー
2の耐疲労性向上及び耐衝撃性確保と相俟って、35〜
75MPaの高圧に一層に耐え得る高圧タンク1とする
ことができる。また、上記胴部3が薄くてもガス取出筒
部5、筒部13及び鏡部4,12を厚くして強度を確保
しているので、胴部3が薄い分だけ高圧タンク1全体の
重量を軽減することができ、かつ材料費もあまり掛けな
いようにすることができる。
In addition, the gas take-out tube portion 5 and the tube portion 13 are set to have a thickness three times or more that of the body portion 3, and then the mirror portions 4 and 12 are set.
Since the thickness is gradually reduced and is continued to the body portion 3, the strength of the gas extraction cylinder portion 5, the cylinder portion 13 and the mirror portions 4 and 12 can be secured, and the liner 2 by the reinforcing fiber layer 23 described above can be secured. Combined with improving fatigue resistance and ensuring impact resistance,
The high pressure tank 1 can further withstand a high pressure of 75 MPa. Further, even if the body portion 3 is thin, the gas extraction cylinder portion 5, the cylinder portion 13 and the mirror portions 4 and 12 are thickened to secure the strength. Can be reduced, and the material cost can be reduced.

【0047】さらに、ライナー2のガス取出筒部5及び
筒部13から鏡部4,12にかけての外周に補強カラー
18を嵌着していることから、応力が集中し易いガス取
出筒部5、筒部13及びその近傍の鏡部4,12の実質
的な厚みを上記補強カラー18の厚みにより増大させて
当該箇所の強度を十分に確保することができ、35〜7
5MPaの高圧に一段と耐え得る高圧タンク1とするこ
とができる。また、補強カラー18をライナー2全体で
はなく、応力が集中し易い鏡部4,12、ガス取出筒部
5及び筒部13にだけ部分的に嵌着させているので、高
圧タンク1の重量をそれほど増加させず軽量化を図るこ
とができるとともに、加工の簡易化、低価格化を図るこ
とができる。
Further, since the reinforcing collar 18 is fitted on the outer circumference of the liner 2 from the gas take-out cylinder portion 5 and the cylinder portion 13 to the mirror portions 4 and 12, the gas take-out cylinder portion 5 where stress is likely to concentrate, The substantial thickness of the cylindrical portion 13 and the mirror portions 4 and 12 in the vicinity thereof can be increased by the thickness of the reinforcing collar 18 to sufficiently secure the strength of the relevant portion, 35 to 7
The high-pressure tank 1 can further withstand a high pressure of 5 MPa. Further, since the reinforcing collar 18 is partially fitted not only to the entire liner 2 but only to the mirror portions 4 and 12 where the stress is likely to concentrate, the gas extraction cylinder portion 5 and the cylinder portion 13, the weight of the high pressure tank 1 is reduced. The weight can be reduced without increasing so much, and the processing can be simplified and the cost can be reduced.

【0048】さらにまた、繊維をまとめてテープ状の形
態でライナー2に巻き付けることから、巻付け作業を簡
単に行うことができる。また、熱硬化性樹脂がある程度
してプリプレグ状態(B状態)となった繊維テープをラ
イナー2に巻き付けるため、液状の熱硬化性樹脂が作業
場に滴り落ちて作業環境が悪化するウェットワインディ
ング法の場合に比べ、熱硬化性樹脂が作業場に滴り落ち
ず、作業環境の悪化を防止することができる。
Furthermore, since the fibers are bundled and wound around the liner 2 in the form of a tape, the winding operation can be easily performed. Further, in the case of the wet winding method in which the liquid thermosetting resin drips into the work place and the working environment is deteriorated because the fiber tape in which the thermosetting resin is in a prepreg state (B state) is wound around the liner 2 to some extent. Compared with the above, the thermosetting resin does not drip into the workplace, and the deterioration of the working environment can be prevented.

【0049】また、乾燥室27に搬入されたライナー2
を内外から加熱するので、補強繊維層23の熱硬化性樹
脂が層内外両側からほぼ同時に硬化し、これにより、補
強繊維層23の熱硬化性樹脂を外側からのみ加熱する場
合において、熱硬化性樹脂が外側から内側へと順に硬化
収縮して内側の未硬化樹脂が外側の硬化樹脂から圧縮力
を受けて繊維に弛みが生ずる事態を回避することがで
き、ガス充填圧によってライナー2に作用する引張応力
を全繊維に均等に分配して早期破断に至らないようにす
ることができる。
The liner 2 carried into the drying chamber 27
Since the resin is heated from the inside and outside, the thermosetting resin of the reinforcing fiber layer 23 is cured substantially at the same time from both inside and outside of the layer, whereby the thermosetting resin of the reinforcing fiber layer 23 is heated only from the outside. It is possible to avoid a situation in which the resin is cured and shrunk in order from the outer side to the inner side, and the uncured resin on the inner side receives a compressive force from the cured resin on the outer side to cause slack in the fiber, and acts on the liner 2 by the gas filling pressure. The tensile stress can be evenly distributed over all fibers to prevent premature rupture.

【0050】(実施の形態2) 図4はこの発明の実施の形態2に係る高剛性繊維を用い
た高圧タンク1を示す。この高圧タンク1は補強カラー
18の形状が実施の形態1と異なっている。つまり、上
記補強カラー18の張出部20の裏面にリング状膨出部
21が一体に膨出して形成されている。これに伴い、ラ
イナー2における鏡部4のガス取出筒部5との境目近傍
における外周にリング状嵌合凹部17が形成されてい
る。そして、上記補強カラー18の張出部20は、その
膨出部21を上記鏡部4の嵌合凹部17に嵌入した状態
で焼ばめにより鏡部4外表面に一体に接合されている。
図示しないが、反対側の鏡部12の筒部13にも同様に
補強カラー18を嵌合している。そのほかは、実施の形
態1と同様に構成されているので、同一の構成箇所には
同一の符号を付してその詳細な説明を省略する。
(Embodiment 2) FIG. 4 shows a high-pressure tank 1 using high-rigidity fibers according to Embodiment 2 of the present invention. The high-pressure tank 1 is different from the first embodiment in the shape of the reinforcing collar 18. That is, the ring-shaped bulging portion 21 is integrally bulged and formed on the back surface of the bulging portion 20 of the reinforcing collar 18. Along with this, a ring-shaped fitting concave portion 17 is formed on the outer periphery of the liner 2 near the boundary between the mirror portion 4 and the gas extraction cylinder portion 5. The overhanging portion 20 of the reinforcing collar 18 is integrally joined to the outer surface of the mirror portion 4 by shrink fitting with the bulging portion 21 fitted in the fitting recess 17 of the mirror portion 4.
Although not shown, a reinforcing collar 18 is also fitted to the cylindrical portion 13 of the mirror portion 12 on the opposite side. Other than that, the configuration is the same as that of the first embodiment, and thus the same components are denoted by the same reference numerals and detailed description thereof is omitted.

【0051】したがって、この実施の形態2では、上記
の実施の形態1と同様の作用効果を奏することができ
る。
Therefore, in the second embodiment, the same operational effect as that of the first embodiment can be obtained.

【0052】加えて、この実施の形態2では、補強カラ
ー18の張出部20に膨出形成したリング状膨出部21
を、鏡部4,12のガス取出筒部5及び筒部13との境
目近傍における外周に形成したリング状嵌合凹部17に
嵌入して焼ばめにより接合しているので、補強カラー1
8とライナー2とを確実に嵌合させることができる。ま
た、上記膨出部21があることで当該部分の補強カラー
18の厚みが増大し、その分だけ強度アップを図ること
ができる。
In addition, in the second embodiment, the ring-shaped bulge 21 formed by bulging the bulge 20 of the reinforcing collar 18 is used.
Is fitted into a ring-shaped fitting recess 17 formed on the outer periphery in the vicinity of the boundary between the mirror parts 4 and 12 and the gas-extracting cylinder part 5 and the cylinder part 13, and is joined by shrink-fitting.
8 and the liner 2 can be fitted securely. Further, the presence of the bulging portion 21 increases the thickness of the reinforcing collar 18 in that portion, and the strength can be increased accordingly.

【0053】なお、上記の実施の形態1,2では、フロ
ーフォーミングに供する短筒状ブランク材Bとして、両
端が開口した円筒体のものを例示したが、有底筒状のも
のであってもよい。
In the first and second embodiments described above, the short tubular blank material B used for flow forming has a cylindrical body having open ends, but it may have a bottomed tubular shape. Good.

【0054】[0054]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、ヤング率300GPa以上で引張強度3G
Pa以上の伸び難い高剛性繊維により、35〜75MP
aの高圧がライナーに掛かることによって生ずる引張応
力に十分に抗し得てライナーの耐疲労性を向上させるこ
とができる。また、高剛性繊維であるがために劣る耐衝
撃性をその外側の破断時の伸び2%以上の繊維により補
うことができる。したがって、タンク容量が小さくかつ
ライナーの厚みが薄くて小型で軽量の35〜75MPa
の高圧ガスに耐え得る高圧タンクとすることができる。
As described above, according to the invention of claim 1, the Young's modulus is 300 GPa or more and the tensile strength is 3 G.
35-75MP due to high-strength fiber that is more than Pa and is hard to stretch
It is possible to sufficiently withstand the tensile stress caused by the high pressure of a exerted on the liner and improve the fatigue resistance of the liner. Further, since the fiber is a high-rigidity fiber, its inferior impact resistance can be supplemented by a fiber having an elongation at break of 2% or more on the outside thereof. Therefore, the tank capacity is small, the liner thickness is thin, and the size and weight are 35-75 MPa.
It can be a high-pressure tank capable of withstanding the high-pressure gas.

【0055】また、フープ巻き繊維層によりライナーの
径方向の耐力を向上させることができ、ヘリカル巻き繊
維層によりライナーの中心線方向の耐力を向上させるこ
とができる。さらには、ハイアングルヘリカル巻き繊維
層により外部からの耐衝撃性を向上させることができ
[0055] Further, it is possible to improve the radial strength of the liner by hoop winding fiber layer, it is possible to improve the center line direction of the yield strength of the liner by helical winding fiber layer. Furthermore, impact resistance from the outside can be improved by the high-angle helically wound fiber layer .

【0056】に、硬くて巻き難い高剛性繊維を偏平な
テープ状の形態として用いているので、繊維を弛みなく
ライナーに巻き付けて引張応力を全繊維に均等配分して
ライナーの耐疲労性を向上させることができる。
[0056] In particular, because of the use of hard and winding hard rigid fiber as flat tape-like configuration, the tensile stress is wound around the slack without liner fibers evenly distributed to all fiber fatigue resistance of liner Can be improved.

【0057】さらに、ガス取出筒部を円筒形の胴部の3
倍以上の厚みに設定し、そこから椀状鏡部を漸次薄くし
て胴部に続かせているので、上記ガス取出筒部及び鏡部
の強度を確保でき、35〜75MPaの高圧に十分に耐
え得る高圧タンクとすることができる。また、上記胴部
が薄くてもガス取出筒部及び鏡部を厚くして強度を確保
できるので、胴部が薄い分だけ高圧タンクを軽量化でき
るとともに、コストダウンを図ることができる。
Further , the gas take-out cylinder portion is a cylindrical body portion 3
Since the thickness of the bowl-shaped mirror portion is set to be more than double, and the bowl-shaped mirror portion is gradually thinned from there to continue to the body portion, it is possible to secure the strength of the gas extraction cylinder portion and the mirror portion, and to sufficiently withstand a high pressure of 35 to 75 MPa. It can be a high-pressure tank that can withstand. Further, even if the body portion is thin, the gas extraction cylinder portion and the mirror portion can be thickened to secure the strength, so that the high-pressure tank can be made lighter and the cost can be reduced due to the thinner body portion.

【0058】加えて、ライナーの応力が集中し易い鏡部
及びガス取出筒部に補強カラーを嵌着したので、上記ガ
ス取出筒部及びその近傍の鏡部の厚みを補強カラーの厚
みで補って当該箇所を十分に強化して、35〜75MP
aの高圧に一段と耐え得る高圧タンクとすることができ
る。また、上記補強カラーをライナーに部分的に嵌着す
るだけなので、高圧タンクの軽量化、加工の簡易化及び
低価格化を達成することができる。
In addition, since the reinforcement collar is fitted to the mirror portion and the gas extraction cylinder portion where the stress of the liner is likely to be concentrated, the thickness of the gas extraction cylinder portion and the mirror portion in the vicinity thereof is supplemented by the thickness of the reinforcement collar. Fully strengthening the part, 35-75MP
A high-pressure tank that can further withstand the high pressure of a can be provided. Further, since the reinforcing collar is only partially fitted to the liner, it is possible to reduce the weight of the high-pressure tank, simplify the processing, and reduce the cost.

【0059】請求項に係る発明によれば、補強カラー
の膨出部をライナーの嵌合凹部に嵌入させたので、両者
を確実に嵌合させることができる。また、上記膨出部が
あることで当該部分の補強カラーの厚みを増大してその
分だけ強度アップを図ることができる。
According to the second aspect of the present invention, since the bulging portion of the reinforcing collar is fitted in the fitting concave portion of the liner, both can be reliably fitted. In addition, the presence of the bulging portion can increase the thickness of the reinforcing collar in that portion and increase the strength accordingly.

【0060】請求項に係る発明によれば、繊維をまと
めてテープ状の形態でライナーに巻き付けるので、巻付
け作業を簡単に行うことができる。また、繊維に含浸す
る熱硬化性樹脂を液状ではなく硬化がある程度進行した
プリプレグ状態にしているので、熱硬化性樹脂が作業場
に滴下することによる作業環境の悪化を防止することが
できる。
According to the third aspect of the invention, the fibers are bundled together and wound around the liner in a tape form, so that the winding operation can be easily performed. Further, since the thermosetting resin impregnating the fibers is not in a liquid state but in a prepreg state in which the curing has progressed to some extent, it is possible to prevent the working environment from being deteriorated due to the thermosetting resin being dropped into the work place.

【0061】請求項に係る発明によれば、乾燥室でラ
イナーを内外から加熱して、補強繊維層の熱硬化性樹脂
の硬化を層内外両側からほぼ同時に進行させるので、内
側の繊維を弛まないようにすることができ、引張応力を
全繊維に均等分配して早期破断を防止することができ
る。
According to the invention of claim 4 , the liner is heated from the inside and outside in the drying chamber to cure the thermosetting resin of the reinforcing fiber layer substantially simultaneously from both inside and outside the layer, so that the inside fiber is loosened. The tensile stress can be evenly distributed over all fibers to prevent premature rupture.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態1に係る高剛性繊維を用
いた高圧タンクのガス取出筒部側を拡大して示す断面図
である。
FIG. 1 is an enlarged cross-sectional view showing a gas extraction cylinder portion side of a high-pressure tank using high-rigidity fiber according to Embodiment 1 of the present invention.

【図2】この発明の実施の形態1に係る高剛性繊維を用
いた高圧タンク全体の断面図である。
FIG. 2 is a sectional view of the entire high-pressure tank using the high-rigidity fiber according to the first embodiment of the present invention.

【図3】この発明の実施の形態1に係る高剛性繊維を用
いた高圧タンクの製造工程図である。
FIG. 3 is a manufacturing process diagram of a high-pressure tank using the high-rigidity fiber according to the first embodiment of the present invention.

【図4】この発明の実施の形態2に係る高剛性繊維を用
いた高圧タンクの図1相当図である。
FIG. 4 is a view corresponding to FIG. 1 of a high-pressure tank using high-rigidity fibers according to Embodiment 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 高圧タンク 2 ライナー 3 胴部 4 鏡部 5 ガス取出筒部 17 嵌合凹部 18 補強カラー 19 筒部 20 張出部 21 膨出部 23 補強繊維層 24 第1内側繊維層 25 第2内側繊維層 26 外側繊維層 27 乾燥室 28 ヒーター B′ 長筒状ブランク材 1 high pressure tank 2 liner 3 torso 4 Mirror 5 Gas extraction cylinder 17 Fitting recess 18 Reinforcement collar 19 Tube 20 Overhang 21 bulge 23 Reinforcing fiber layer 24 First Inner Fiber Layer 25 Second inner fiber layer 26 Outer fiber layer 27 Drying room 28 heater B'Long tubular blank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阪口 直樹 アメリカ合衆国 カリフォルニア州 90746,カーソン,イースト ドミンゲ ス ストリート 1130 サムテック イ ンターナショナル インコーポレーテッ ド内 (72)発明者 山本 猛 アメリカ合衆国 カリフォルニア州 90746,カーソン,イースト ドミンゲ ス ストリート 1130 サムテック イ ンターナショナル インコーポレーテッ ド内 (56)参考文献 特開 平11−262955(JP,A) 特開 平8−219386(JP,A) 特開 平8−219392(JP,A) 特開 平10−220691(JP,A) 特開 平10−267195(JP,A) 特開 昭50−144121(JP,A) 米国特許5499739(US,A) (58)調査した分野(Int.Cl.7,DB名) F17C 1/00 - 1/16 F17C 13/00 B29C 70/06 - 70/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoki Sakaguchi, United States 90746, Carson, East Dominguez Street, California 1130 Samtech International Inc. (72) Inventor Takeshi Yamamoto, California 90746, Carson, East Dominguez, USA Street 1130 Samtech International Incorporated (56) Reference JP-A-11-262955 (JP, A) JP-A-8-219386 (JP, A) JP-A-8-219392 (JP, A) JP-A 10-220691 (JP, A) JP 10-267195 (JP, A) JP 50-144121 (JP, A) US Pat. No. 5499739 (US, A) (58) Fields investigated (Int. Cl. 7) , DB name) F17C 1/00-1/16 F17C 13 / 00 B29C 70/06-70/24

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム合金製の短筒状ブランク材
を塑性変形させて筒状胴部の一端に椀状鏡部を介してガ
ス取出筒部が突設されて構成され、該ガス取出筒部は上
記胴部の3倍以上の厚みに設定され、上記鏡部は胴部か
らガス取出筒部に行くに従って胴部の厚みからガス取出
筒部の厚みに漸次増大していて35〜75MPaの高圧
ガスが充填される筒状の金属製ライナーと、上記ライナーのガス取出筒部から鏡部にかけての外周に
嵌着された金属製の筒状補強カラーと、 上記 ライナー外周面を被覆する補強繊維層とを備え、 上記補強繊維層は、ヤング率300GPa以上で引張強
度3GPa以上の高剛性繊維からなり熱硬化性樹脂が含
浸硬化された内側繊維層と、 破断時の伸び2%以上の繊維からなり熱硬化性樹脂が含
浸硬化された外側繊維層とで構成され 上記内側繊維層は、フープ巻き繊維層とヘリカル巻き繊
維層との複合層であり、 上記外側繊維層は、ハイアングルヘリカル巻き繊維層で
あり、 上記各繊維層は、繊維を偏平に集束して熱硬化性樹脂を
含浸させた繊維テープをプリプレグ状態で巻き付けて上
記熱硬化性樹脂を硬化させて構成され ていることを特徴
とする高剛性繊維を用いた高圧タンク。
1. A short tubular blank made of an aluminum alloy.
Plastic deformation of the cylindrical body and insert it into one end of the cylindrical body through the bowl-shaped mirror.
The gas take-out tube portion is formed by projecting the gas take-out tube portion.
The thickness is set to 3 times the thickness of the body, and the mirror is
Gas extraction from the thickness of the body as you go to the cylinder
High pressure of 35-75MPa gradually increasing to the thickness of the cylinder
A cylindrical metal liner filled with gas and the outer circumference of the liner from the gas extraction cylinder to the mirror
A metallic cylinder-shaped reinforcement collar is fitted, and a reinforcing fiber layer covering the liner outer circumferential surface, the reinforcing fiber layer has a Young's modulus becomes thermoset high rigidity fibers of more than a tensile strength of 3GPa least 300GPa The inner fiber layer is impregnated and cured with a thermosetting resin, and the outer fiber layer is impregnated and cured with a thermosetting resin and has an elongation at break of 2% or more . The inner fiber layer is a hoop wound fiber layer. And helical wound fiber
The outer fiber layer is a high-angle helically wound fiber layer, which is a composite layer with a fiber layer.
Yes, each of the above-mentioned fiber layers bundles the fibers in a flat shape to form a thermosetting resin.
Wrap the impregnated fiber tape in a prepreg state and
A high-pressure tank using high-rigidity fibers, which is characterized by being formed by curing a thermosetting resin .
【請求項2】 請求項1に記載の高剛性繊維を用いた高
圧タンクにおいて、 補強カラーは、ガス取出筒部に嵌着される筒部と、該筒
部の一端から外側方に張り出す張出部とからなり、該張
出部裏面には、リング状膨出部が膨出して形成され、 一方、鏡部のガス取出筒部との境目近傍における外周に
は、上記補強カラーを上記ライナーのガス取出筒部から
鏡部にかけての外周に嵌着した状態で、上記膨出部が嵌
入するリング状嵌合凹部が形成されていることを特徴と
する高剛性繊維を用いた高圧タンク。
2. The high-pressure tank using the high-rigidity fiber according to claim 1, wherein the reinforcing collar has a tubular portion fitted to the gas take-out tubular portion, and a tension extending outward from one end of the tubular portion. A ring-shaped bulging portion is formed on the back surface of the bulging portion by bulging. On the other hand, the reinforcing collar is provided on the outer periphery of the mirror portion in the vicinity of the boundary between the bulging portion and the gas outlet tube portion. 1. A high-pressure tank using high-rigidity fiber, characterized in that a ring-shaped fitting concave portion into which the bulging portion is fitted is formed in a state where the ring-shaped fitting concave portion is fitted to the outer periphery from the gas extraction cylinder portion to the mirror portion.
【請求項3】 アルミニウム合金製の短筒状ブランク材
を塑性変形させて筒状胴部の一端に椀状鏡部を介してガ
ス取出筒部が突設されて構成され、該ガス取出筒部は上
記胴部の3倍以上の厚みに設定され、上記鏡部は胴部か
らガス取出筒部に行くに従って胴部の厚みからガス取出
筒部の厚みに漸次増大し、かつ上記ガス取出筒部から鏡
部にかけての外周に金属製の筒状補強カラーが嵌着され
て35〜75MPaの高圧ガスが充填される筒状の金属
製ライナーを用意し、 ヤング率300GPa以上、引張強度3GPa以上の高
剛性繊維を偏平に集束して熱硬化性樹脂を含浸させた繊
維テープをプリプレグ状態で上記ライナー外周面にフー
プ巻きとヘリカル巻きとに巻き付けて複合層の内側繊維
層を形成し、 次いで、破断時の伸び2%以上の繊維を偏平に集束して
熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態
で上記内側繊維層外周面にハイアングルヘリカル巻きに
巻き付けて外側繊維層を形成して、該外側繊維層と上記
内側繊維層とで構成された補強繊維層で上記ライナー外
周面を被覆し、 その後、上記補強繊維層で被覆されたライナーを乾燥室
に搬入して加熱し、補強繊維層に含浸している熱硬化性
樹脂を硬化させることを特徴とする高剛性繊維を用いた
高圧タンクの製造方法。
3. A short tubular blank made of an aluminum alloy.
Plastic deformation of the cylindrical body and insert it into one end of the cylindrical body through the bowl-shaped mirror.
The gas take-out tube portion is formed by projecting the gas take-out tube portion.
The thickness is set to 3 times the thickness of the body, and the mirror is
Gas extraction from the thickness of the body as you go to the cylinder
The thickness of the tube portion gradually increases, and the
A metal tubular reinforcement collar is fitted around the outer periphery
Tubular metal filled with high pressure gas of 35 to 75 MPa
Providing a manufacturing liners, Fu Young's modulus 300GPa or more, a tensile strength 3GPa or more rigid fibers with flattened focused fiber tape impregnated with thermosetting resin in the liner outer circumferential surface in a prepreg state
Wound on the flop winding and helical winding to form an inner fiber layer of the composite layer, then, the breaking fiber tapes and flat focused impregnated with a thermosetting resin elongation of 2% or more of the fibers in the prepreg state A high-angle helical winding is wound around the outer peripheral surface of the inner fiber layer to form an outer fiber layer, and the outer peripheral surface of the liner is covered with a reinforcing fiber layer composed of the outer fiber layer and the inner fiber layer. After that, the liner coated with the reinforcing fiber layer is carried into a drying chamber and heated to cure the thermosetting resin impregnated in the reinforcing fiber layer by using a high-rigidity fiber high pressure. Tank manufacturing method.
【請求項4】 請求項3に記載の高剛性繊維を用いた高
圧タンクの製造方法において、 乾燥室に搬入されたライナーを内外から加熱することを
特徴とする高剛性繊維を用いた高圧タンクの製造方法。
4. The method for manufacturing a high-pressure tank using high-rigidity fibers according to claim 3, wherein the liner carried into the drying chamber is heated from inside and outside, and a high-pressure tank using high-rigidity fibers is provided. Production method.
JP2003083072A 2003-03-25 2003-03-25 High-pressure tank using high-rigidity fiber and method for manufacturing the same Expired - Fee Related JP3527737B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003083072A JP3527737B1 (en) 2003-03-25 2003-03-25 High-pressure tank using high-rigidity fiber and method for manufacturing the same
DE10325598A DE10325598B4 (en) 2003-03-25 2003-06-05 High pressure tank using high strength fibers and methods of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083072A JP3527737B1 (en) 2003-03-25 2003-03-25 High-pressure tank using high-rigidity fiber and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP3527737B1 true JP3527737B1 (en) 2004-05-17
JP2004293571A JP2004293571A (en) 2004-10-21

Family

ID=32463710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083072A Expired - Fee Related JP3527737B1 (en) 2003-03-25 2003-03-25 High-pressure tank using high-rigidity fiber and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP3527737B1 (en)
DE (1) DE10325598B4 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016949A (en) * 2012-12-12 2013-04-03 沈阳航天新光集团有限公司 Full winding seamless internal bladder composite material high-pressure gas bottle and preparation method thereof
CN103562615A (en) * 2011-05-23 2014-02-05 丰田自动车株式会社 Method for manufacturing gas tank
CN103574280A (en) * 2013-10-23 2014-02-12 南京航空航天大学 Two-step forming method for designing and manufacturing composite material gas cylinder and application of method
JP2017215001A (en) * 2016-06-01 2017-12-07 サムテック株式会社 Composite container
CN114055803A (en) * 2020-07-31 2022-02-18 丰田自动车株式会社 Method for manufacturing high-pressure tank and mandrel used for method for manufacturing high-pressure tank
CN114646015A (en) * 2020-12-17 2022-06-21 丰田自动车株式会社 High-pressure tank and method for manufacturing same
CN114857483A (en) * 2022-04-26 2022-08-05 中材科技(成都)有限公司 Hydrogen storage cylinder suitable for type III station of 70MPa gas station and processing method thereof
CN115143384A (en) * 2021-03-31 2022-10-04 本田技研工业株式会社 High pressure tank and method of manufacturing the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118806B2 (en) 2005-06-01 2013-01-16 トヨタ自動車株式会社 High pressure tank
JP2007035835A (en) * 2005-07-26 2007-02-08 Taiyo Nippon Sanso Corp Manufacturing method of inner tub of cryostat
DE102006038713A1 (en) * 2006-05-10 2007-11-29 Schunk Kohlenstofftechnik Gmbh Pressure-resistant fluid-loaded body
DE102006043582B3 (en) * 2006-09-16 2008-03-06 Xperion Gmbh pressure vessel
JP4304203B2 (en) 2006-12-15 2009-07-29 本田技研工業株式会社 Hydrogen storage material, method for producing the same, and hydrogen storage container
PL206178B1 (en) * 2007-01-25 2010-07-30 Stako Irena Staniuk Jacek Staniuk Marek Staniuk Spółka Jawnastako Irena Staniuk Jacek Staniuk Marek Staniuk Spółka Jawna Composite tank
US8308017B2 (en) * 2007-02-22 2012-11-13 GM Global Technology Operations LLC Composite material with fibers with different stiffness for optimum stress usage
DE102007032020A1 (en) * 2007-07-10 2009-01-15 Linde Ag storage container
JP5154333B2 (en) * 2008-08-08 2013-02-27 本田技研工業株式会社 Hydrogen storage material and method for producing the same
DE102008059591B4 (en) * 2008-11-28 2011-01-27 Xperion Gmbh container
US8517206B2 (en) * 2009-05-19 2013-08-27 Quantum Fuel Systems Technologies Worldwide Inc. High pressure storage vessel
CN102939496B (en) * 2010-06-08 2015-01-21 丰田自动车株式会社 High pressure tank, and high pressure tank manufacturing method
JP5621631B2 (en) 2011-02-02 2014-11-12 トヨタ自動車株式会社 High pressure tank manufacturing method and high pressure tank
CN103527920A (en) * 2013-07-05 2014-01-22 江苏久维压力容器制造有限公司 Production method of industrial-grade large-bunch carbon fiber composite high-pressure gas cylinder
JP6215678B2 (en) * 2013-12-09 2017-10-18 Jxtgエネルギー株式会社 Composite container manufacturing system and composite container manufacturing method
JP6381563B2 (en) * 2016-03-01 2018-08-29 株式会社日本製鋼所 Combined pressure vessel and hoop wrap pressure vessel
DE102017201780B4 (en) * 2017-02-03 2019-11-07 Bayerische Motoren Werke Aktiengesellschaft Method for producing a pressure vessel
JP6958326B2 (en) * 2017-12-19 2021-11-02 トヨタ自動車株式会社 How to manufacture high pressure tank
JP6919580B2 (en) * 2018-01-19 2021-08-18 トヨタ自動車株式会社 How to dry the high pressure tank
JP7159882B2 (en) * 2019-01-21 2022-10-25 トヨタ自動車株式会社 High-pressure tank manufacturing method
DE102020103679A1 (en) * 2020-02-12 2021-01-21 Audi Aktiengesellschaft Gas cylinder for a motor vehicle
CN112124886B (en) * 2020-11-24 2021-02-26 中材科技(成都)有限公司 Automatic feeding and discharging conveying line for hydrogen cylinder winding and curing
FR3126148A1 (en) * 2021-08-11 2023-02-17 Max Sardou LINER that is to say: internal envelope of COMPOSITE TANK for HIGH PRESSURE GAS

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815773A (en) * 1971-05-17 1974-06-11 Brunswick Corp Cyclic pressure vessel
US3969812A (en) * 1974-04-19 1976-07-20 Martin Marietta Corporation Method of manufacturing an overwrapped pressure vessel
US5499739A (en) * 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels
JP3591034B2 (en) * 1995-02-15 2004-11-17 東レ株式会社 Gas cylinder and manufacturing method thereof
JPH08219392A (en) * 1995-02-15 1996-08-30 Toray Ind Inc Gas cylinder
WO1997020683A1 (en) * 1995-12-04 1997-06-12 Toray Industries, Inc. Pressure vessel and method of manufacturing same
JPH10220691A (en) * 1997-02-06 1998-08-21 Nkk Corp Frp pressure vessel
DE19711844B4 (en) * 1997-03-21 2005-06-02 Metall-Spezialrohr Gmbh Method for producing a compressed gas container
JPH10267195A (en) * 1997-03-24 1998-10-09 Kobe Steel Ltd Lightweight pressure vessel
JP4180676B2 (en) * 1997-04-18 2008-11-12 高圧ガス工業株式会社 Natural gas automotive fuel device composite container
JP3221392B2 (en) * 1998-03-17 2001-10-22 村田機械株式会社 Fiber-reinforced pressure vessel, method for producing fiber-reinforced pressure vessel using braider, and braider system for producing fiber-reinforced pressure vessel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562615A (en) * 2011-05-23 2014-02-05 丰田自动车株式会社 Method for manufacturing gas tank
US9211683B2 (en) 2011-05-23 2015-12-15 Toyota Jidosha Kabushiki Kaisha Method for manufacturing gas tank
CN103562615B (en) * 2011-05-23 2015-12-16 丰田自动车株式会社 The manufacture method of gas tank
CN103016949A (en) * 2012-12-12 2013-04-03 沈阳航天新光集团有限公司 Full winding seamless internal bladder composite material high-pressure gas bottle and preparation method thereof
CN103574280A (en) * 2013-10-23 2014-02-12 南京航空航天大学 Two-step forming method for designing and manufacturing composite material gas cylinder and application of method
CN103574280B (en) * 2013-10-23 2015-09-09 南京航空航天大学 Two one-step forming method and application of composites gas cylinder design and manufaction
JP2017215001A (en) * 2016-06-01 2017-12-07 サムテック株式会社 Composite container
CN114055803A (en) * 2020-07-31 2022-02-18 丰田自动车株式会社 Method for manufacturing high-pressure tank and mandrel used for method for manufacturing high-pressure tank
CN114646015A (en) * 2020-12-17 2022-06-21 丰田自动车株式会社 High-pressure tank and method for manufacturing same
CN115143384A (en) * 2021-03-31 2022-10-04 本田技研工业株式会社 High pressure tank and method of manufacturing the same
CN114857483A (en) * 2022-04-26 2022-08-05 中材科技(成都)有限公司 Hydrogen storage cylinder suitable for type III station of 70MPa gas station and processing method thereof

Also Published As

Publication number Publication date
DE10325598B4 (en) 2006-03-30
DE10325598A1 (en) 2004-11-04
JP2004293571A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP3527737B1 (en) High-pressure tank using high-rigidity fiber and method for manufacturing the same
JP3534743B1 (en) High-pressure tank using high-rigidity fiber and method for manufacturing the same
US8474647B2 (en) Metallic liner with metal end caps for a fiber wrapped gas tank
CN108291688B (en) Pressure vessel, motor vehicle and method for producing a pressure vessel
EP2418414B1 (en) Tank and manufacturing method thereof
US10487981B2 (en) High-pressure composite vessel and the method of manufacturing high-pressure composite vessel
US20180259125A1 (en) Pressure Vessel Comprising a Load Ring, Motor Vehicle, and Method for Manufacturing a Pressure Vessel
WO2013005676A1 (en) High-pressure gas container and production method for high-pressure gas container
CN109386727A (en) High-pressure bottle and shell enhancement layer winding method
JP2018204765A (en) Pressure resistant container
JP6958326B2 (en) How to manufacture high pressure tank
US7137526B2 (en) High-pressure tank and method for fabricating the same
US6908006B2 (en) High-pressure tank and method for fabricating the same
JP2010090938A (en) Tank and method of manufacturing the same
JP2004263827A (en) Pressure container, and method for manufacturing the same
JP2005113971A (en) Liner for pressure resistant container
EP3964745B1 (en) Composite gas storage tank
JP2013002492A (en) Pressure vessel
JP6589776B2 (en) tank
KR20220052322A (en) Pressure vessel and manufacturing method of pressure vessel
JP7120128B2 (en) High-pressure tank manufacturing method
JP6927013B2 (en) High pressure tank
CN1378052A (en) Orthogonal wound composite high pressure gas cylinder
JP2002106787A (en) High pressure gas container and manufacturing method thereof
JP2005337392A (en) Manufacturing method of liner for gas cylinder, liner for gas cylinder and gas cylinder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees