JP2005036918A - High pressure tank using highly rigid fiber and its manufacturing method - Google Patents

High pressure tank using highly rigid fiber and its manufacturing method Download PDF

Info

Publication number
JP2005036918A
JP2005036918A JP2003275438A JP2003275438A JP2005036918A JP 2005036918 A JP2005036918 A JP 2005036918A JP 2003275438 A JP2003275438 A JP 2003275438A JP 2003275438 A JP2003275438 A JP 2003275438A JP 2005036918 A JP2005036918 A JP 2005036918A
Authority
JP
Japan
Prior art keywords
fiber layer
fiber
liner
pressure tank
gpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003275438A
Other languages
Japanese (ja)
Other versions
JP3534743B1 (en
Inventor
Yoshiki Sakaguchi
善樹 阪口
Naoki Sakaguchi
直樹 阪口
Takeshi Yamamoto
猛 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samtech Corp
Samtech International Inc
Original Assignee
Samtech Corp
Samtech International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samtech Corp, Samtech International Inc filed Critical Samtech Corp
Priority to JP2003275438A priority Critical patent/JP3534743B1/en
Priority to DE10345159A priority patent/DE10345159B4/en
Application granted granted Critical
Publication of JP3534743B1 publication Critical patent/JP3534743B1/en
Publication of JP2005036918A publication Critical patent/JP2005036918A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0624Single wall with four or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • F17C2205/0397Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/224Press-fitting; Shrink-fitting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/018Adapting dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure tank having a smaller size, a lighter weight and superior pressure resistance. <P>SOLUTION: A reinforcing fiber layer 23 for covering a liner 2 of the high pressure tank 1 at its outer peripheral face consists of an inside fiber layer 24 containing a highly rigid fiber having a Young's modulus of 350GPa and a rupture elongation of 0.7% or more, hoop wound and impregnated and hardened with a thermosetting resin, an intermediate fiber layer 25 containing a fiber having a Young's modulus of 280GPa or more and less than 350GPa and a rupture elongation of 1.5% or more and lese than 2.0%, helically wound and impregnated and hardened with a thermosetting resin, and an outside fiber layer 26 containing a fiber having a Young's modulus of 230GPa or more and less than 280GPa and a rupture elongation of 2.0% or more, helically wound at a high angle and impregnated and hardened with a thermosetting resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、自動車用水素燃料タンク等に適用される高剛性繊維を用いた高圧タンク及びその製造方法に関するものである。   The present invention relates to a high-pressure tank using high-rigidity fibers applied to a hydrogen fuel tank for automobiles and the like, and a method for manufacturing the same.

この種の高圧タンクは、アルミニウム合金等の金属製ライナー外周面を炭素繊維等からなる補強繊維層で被覆して構成されている。この補強繊維層は、フィラメントワインディング法により、エポキシ樹脂等の熱硬化性樹脂を含浸させた炭素繊維等の繊維をライナー外周面に巻き付け、上記熱硬化性樹脂を硬化させることによって構成される(例えば、特許文献1)。
特開平10−292899号公報(第3頁、図1,4)
This type of high-pressure tank is configured by coating the outer peripheral surface of a metal liner such as an aluminum alloy with a reinforcing fiber layer made of carbon fiber or the like. This reinforcing fiber layer is configured by winding a fiber such as carbon fiber impregnated with a thermosetting resin such as an epoxy resin around the outer peripheral surface of the liner by a filament winding method and curing the thermosetting resin (for example, Patent Document 1).
JP-A-10-292899 (page 3, FIGS. 1 and 4)

ところで、上記の特許文献1の高圧タンクは、高圧タンクとはいっても、精々20MPa程度のガス充填圧クラスであり、これを例えば自動車の水素燃料タンクとして適用した場合、1回のガス充填で走行できる距離は実用レベルに達していない。因みに、容量100リットルの高圧タンクに水素ガスを25MPa充填した場合、走行距離は約180kmで、実用レベルである500kmにはほど遠いのが現実である。   By the way, although the high-pressure tank of the above-mentioned patent document 1 is a high-pressure tank, it is a gas filling pressure class of about 20 MPa, and when this is applied as a hydrogen fuel tank of an automobile, for example, it travels with one gas filling. The distance that can be achieved has not reached the practical level. Incidentally, when a high pressure tank with a capacity of 100 liters is filled with 25 MPa of hydrogen gas, the traveling distance is about 180 km, which is far from the practical level of 500 km.

そこで、1回のガス充填で走行距離を長くするには、タンク容量を大きくするか、あるいはガス充填圧を高くする必要がある。   Therefore, in order to increase the travel distance with one gas filling, it is necessary to increase the tank capacity or increase the gas filling pressure.

しかし、タンク容量を大きくすると積載重量が増大して好ましくなく、また、占有空間が大きくなるため、設置スペースに限界がある自動車には不向きである。   However, if the tank capacity is increased, the loading weight increases, which is not preferable, and the occupied space increases, which is not suitable for an automobile having a limited installation space.

一方、ガス充填圧を高めるには、タンク本体を構成するライナーの厚みを厚くする必要があるが、この場合も、積載重量が増大するため好ましくない。   On the other hand, in order to increase the gas filling pressure, it is necessary to increase the thickness of the liner constituting the tank body, but this is also not preferable because the load weight increases.

この発明はかかる点に鑑みてなされたものであり、その目的とするところは、小型で軽くしかも耐圧性に優れた高圧タンクを開発することである。   The present invention has been made in view of this point, and an object of the present invention is to develop a high-pressure tank that is small, light and excellent in pressure resistance.

上記の目的を達成するため、この発明は、ライナーの外周面を被覆する補強繊維層を強化したことを特徴とする。   In order to achieve the above object, the present invention is characterized in that the reinforcing fiber layer covering the outer peripheral surface of the liner is reinforced.

具体的には、この発明は、補強繊維層に高剛性繊維を用いた高圧タンク及びその製造方法を対象とし、次のような解決手段を講じた。   Specifically, the present invention is directed to a high-pressure tank using a high-rigidity fiber as a reinforcing fiber layer and a manufacturing method thereof, and has taken the following solution.

すなわち、請求項1及び2に記載の発明は、前者の高剛性繊維を用いた高圧タンクに関するものであり、そのうち、請求項1に記載の発明は、アルミニウム合金製の短筒状ブランク材を塑性変形させて筒状胴部の一端に椀状鏡部を介してガス取出筒部が突設されて構成され、このガス取出筒部は上記胴部の3倍以上の厚みに設定され、上記鏡部は胴部からガス取出筒部に行くに従って胴部の厚みからガス取出筒部の厚みに漸次増大していて35〜75MPaの高圧ガスが充填される筒状の金属製ライナーと、上記ライナーのガス取出筒部から鏡部にかけての外周に嵌着された金属製の筒状補強カラーと、上記ライナー外周面を被覆する補強繊維層とを備え、上記補強繊維層は、ヤング率350GPa以上で破断時の伸び0.7%以上の高剛性繊維をフープ巻きしてなり熱硬化性樹脂が含浸硬化された内側繊維層と、ヤング率280GPa以上350GPa未満で破断時の伸び1.5%以上2.0%未満の繊維をヘリカル巻きしてなり熱硬化性樹脂が含浸硬化された中間繊維層と、ヤング率230GPa以上280GPa未満で破断時の伸び2.0%以上の繊維をライナー中心線に対する繊維角度が上記中間繊維層の繊維角度よりも大きくなるようにハイアングルヘリカル巻きしてなり熱硬化性樹脂が含浸硬化された外側繊維層とで構成され、上記補強繊維層を構成する各繊維層は、繊維を偏平に集束して熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で巻き付けて上記熱硬化性樹脂を硬化させて構成されていることを特徴とする。 That is, the invention described in claims 1 and 2 relates to the former high-pressure tank using the high-rigidity fiber, and among them, the invention described in claim 1 relates to the short cylindrical blank made of aluminum alloy as a plastic material. A gas extraction cylinder part is formed by projecting at one end of the cylindrical body part through a bowl-shaped mirror part, and the gas extraction cylinder part is set to a thickness three times or more that of the body part. The cylindrical portion of the liner gradually increases from the thickness of the barrel portion to the thickness of the gas extraction tube portion as it goes from the barrel portion to the gas extraction tube portion, and is filled with high-pressure gas of 35 to 75 MPa ; A metal cylindrical reinforcing collar fitted on the outer periphery from the gas extraction tube portion to the mirror portion and a reinforcing fiber layer covering the outer peripheral surface of the liner, the reinforcing fiber layer breaking at a Young's modulus of 350 GPa or more High rigidity with an elongation of 0.7% or more An inner fiber layer in which a fiber is hoop-wrapped and impregnated and cured with a thermosetting resin, and a fiber having a Young's modulus of 280 GPa to less than 350 GPa and an elongation at break of 1.5% to less than 2.0% is helically wound. An intermediate fiber layer impregnated and cured with a thermosetting resin, and a fiber having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more, the fiber angle with respect to the liner center line is larger than the fiber angle of the intermediate fiber layer. Each of the fiber layers constituting the reinforcing fiber layer is formed by concentrating the fibers flatly and thermosetting resin. It is characterized in that the thermosetting resin is cured by winding a fiber tape impregnated with prepreg in a prepreg state .

上記の構成により、請求項1に記載の発明では、ヤング率350GPa以上で破断時の伸び0.7%以上の高剛性繊維からなるフープ巻きの内側繊維層は、ライナーに35〜75MPaの高圧が加わっても伸び難いため、この高剛性繊維からなる内側繊維層がガス充填圧によってライナーに作用するライナー径方向の引張応力に十分に抗し得てライナーの耐疲労性が向上する。この伸び難い高剛性繊維は反面、耐衝撃性に劣るが、その外側のヤング率230GPa以上280GPa未満で破断時の伸び2.0%以上の繊維からなるハイアングルヘリカル巻きの外側繊維層により、耐衝撃性が確保される。さらに、ヤング率280GPa以上350GPa未満で破断時の伸び1.5%以上2.0%未満の繊維からなるヘリカル巻きの中間繊維層により、ライナーの中心線方向の耐力が向上する。しかも、このヘリカル巻きの中間繊維層は、フープ巻きの内側繊維層に比べて荷重分担が約半分でよいので、それほど高剛性は要求されず、巻き易さとコスト面を考慮して内側繊維層と外側繊維層との中間の剛性に設定しているため、必要以上に層厚を厚くしなくてよい。したがって、タンク容量が小さくかつライナーの厚みが薄くても、35〜75MPaの高圧ガスの充填が可能になり、小型で軽くしかも耐圧性に優れた高圧タンクが実現される。   According to the above configuration, in the invention according to claim 1, the inner fiber layer of the hoop winding composed of high-rigidity fibers having a Young's modulus of 350 GPa or more and an elongation at break of 0.7% or more has a high pressure of 35 to 75 MPa on the liner. Since it is difficult to stretch even if it is added, the inner fiber layer made of this highly rigid fiber can sufficiently resist the tensile stress in the radial direction of the liner acting on the liner by the gas filling pressure, and the fatigue resistance of the liner is improved. Although this highly rigid fiber that is difficult to stretch is inferior in impact resistance, the outer fiber layer of the high-angle helical winding made of fibers having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation of 2.0% or more at break is excellent. Impact properties are ensured. Further, the helically wound intermediate fiber layer made of fibers having a Young's modulus of 280 GPa or more and less than 350 GPa and an elongation at break of 1.5% or more and less than 2.0% improves the proof stress in the center line direction of the liner. In addition, the helically wound intermediate fiber layer only requires about half of the load sharing compared to the hoop-wrapped inner fiber layer, so that high rigidity is not required, and considering the ease of winding and cost, the inner fiber layer Since the rigidity is set to an intermediate level with the outer fiber layer, the layer thickness does not need to be increased more than necessary. Therefore, even if the tank capacity is small and the liner is thin, it is possible to fill the high-pressure gas of 35 to 75 MPa, and a high-pressure tank that is small, light and excellent in pressure resistance is realized.

また、一般に、高剛性繊維は硬いため、紐状の形態では滑り易くてライナーに巻き難く、弛みが生じてライナーに作用する引張応力を全繊維に均等に分配し辛いが、この発明では、特に、高剛性繊維を偏平なテープにして用いるため、ライナーに沿わせ易く、ライナーに弛みなく巻き付けることが可能で上記引張応力が全繊維に均等に分配され、ライナーの耐疲労性向上が容易に実現される。 In general, since the high-rigidity fibers are stiff, they are slippery and difficult to wind around the liner in the string-like form, and it is difficult to evenly distribute the tensile stress acting on the liner due to the occurrence of slack. The high-strength fiber is used as a flat tape, so it can be easily applied to the liner and can be wound around the liner without any slack. The tensile stress is evenly distributed to all the fibers, making it easy to improve the fatigue resistance of the liner. Is done.

さらに、ガス取出筒部が胴部の3倍以上の厚みに設定され、そこから鏡部が漸次薄くなって胴部に続いているため、上記ガス取出筒部及び鏡部の強度が確保され、上述の補強繊維層によるライナーの耐疲労性向上及び耐衝撃性確保と相俟って、35〜75MPaの高圧に十分に耐え得る高圧タンクとなる。また、上記胴部が薄くてもガス取出筒部及び鏡部が厚くなって強度が確保されるため、胴部が薄い分だけ高圧タンク全体の重量が軽減し、かつ材料費もあまり掛からない。 Furthermore , since the gas extraction cylinder part is set to a thickness of 3 times or more than the trunk part, and the mirror part gradually becomes thinner from there and continues to the trunk part, the strength of the gas extraction cylinder part and the mirror part is ensured, Combined with the improvement of fatigue resistance of the liner and the securing of impact resistance by the reinforcing fiber layer, the high-pressure tank can sufficiently withstand a high pressure of 35 to 75 MPa. Further, even if the body portion is thin, the gas extraction tube portion and the mirror portion are thickened to ensure the strength. Therefore, the weight of the entire high-pressure tank is reduced by the thin body portion, and the material cost is not so high.

加えて、応力が集中し易いガス取出筒部及びその近傍の鏡部の実質的な厚みが補強カラーの厚みにより増大して当該箇所の強度がさらに確保され、35〜75MPaの高圧に一層耐え得る高圧タンクとなる。また、補強カラーがライナー全体ではなく、応力が集中し易い鏡部及びガス取出筒部にだけ部分的に嵌着されているため、高圧タンクの重量がそれほど増加せず軽量化が図られるとともに、加工の簡易化、低価格化が図られる。 In addition , the substantial thickness of the gas extraction tube portion where stress tends to concentrate and the mirror portion in the vicinity thereof is increased by the thickness of the reinforcing collar, and the strength of the portion is further ensured, so that it can withstand a high pressure of 35 to 75 MPa. It becomes a high-pressure tank. In addition, the reinforcing collar is not the entire liner, but is partially fitted only to the mirror part and the gas extraction cylinder part where stress is likely to concentrate, so the weight of the high-pressure tank does not increase so much and the weight can be reduced. Simplification of processing and cost reduction are achieved.

請求項に記載の発明は、請求項に記載の発明において、補強カラーは、ガス取出筒部に嵌着される筒部と、この筒部の一端から外側方に張り出す張出部とからなり、この張出部裏面には、リング状膨出部が膨出して形成され、一方、鏡部のガス取出筒部との境目近傍における外周には、上記補強カラーを上記ライナーのガス取出筒部から鏡部にかけての外周に嵌着した状態で、上記膨出部が嵌入するリング状嵌合凹部が形成されていることを特徴とする。 According to a second aspect of the present invention, in the first aspect of the invention, the reinforcing collar includes a cylindrical portion that is fitted to the gas extraction cylindrical portion, and an overhang portion that projects outward from one end of the cylindrical portion. A ring-shaped bulge is formed on the back surface of the bulge. On the other hand, the reinforcement collar is disposed on the outer periphery in the vicinity of the boundary between the mirror and the gas extraction tube. A ring-shaped fitting concave portion into which the bulging portion is fitted is formed in a state of fitting on the outer periphery from the tube portion to the mirror portion.

上記の構成により、請求項に記載の発明では、補強カラーの膨出部がライナーの嵌合凹部に嵌入することで、両者の嵌合状態が確実になる。また、上記膨出部があることで当該部分の補強カラーの厚みが増大し、その分だけ強度アップとなる。 With the above configuration, in the invention according to the second aspect , the bulging portion of the reinforcing collar is fitted into the fitting concave portion of the liner, so that the fitting state of both is ensured. In addition, the presence of the bulging portion increases the thickness of the reinforcing collar of the portion, and the strength is increased accordingly.

請求項及びに記載の発明は、後者の高剛性繊維を用いた高圧タンクの製造方法に関するものであり、そのうち、請求項に記載の発明は、アルミニウム合金製の短筒状ブランク材を塑性変形させて筒状胴部の一端に椀状鏡部を介してガス取出筒部が突設されて構成され、このガス取出筒部は上記胴部の3倍以上の厚みに設定され、上記鏡部は胴部からガス取出筒部に行くに従って胴部の厚みからガス取出筒部の厚みに漸次増大し、かつ上記ガス取出筒部から鏡部にかけての外周に金属製の筒状補強カラーが嵌着されて35〜75MPaの高圧ガスが充填される筒状の金属製ライナーを用意し、まず、ヤング率350GPa以上で破断時の伸び0.7%以上の高剛性繊維を偏平に集束して熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で上記ライナー外周面にフープ巻きして内側繊維層を形成し、次いで、ヤング率280GPa以上350GPa未満で破断時の伸び1.5%以上2.0%未満の繊維を偏平に集束して熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で上記内側繊維層外周面にヘリカル巻きして中間繊維層を形成し、その後、ヤング率230GPa以上280GPa未満で破断時の伸び2.0%以上の繊維を偏平に集束して熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で上記中間繊維層外周面にライナー中心線に対する繊維角度が上記中間繊維層の繊維角度よりも大きくなるようにハイアングルヘリカル巻きして外側繊維層を形成して、上記内側繊維層、中間繊維層及び外側繊維層で構成された補強繊維層により上記ライナー外周面を被覆し、しかる後、上記補強繊維層で被覆されたライナーを乾燥室に搬入して加熱し、補強繊維層に含浸している熱硬化性樹脂を硬化させることを特徴とする。 The invention described in claims 3 and 4 relates to a method for manufacturing a high-pressure tank using the latter high-rigidity fiber. Among them, the invention described in claim 3 is a short cylindrical blank made of aluminum alloy. It is configured to be plastically deformed to project a gas extraction cylinder part at one end of the cylindrical body part via a bowl-shaped mirror part, and this gas extraction cylinder part is set to a thickness three times or more of the body part, The mirror part gradually increases from the thickness of the barrel part to the thickness of the gas extraction cylinder part as it goes from the barrel part to the gas extraction cylinder part, and a metal cylindrical reinforcing collar is provided on the outer periphery from the gas extraction cylinder part to the mirror part. A cylindrical metal liner that is fitted and filled with a high pressure gas of 35 to 75 MPa is prepared. First, high-rigid fibers having a Young's modulus of 350 GPa or more and an elongation at break of 0.7% or more are focused flatly. Prepreg fiber tape impregnated with thermosetting resin State at and wound hoop on the liner outer circumferential surface to form an inner fiber layer, then flatly focus the elongation of 1.5% or more to 2.0% less than the fiber at break less than or Young's modulus 280 GPa 350 GPa heat A fiber tape impregnated with a curable resin is helically wound around the outer peripheral surface of the inner fiber layer in a prepreg state to form an intermediate fiber layer. Thereafter, the Young's modulus is 230 GPa or more and less than 280 GPa, and the elongation at break is 2.0% or more. A fiber tape in which the fibers are flattened and impregnated with a thermosetting resin is prepreged so that the fiber angle relative to the liner center line is larger than the fiber angle of the intermediate fiber layer on the outer peripheral surface of the intermediate fiber layer. The outer fiber layer is formed by helical winding, and the outer peripheral surface of the liner is covered with the reinforcing fiber layer composed of the inner fiber layer, the intermediate fiber layer, and the outer fiber layer. And, thereafter, the liner coated with the reinforcing fiber layer is heated by carried into the drying chamber, characterized in that curing the thermosetting resin is impregnated into the reinforcing fiber layer.

上記の構成により、請求項に記載の発明では、繊維をまとめてテープ状の形態でライナーに巻き付けることから、巻付け作業が簡単に行われる。また、繊維をウェットワインディング法でライナー外周面に巻き付ける場合は、液状の熱硬化性樹脂が作業場に滴り落ちて作業環境が悪化するが、この発明では、熱硬化性樹脂がある程度硬化してプリプレグ状態(B状態)となった繊維テープをライナーに巻き付けるため、熱硬化性樹脂が作業場に滴り落ちず、作業環境が悪化しない。 With the above configuration, in the invention described in claim 3 , since the fibers are collectively wound around the liner in the form of a tape, the winding operation is easily performed. In addition, when the fiber is wound around the outer peripheral surface of the liner by the wet winding method, the liquid thermosetting resin drops on the work place and the working environment is deteriorated, but in this invention, the thermosetting resin is cured to some extent and is in a prepreg state. Since the fiber tape in the (B state) is wound around the liner, the thermosetting resin does not drip into the work place and the work environment does not deteriorate.

請求項に記載の発明は、請求項に記載の発明において、乾燥室に搬入されたライナーを内外から加熱することを特徴とする。 The invention according to claim 4 is the invention according to claim 3 , wherein the liner carried into the drying chamber is heated from inside and outside.

上記の構成により、請求項に記載の発明では、補強繊維層の熱硬化性樹脂を外側からのみ加熱する場合には、熱硬化性樹脂は外側から内側へと順に硬化し、硬化に伴って収縮する。この際、内側の未硬化樹脂は外側の硬化樹脂から圧縮力を受け、上記内側の未硬化樹脂が絡まっている繊維に弛みが生ずる。このように、繊維に弛みが生ずると、ガス充填圧によってライナーに作用する引張応力を全繊維に均等に配分できず、早期破断に至るが、この発明では、補強繊維層の熱硬化性樹脂は、層内外両側からほぼ同時に硬化するため、内側の繊維に弛みが生ずる事態が極力回避され、引張応力が全繊維に均等に分配されて早期破断に至らない。 With the above configuration, in the invention according to claim 4, when the thermosetting resin of the reinforcing fiber layer is heated only from the outside, the thermosetting resin is sequentially cured from the outside to the inside, and accompanying the curing. Shrink. At this time, the inner uncured resin receives a compressive force from the outer cured resin, and the fibers entangled with the inner uncured resin are slackened. As described above, when the fibers are slack, the tensile stress acting on the liner due to the gas filling pressure cannot be evenly distributed to all the fibers, leading to early breakage.In this invention, the thermosetting resin of the reinforcing fiber layer is Since the layers are hardened almost simultaneously from both the inside and outside of the layer, the situation in which the inner fibers are loosened is avoided as much as possible, and the tensile stress is evenly distributed to all the fibers, so that early breakage does not occur.

請求項1に係る発明によれば、ヤング率350GPa以上で破断時の伸び0.7%以上の伸び難い高剛性繊維からなるフープ巻きの内側繊維層により、35〜75MPaの高圧がライナーに掛かることによって生ずるライナー径方向の引張応力に十分に抗し得てライナーの耐疲労性を向上させることができる。また、高剛性繊維であるがために劣る耐衝撃性をその外側のヤング率230GPa以上280GPa未満で破断時の伸び2.0%以上の繊維からなるハイアングルヘリカル巻きの外側繊維層により補うことができる。さらに、ヤング率280GPa以上350GPa未満で破断時の伸び1.5%以上2.0%未満の繊維からなるヘリカル巻きの中間繊維層によりライナー中心線方向の耐力を層厚を必要以上に厚くしないで向上させることができる。したがって、タンク容量が小さくかつライナーの厚みが薄くて小型で軽量の35〜75MPaの高圧ガスに耐え得る高圧タンクとすることができる According to the first aspect of the present invention, a high pressure of 35 to 75 MPa is applied to the liner by the inner fiber layer of the hoop winding made of a highly rigid fiber having a Young's modulus of 350 GPa or more and an elongation at break of 0.7% or more and hardly stretchable. It is possible to sufficiently resist the tensile stress in the liner radial direction caused by the above and improve the fatigue resistance of the liner. In addition, the impact resistance, which is inferior because it is a high-rigidity fiber, can be compensated by an outer fiber layer of a high-angle helical winding made of fibers having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more. it can. In addition, with a helically wound intermediate fiber layer composed of fibers with a Young's modulus of 280 GPa or more and less than 350 GPa and an elongation at break of 1.5% or more and less than 2.0%, the proof stress in the direction of the centerline of the liner should not be increased more than necessary. Can be improved. Therefore, a high-pressure tank having a small tank capacity and a thin liner and capable of withstanding a 35 to 75 MPa high-pressure gas having a small size and light weight can be obtained .

に、硬くて巻き難い高剛性繊維を偏平なテープ状の形態として用いているので、繊維を弛みなくライナーに巻き付けて引張応力を全繊維に均等配分してライナーの耐疲労性を向上させることができる。 In particular, because of the use of high-rigidity fiber hardly wound hard and as flat tape-like form, that the tensile stress is wound around the slack without liner fibers evenly distributed in the total fiber improve fatigue resistance of liner Can do.

さらに、ガス取出筒部を円筒形の胴部の3倍以上の厚みに設定し、そこから椀状鏡部を漸次薄くして胴部に続かせているので、上記ガス取出筒部及び鏡部の強度を確保でき、35〜75MPaの高圧に十分に耐え得る高圧タンクとすることができる。また、上記胴部が薄くてもガス取出筒部及び鏡部を厚くして強度を確保できるので、胴部が薄い分だけ高圧タンクを軽量化できるとともに、コストダウンを図ることができる。 Furthermore , since the gas extraction tube portion is set to a thickness three times or more that of the cylindrical body portion, and the bowl-shaped mirror portion is gradually made thinner from there, the gas extraction tube portion and the mirror portion are connected. And a high-pressure tank that can sufficiently withstand a high pressure of 35 to 75 MPa. In addition, even if the body portion is thin, the gas extraction tube portion and the mirror portion can be thickened to ensure strength. Therefore, the high-pressure tank can be reduced in weight by the thin body portion, and the cost can be reduced.

加えて、ライナーの応力が集中し易い鏡部及びガス取出筒部に補強カラーを嵌着したので、上記ガス取出筒部及びその近傍の鏡部の厚みを補強カラーの厚みで補って当該箇所を十分に強化して、35〜75MPaの高圧に一段と耐え得る高圧タンクとすることができる。また、上記補強カラーをライナーに部分的に嵌着するだけなので、高圧タンクの軽量化、加工の簡易化及び低価格化を達成することができる。 In addition, since the reinforcement collar is fitted to the mirror part and the gas extraction cylinder part where the stress of the liner tends to concentrate, the thickness of the gas extraction cylinder part and the mirror part in the vicinity thereof is compensated by the thickness of the reinforcement collar, so By sufficiently strengthening, a high-pressure tank that can withstand a high pressure of 35 to 75 MPa can be obtained. Further, since the reinforcing collar is only partially fitted to the liner, the high-pressure tank can be reduced in weight, simplified in processing, and reduced in price.

請求項に係る発明によれば、補強カラーの膨出部をライナーの嵌合凹部に嵌入させたので、両者を確実に嵌合させることができる。また、上記膨出部があることで当該部分の補強カラーの厚みを増大してその分だけ強度アップを図ることができる。 According to the invention which concerns on Claim 2 , since the bulging part of the reinforcement collar was fitted in the fitting recessed part of the liner, both can be reliably fitted. In addition, the presence of the bulging portion can increase the thickness of the reinforcing collar of the portion and increase the strength accordingly.

請求項に係る発明によれば、繊維をまとめてテープ状の形態でライナーに巻き付けるので、巻付け作業を簡単に行うことができる。また、繊維に含浸する熱硬化性樹脂を液状ではなく硬化がある程度進行したプリプレグ状態にしているので、熱硬化性樹脂が作業場に滴下することによる作業環境の悪化を防止することができる。 According to the invention of claim 3 , since the fibers are collectively wound around the liner in a tape form, the winding operation can be easily performed. In addition, since the thermosetting resin impregnated in the fiber is not in a liquid state but in a prepreg state in which the curing has progressed to some extent, it is possible to prevent the working environment from being deteriorated due to the dripping of the thermosetting resin into the workplace.

請求項に係る発明によれば、乾燥室でライナーを内外から加熱して、補強繊維層の熱硬化性樹脂の硬化を層内外両側からほぼ同時に進行させるので、内側の繊維を弛まないようにすることができ、引張応力を全繊維に均等分配して早期破断を防止することができる。 According to the invention of claim 4 , the liner is heated from inside and outside in the drying chamber, and the curing of the thermosetting resin of the reinforcing fiber layer proceeds from both inside and outside of the layer almost simultaneously, so that the inner fibers are not loosened. The tensile stress can be evenly distributed across all fibers to prevent premature breakage.

以下、この発明の実施の形態について図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1及び図2はこの発明の実施の形態1に係る高剛性繊維を用いた高圧タンク1を示す。この高圧タンク1は、水素ガス等の35〜75MPaの高圧ガスが充填されるタンク本体であるライナー2を備え、このライナー2は、横断面円形の筒状胴部3の一端に椀状鏡部4を介して小径で横断面円形のガス取出筒部5が一体に突設され、このガス取出筒部5側から高圧ガスを高圧タンク1(ライナー2)内に充填したり、あるいは高圧タンク1(ライナー2)から取り出したりするようになっている。上記ガス取出筒部5にはネジ孔6が形成され、このネジ孔6にバルブ装置7が装着されている。このバルブ装置7は、図示しないが開閉バルブと減圧バルブとを備えたバルブ機構8がカプセル9内に収容されて構成され、フランジ10を上記ガス取出筒部5の開口端に当接させて上記カプセル9(バルブ機構8)を高圧タンク1内に収容した内蔵タイプ、いわゆるインタンクバルブである。このバルブ装置7の高圧タンク1外には、高圧タンク1に低圧ガス配管を接続するための配管接続部11が突設されている。一方、上記胴部3の他端にも、椀状鏡部12を介して小径で横断面円形の筒部13が一体に突設され、この筒部13にもネジ孔14が形成され、このネジ孔14に高圧ガスに対する気密性を保持するための盲プラグ15が装着され、これにより、ライナー2内に高圧ガスを収容する密閉された中空部16が形成されている。
(Embodiment 1)
1 and 2 show a high-pressure tank 1 using high-rigidity fibers according to Embodiment 1 of the present invention. The high-pressure tank 1 includes a liner 2 that is a tank body filled with 35 to 75 MPa of high-pressure gas such as hydrogen gas. The liner 2 has a bowl-shaped mirror portion at one end of a cylindrical body 3 having a circular cross section. A gas extraction cylinder portion 5 having a small diameter and a circular cross section is integrally provided through 4, and high pressure gas is charged into the high pressure tank 1 (liner 2) from the gas extraction cylinder portion 5 side, or the high pressure tank 1. (Liner 2). A screw hole 6 is formed in the gas extraction cylinder 5, and a valve device 7 is attached to the screw hole 6. Although not shown, the valve device 7 is configured by a valve mechanism 8 having an opening / closing valve and a pressure reducing valve being housed in a capsule 9, and the flange 10 is brought into contact with the open end of the gas extraction cylinder portion 5 to This is a built-in type in which the capsule 9 (valve mechanism 8) is accommodated in the high-pressure tank 1, a so-called in-tank valve. A pipe connection part 11 for connecting a low-pressure gas pipe to the high-pressure tank 1 protrudes from the high-pressure tank 1 of the valve device 7. On the other hand, a cylindrical portion 13 having a small diameter and a circular cross-section is integrally provided at the other end of the body portion 3 via a bowl-shaped mirror portion 12, and a screw hole 14 is formed in the cylindrical portion 13. A blind plug 15 for maintaining airtightness against high-pressure gas is attached to the screw hole 14, thereby forming a sealed hollow portion 16 for accommodating the high-pressure gas in the liner 2.

上記高圧タンク1は、例えば、JIS A 6061やJIS A 6062等のアルミニウム合金からなる金属製で、成形後にT6処理等の熱処理が施されてなるものであり、短筒状ブランク材を塑性変形させて成形され、上記鏡部4,12、ガス取出筒部5及び筒部13は胴部3の3倍以上の厚みに形成されている。特に、上記鏡部4,12は、胴部3からガス取出筒部5及び筒部13に近づくに従って胴部3の厚みからガス取出筒部5及び筒部13の厚みに漸次増大しており、これにより、応力が集中し易い鏡部4,12を強化している。   The high-pressure tank 1 is made of a metal made of an aluminum alloy such as JIS A 6061 or JIS A 6062, and is subjected to heat treatment such as T6 treatment after molding, and plastically deforms a short cylindrical blank material. The mirror parts 4, 12, the gas extraction cylinder part 5, and the cylinder part 13 are formed to have a thickness three or more times that of the body part 3. In particular, the mirror parts 4 and 12 gradually increase from the thickness of the body part 3 to the thicknesses of the gas extraction cylinder part 5 and the cylinder part 13 from the body part 3 toward the gas extraction cylinder part 5 and the cylinder part 13, Thereby, the mirror parts 4 and 12 where stress tends to concentrate are strengthened.

上記ライナー2のガス取出筒部5及び筒部13から鏡部4,12にかけての外周には、焼ばめにより金属製の筒状補強カラー18が一体に嵌着されている。この補強カラー18は、上記ガス取出筒部5及び筒部13とほぼ厚みが等しい横断面円形の筒部19と、この筒部19の一端に一体に形成されて外側方に張り出した張出部20とからなり、この張出部20の厚みは外端に近づくに従って薄くなっており、これにより、張出部20外端が段差なく鏡部4,12外表面に沿うようになっている。また、上記補強カラー18の内部には、上記筒部19及び張出部20を上下に貫通する嵌合孔22が形成されている。この補強カラー18は、例えば、SNCM440、SCM440、SKD61等の合金鋼又はチタン合金からなる金属製で、鍛造成形や旋削加工されてなるものであるが、これに限定されず、強度/重量比がアルミニウムよりも高いものであればよく、これによれば、重量軽減に大きく貢献することができる。そして、上記補強カラー18は、その嵌合孔22に上記ライナー2のガス取出筒部5及び筒部13を挿入した状態で、上記筒部19が焼ばめによりガス取出筒部5及び筒部13に一体に外嵌合されているとともに、上記張出部21が鏡部4,12外表面に一体に接合されている。   On the outer periphery of the liner 2 from the gas extraction cylinder part 5 and the cylinder part 13 to the mirror parts 4 and 12, a metal cylindrical reinforcement collar 18 is integrally fitted by shrink fitting. The reinforcing collar 18 includes a cylindrical portion 19 having a circular cross section substantially equal in thickness to the gas extraction cylindrical portion 5 and the cylindrical portion 13, and an overhang portion integrally formed at one end of the cylindrical portion 19 and projecting outward. 20, and the thickness of the overhanging portion 20 becomes thinner as it approaches the outer end, so that the outer end of the overhanging portion 20 extends along the outer surfaces of the mirror portions 4 and 12 without a step. Further, a fitting hole 22 is formed inside the reinforcing collar 18 so as to penetrate the cylindrical portion 19 and the overhanging portion 20 up and down. The reinforcing collar 18 is made of a metal made of alloy steel or titanium alloy such as SNCM440, SCM440, SKD61, etc., and is formed by forging or turning, but is not limited thereto, and has a strength / weight ratio. What is necessary is just to be higher than aluminum, and according to this, it can contribute greatly to weight reduction. The reinforcing collar 18 is inserted into the fitting hole 22 with the gas extraction tube portion 5 and the tube portion 13 of the liner 2 inserted therein, and the tube portion 19 is fitted into the gas extraction tube portion 5 and the tube portion by shrink fitting. 13, and the overhanging portion 21 is integrally joined to the outer surfaces of the mirror portions 4 and 12.

上記ライナー2外周面は補強繊維層23で被覆されている。この補強繊維層23は、ライナー2外周面に繊維を巻き付けることによって形成される。この補強繊維層23は、上記ライナー2の胴部3外周面と接触し胴部3を被覆する内側繊維層24と、この内側繊維層24外周面から筒部19にかけて接触しライナー2のほぼ全体を被覆する中間繊維層25と、この中間繊維層25外周面と接触しライナー2の胴部3から鏡部4,12の途中にかけてを被覆する外側繊維層26とで構成されている。   The outer peripheral surface of the liner 2 is covered with a reinforcing fiber layer 23. The reinforcing fiber layer 23 is formed by winding fibers around the outer peripheral surface of the liner 2. The reinforcing fiber layer 23 is in contact with the outer peripheral surface of the body portion 3 of the liner 2 and covers the inner surface of the body portion 3. The reinforcing fiber layer 23 is in contact with the inner fiber layer 24 from the outer peripheral surface of the inner fiber layer 24 to the tube portion 19. And an outer fiber layer 26 in contact with the outer peripheral surface of the intermediate fiber layer 25 and covering the middle portion 3 of the liner 2 and the middle of the mirror portions 4 and 12.

この発明の特徴として、上記内側繊維層24は、ヤング率350GPa以上で破断時の伸び0.7%以上の高剛性繊維をフープ巻きしてなり、エポキシ樹脂等の熱硬化性樹脂が含浸硬化されている。上記高剛性繊維としては、例えば、ポリアクリロニトリル(PAN)を原料にした下記の炭素繊維を挙げることができる。この高剛性繊維は伸び難く、相当の高圧であっても十分に耐え得る。   As a feature of the present invention, the inner fiber layer 24 is formed by hoop-wrapping high-rigidity fibers having a Young's modulus of 350 GPa or more and an elongation at break of 0.7% or more, and is impregnated and cured with a thermosetting resin such as an epoxy resin. ing. Examples of the high-rigidity fibers include the following carbon fibers made from polyacrylonitrile (PAN) as a raw material. This high-rigidity fiber is difficult to stretch and can withstand even a considerable high pressure.

<東レ製 高性能炭素繊維トレカ(R) M46JB>
ヤング率 436GPa
引張強度 4.2GPa
破断時の伸び 1.0%
また、上記中間繊維層25は、ヤング率280GPa以上350GPa未満で破断時の伸び1.5%以上2.0%未満の繊維をヘリカル巻きしてなり、エポキシ樹脂等の熱硬化性樹脂が含浸硬化されている。上記繊維としては、例えば、ポリアクリロニトリル(PAN)を原料にした下記の炭素繊維を挙げることができる。この繊維の剛性は、ヘリカル巻きが可能になるように上記高剛性繊維よりは低いが、コスト面から層厚を必要以上に厚くしなくてもよいように外側繊維層26よりは高くなっている。つまり、このヘリカル巻きの中間繊維層25は、フープ巻きの内側繊維層24に比べて荷重分担が約半分でよいので、それほど高剛性は要求されず、したがって、巻き易さとコスト面を考慮して内側繊維層24と外側繊維層26との中間の剛性に設定しているのである。
<High-performance carbon fiber trading card (R) M46JB manufactured by Toray>
Young's modulus 436 GPa
Tensile strength 4.2 GPa
Elongation at break 1.0%
The intermediate fiber layer 25 is formed by helically winding fibers having a Young's modulus of 280 GPa or more and less than 350 GPa and an elongation at break of 1.5% or more and less than 2.0%, and a thermosetting resin such as an epoxy resin is impregnated and cured. Has been. Examples of the fibers include the following carbon fibers made from polyacrylonitrile (PAN) as a raw material. The rigidity of the fiber is lower than that of the high-rigidity fiber so that helical winding is possible, but is higher than that of the outer fiber layer 26 so that the layer thickness does not need to be increased more than necessary from the viewpoint of cost. . In other words, the helically wound intermediate fiber layer 25 does not require so high rigidity because the load sharing may be about half that of the hoop-wrapped inner fiber layer 24. Therefore, in consideration of ease of winding and cost. The intermediate rigidity between the inner fiber layer 24 and the outer fiber layer 26 is set.

<東レ製 高性能炭素繊維トレカ(R) T800HB>
ヤング率 294GPa
引張強度 5.49GPa
破断時の伸び 1.9%
さらに、上記外側繊維層26は、ヤング率230GPa以上280GPa未満で破断時の伸び2.0%以上の繊維をライナー中心線に対する繊維角度が上記中間繊維層の繊維角度よりも大きくなるようにハイアングルヘリカル巻きしてなり、エポキシ樹脂等の熱硬化性樹脂が含浸硬化されている。上記繊維としては、例えば、ポリアクリロニトリル(PAN)を原料にした下記の炭素繊維や、ポリパラフェニレンベンゾビスオキサゾール(PBO)を原料とした下記の繊維を挙げることができる。これら繊維は上記の内側繊維層24を構成する高剛性繊維に比べて伸び易いという性質を備えており、高剛性繊維が伸び難いことの裏返しとして低下する耐衝撃性を補うことができる。
<High-performance carbon fiber trading card (R) T800HB manufactured by Toray>
Young's modulus 294GPa
Tensile strength 5.49GPa
Elongation at break 1.9%
Further, the outer fiber layer 26 has a Young's modulus of 230 GPa or more and less than 280 GPa and has a high angle so that the fiber angle with respect to the liner center line is larger than the fiber angle of the intermediate fiber layer. It is helically wound and impregnated and cured with a thermosetting resin such as an epoxy resin. Examples of the fiber include the following carbon fiber using polyacrylonitrile (PAN) as a raw material and the following fiber using polyparaphenylene benzobisoxazole (PBO) as a raw material. These fibers have the property of being easily stretched as compared with the high-rigidity fibers constituting the inner fiber layer 24, and can compensate for the impact resistance that decreases as the reverse of the fact that the high-rigidity fibers are difficult to stretch.

<東レ製 高性能炭素繊維トレカ(R) T700>
ヤング率 230GPa
引張強度 4.9GPa
破断時の伸び 2.1%
<東洋紡製 ZYLON−HM(R)>
ヤング率 270GPa
引張強度 5.8GPa
破断時の伸び 2.5%
上記内側繊維層24は、繊維をライナー2の胴部3外周面にライナー中心線方向と直交する円周方向にフープ巻きした繊維層であり、上記中間繊維層25は、繊維をライナー2外周面ほぼ全体にライナー中心線方向に螺旋状にヘリカル巻きした繊維層であり、上記外側繊維層26は、繊維をライナー2外周面の胴部3から鏡部4,12の途中にかけてライナー中心線に対して75°前後でハイアングルヘリカル巻きした繊維層である。
<Toray Industries high-performance carbon fiber trading card (R) T700>
Young's modulus 230 GPa
Tensile strength 4.9 GPa
Elongation at break 2.1%
<Toyobo ZYLON-HM (R)>
Young's modulus 270 GPa
Tensile strength 5.8 GPa
Elongation at break 2.5%
The inner fiber layer 24 is a fiber layer in which fibers are hoop-wrapped around the outer peripheral surface of the body portion 3 of the liner 2 in the circumferential direction perpendicular to the liner centerline direction, and the intermediate fiber layer 25 is an outer peripheral surface of the liner 2 The outer fiber layer 26 is a fiber layer helically wound helically in the direction of the center line of the liner, and the outer fiber layer 26 extends from the body 3 of the outer peripheral surface of the liner 2 to the middle of the mirror parts 4 and 12 with respect to the center line of the liner. This is a fiber layer that is helically wound at a high angle around 75 °.

また、上記補強繊維層23を構成する各繊維層24,25,26は、繊維を偏平に集束してエポキシ樹脂等の熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で巻き付けて上記熱硬化性樹脂を硬化させて構成されている。上記プリプレグ状態とは、熱硬化性樹脂がある程度硬化を進めて生乾きした状態でB状態といわれる状態であり、このようなプレプレグ状態の繊維テープは、使用するまでは乾燥しないように冷蔵室等で保管しておく。   Further, each of the fiber layers 24, 25, and 26 constituting the reinforcing fiber layer 23 is formed by winding a fiber tape impregnated with a flat fiber and impregnated with a thermosetting resin such as an epoxy resin in a prepreg state, and performing the thermosetting. It is configured by curing a functional resin. The prepreg state is a state called the B state in which the thermosetting resin has been cured to some extent and is dried, and the fiber tape in such a prepreg state is kept in a refrigerator room or the like so as not to be dried until it is used. Keep it.

次に、上述の如く構成された高圧タンク1の製造要領の一例を図3に基づき説明する。   Next, an example of the manufacturing procedure of the high-pressure tank 1 configured as described above will be described with reference to FIG.

まず、パイプカット工程S1で、アルミニウム合金製の長尺パイプ材Pを所定寸法に切断して両端が開口した短筒状ブランク材Bを形成する。   First, in the pipe cutting step S1, a long pipe material P made of an aluminum alloy is cut into a predetermined dimension to form a short cylindrical blank material B having both ends opened.

次いで、フローフォーミング工程S2で、図示しないが、上記短筒状ブランク材Bをマンドレルに外嵌合して取り付け、該マンドレルをその軸心回りに回転させて短筒状ブランク材Bを一体に回転させ、成形ローラを上記短筒状ブランク材B外周面に圧接させることで回転させながら短筒状ブランク材B外周面を軸心方向にしごき、短筒状ブランク材Bをフローフォーミングする。これにより、短筒状ブランク材Bが塑性変形して長筒状ブランク材B′が成形される。この段階で、開口端から所定領域を除いた長筒状ブランク材B′の厚みが、完成品としての高圧タンク1のライナー2の胴部3の厚みと等しくなっている。また、上記長筒状ブランク材B′の開口端から所定領域は、開口端に近づくに従って厚みが漸次増大している。   Next, in the flow forming step S2, although not shown, the short cylindrical blank B is externally fitted and attached to a mandrel, and the short cylindrical blank B is rotated integrally by rotating the mandrel around its axis. Then, the outer peripheral surface of the short cylindrical blank material B is squeezed in the axial direction while rotating by pressing the forming roller against the outer peripheral surface of the short cylindrical blank material B, and the short cylindrical blank material B is flow-formed. Thereby, the short cylindrical blank material B is plastically deformed to form the long cylindrical blank material B ′. At this stage, the thickness of the long cylindrical blank B ′ excluding the predetermined region from the opening end is equal to the thickness of the body portion 3 of the liner 2 of the high-pressure tank 1 as a finished product. Further, the thickness of the predetermined region from the opening end of the long cylindrical blank B ′ gradually increases as it approaches the opening end.

その後、スピニング工程S3で、図示しないが、上記長筒状ブランク材B′をチャック装置で保持してその軸心回りに回転させ、成形ローラを長筒状ブランク材B′の一方の開口端近傍から開口端にかけて傾けて圧接させることで回転させながら長筒状ブランク材B′の軸心に対して斜めに移動させてしごき、長筒状ブランク材B′の一方の開口端から所定領域をスピニングにより口絞りする。これにより、長筒状ブランク材B′の開口端から所定領域が塑性変形して筒状胴部3の一端に椀状鏡部4を介してガス取出筒部5が一体に突設される。そして、上述の如きスピニングによる口絞り成形により、鏡部4の厚みが胴部3からガス取出筒部5に近づくに従って漸次増大するように成形され、かつガス取出筒部5は胴部3の3倍以上厚みに設定されている。長筒状ブランク材B′の他方の開口端側も、同様のスピニングによる口絞り成形を行い、胴部3の他端に椀状鏡部12を介して筒部13が一体に突設され、ここでも、鏡部12の厚みが胴部3から筒部13に近づくに従って漸次増大するように成形され、かつ筒部13は胴部3の3倍以上厚みに設定されている。これにより、一端にガス取出筒部5が他端に筒部13が突設されたライナー2が得られる。   Thereafter, in the spinning step S3, although not shown, the long cylindrical blank B 'is held by a chuck device and rotated around its axis, and the molding roller is near one open end of the long cylindrical blank B'. It is tilted from the opening end to the opening end and is moved by being inclined with respect to the axial center of the long cylindrical blank B ′ while rotating to spin a predetermined region from one opening end of the long cylindrical blank B ′. Squeeze with. As a result, a predetermined region is plastically deformed from the open end of the long cylindrical blank B ′, and the gas extraction cylindrical portion 5 is integrally projected from one end of the cylindrical barrel portion 3 via the bowl-shaped mirror portion 4. The thickness of the mirror part 4 is shaped so as to gradually increase from the body part 3 toward the gas extraction cylinder part 5 by mouth drawing by spinning as described above, and the gas extraction cylinder part 5 is 3 of the body part 3. The thickness is set to more than double. The other opening end side of the long cylindrical blank material B ′ is also subjected to mouth-drawing by the same spinning, and the cylindrical portion 13 is projected integrally with the other end of the barrel portion 3 via the bowl-shaped mirror portion 12. Also here, the thickness of the mirror part 12 is formed so as to gradually increase from the body part 3 toward the cylinder part 13, and the cylinder part 13 is set to have a thickness three times or more that of the body part 3. Thereby, the liner 2 in which the gas extraction cylinder part 5 is protruded at one end and the cylinder part 13 is protruded at the other end is obtained.

一方、別途鍛造成形や旋削加工した合金鋼製又はチタン合金製等の補強カラー18を用意する。この補強カラー18は、上述の如く筒部19の一端に張出部20が一体に形成されているとともに、内部に筒部19及び張出部20を上下に貫通する嵌合孔22が形成されている。この嵌合孔22の内径は、ガス取出筒部5及び筒部13の外径との関係において焼ばめによる締め代を考慮して設定されている。   On the other hand, a reinforcing collar 18 made of alloy steel or titanium alloy which is separately forged or turned is prepared. As described above, the reinforcing collar 18 has an overhang portion 20 integrally formed at one end of the tube portion 19, and a fitting hole 22 that vertically penetrates the tube portion 19 and the overhang portion 20. ing. The inner diameter of the fitting hole 22 is set in consideration of the interference due to shrink fitting in relation to the outer diameters of the gas extraction cylinder portion 5 and the cylinder portion 13.

次に、補強カラー焼きばめ工程S4で、上述の如く構成された補強カラー18をライナー2のガス取出筒部5及び筒部13にそれぞれ外嵌合させ、焼ばめにより上記補強カラー18をライナー2のガス取出筒部5及び筒部13から鏡部4,12にかけての外周にそれぞれ一体に嵌着させる。   Next, in the reinforcing collar shrink-fitting step S4, the reinforcing collar 18 configured as described above is externally fitted to the gas extraction cylinder portion 5 and the cylinder portion 13 of the liner 2, and the reinforcing collar 18 is fitted by shrink fitting. The liner 2 is integrally fitted to the outer periphery of the gas extraction tube portion 5 and the tube portion 13 to the mirror portions 4 and 12.

これに引き続いて、ワインディング工程S5で、ヤング率350GPa以上で破断時の伸び0.7%以上の高剛性繊維を偏平に集束してエポキシ樹脂等の熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で上記ライナー2の胴部3外周面にフープ巻きして内側繊維層24を形成する。   Subsequently, in the winding step S5, a fiber tape in which high-rigidity fibers having a Young's modulus of 350 GPa or more and an elongation at break of 0.7% or more are focused flatly and impregnated with a thermosetting resin such as an epoxy resin is prepreg. In this state, the inner fiber layer 24 is formed by hoop winding around the outer peripheral surface of the body 3 of the liner 2.

その後、ヤング率280GPa以上350GPa未満で破断時の伸び1.5%以上2.0%未満の繊維からなる繊維テープを内側繊維層24の上からライナー2のほぼ全体にヘリカル巻きして中間繊維層25を形成する。   Thereafter, a fiber tape composed of fibers having a Young's modulus of 280 GPa or more and less than 350 GPa and an elongation at break of 1.5% or more and less than 2.0% is helically wound from above the inner fiber layer 24 over almost the entire liner 2, and the intermediate fiber layer. 25 is formed.

さらに、その上にヤング率230GPa以上280GPa未満で破断時の伸び2.0%以上の繊維を偏平に集束してエポキシ樹脂等の熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で上記中間繊維層25の上からライナー2の胴部3から鏡部4,12の途中にかけての外周面にライナー中心線に対して75°前後でハイアングルヘリカル巻きして外側繊維層26を形成して、これら内側繊維層24、中間繊維層25及び外側繊維層26で構成された補強繊維層23により上記ライナー2外周面を被覆する(各繊維層24,24,25は図1に表れる)。   Furthermore, a fiber tape in which fibers having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more are flatly focused and impregnated with a thermosetting resin such as an epoxy resin is prepreg and the intermediate fiber is The outer fiber layer 26 is formed on the outer peripheral surface of the liner 25 from the upper part 3 to the middle of the mirror parts 4 and 12 by high-angle helical winding around 75 ° with respect to the liner center line. The outer peripheral surface of the liner 2 is covered with a reinforcing fiber layer 23 composed of an inner fiber layer 24, an intermediate fiber layer 25, and an outer fiber layer 26 (the fiber layers 24, 24, and 25 appear in FIG. 1).

この補強繊維層23の厚みは、タンク容量やガス充填圧によって決まるが、例えば、タンク容量約34リットル、ライナー2の胴部3の厚み4.0mm、ライナー2の外径280mm、ライナー2の長さ830mm、ガス充填圧70MPaの場合に、約9mmである。なお、内側繊維層24と中間繊維層25とを交互に形成してその外側に外側繊維層26を形成してもよい。   The thickness of the reinforcing fiber layer 23 is determined by the tank capacity and gas filling pressure. For example, the tank capacity is about 34 liters, the thickness of the body 3 of the liner 2 is 4.0 mm, the outer diameter of the liner 2 is 280 mm, and the length of the liner 2 is long. In the case of a length of 830 mm and a gas filling pressure of 70 MPa, it is about 9 mm. In addition, the inner side fiber layer 24 and the intermediate | middle fiber layer 25 may be formed alternately, and the outer side fiber layer 26 may be formed in the outer side.

しかる後、乾燥工程S6で、上記補強繊維層23で被覆されたライナー2を乾燥室27に搬入し、ライナー2の外側及びライナー2内側に配置されたヒーター28の放射熱で、ライナー2を回転させながら内外から加熱して補強繊維層23に含浸している熱硬化性樹脂を加熱硬化させ、ライナー2外周面に繊維が巻き付けられてライナー2外周面が補強繊維層23で被覆された高圧タンク1を得る。なお、ヒーター28の代わりに熱風をライナー2の内外に導入してライナー2を回転させながら内外から加熱して補強繊維層23に含浸している熱硬化性樹脂を加熱硬化させてもよい。   Thereafter, in the drying step S6, the liner 2 covered with the reinforcing fiber layer 23 is carried into the drying chamber 27, and the liner 2 is rotated by the radiant heat of the heater 28 arranged outside the liner 2 and inside the liner 2. The high-pressure tank in which the thermosetting resin impregnated in the reinforcing fiber layer 23 is heated and cured by heating from the inside and outside, the fibers are wound around the outer peripheral surface of the liner 2, and the outer peripheral surface of the liner 2 is covered with the reinforcing fiber layer 23. Get one. Instead of the heater 28, hot air may be introduced into the inside and outside of the liner 2 and heated from inside and outside while rotating the liner 2 to heat and cure the thermosetting resin impregnated in the reinforcing fiber layer 23.

このようにして製造された高圧タンク1に対して、バルブ装置7をガス取出筒部5に装着するとともに、盲プラグ15を筒部13に装着して完成品とする。   For the high-pressure tank 1 manufactured in this way, the valve device 7 is mounted on the gas extraction tube portion 5 and the blind plug 15 is mounted on the tube portion 13 to obtain a finished product.

このように、この実施の形態では、ヤング率350GPa以上で破断時の伸び0.7%以上の高剛性繊維からなるフープ巻きの内側繊維層24と、ヤング率280GPa以上350GPa未満で破断時の伸び1.5%以上2.0%未満の繊維からなるヘリカル巻きの中間繊維層25と、ヤング率230GPa以上280GPa未満で破断時の伸び2.0%以上の繊維からなるハイアングルヘリカル巻きの外側繊維層26とで構成された補強繊維層23をライナー2外周面に被覆していることから、高剛性繊維からなる内側繊維層24でガス充填圧によってライナー2に作用するライナー径方向の引張応力に十分に抗し得てライナー2の耐疲労性を向上させることができるとともに、その耐衝撃性に劣る欠点を伸びのある繊維からなる外側繊維層26で補うことができ、さらには、ヘリカル巻きの中間繊維層25により、ライナー中心線方向の耐力を必要以上に層厚を厚くすることなく向上させることができる。したがって、タンク容量が小さくかつライナーの厚みが薄くても、35〜75MPaの高圧ガスを充填することができ、小型で軽くしかも耐圧性に優れた高圧タンク1を実現することができる。   Thus, in this embodiment, the hoop-wrapped inner fiber layer 24 composed of high-rigidity fibers having a Young's modulus of 350 GPa or more and an elongation at break of 0.7% or more, and the elongation at break of a Young's modulus of 280 GPa or more and less than 350 GPa. A helically wound intermediate fiber layer 25 made of fibers of 1.5% or more and less than 2.0%, and a high angle helically wound outer fiber made of fibers having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more. Since the reinforcing fiber layer 23 composed of the layer 26 is coated on the outer peripheral surface of the liner 2, the inner fiber layer 24 made of high-rigidity fibers has a tensile stress in the radial direction of the liner that acts on the liner 2 by gas filling pressure. An outer fiber made of an elongated fiber that can sufficiently resist the fatigue resistance of the liner 2 and has a disadvantage inferior in impact resistance. It can be compensated by 26, further, the intermediate fibrous layer 25 of the helical winding can be improved without increasing the layer thickness unnecessarily strength of the liner centerline direction. Therefore, even if the tank capacity is small and the liner is thin, it is possible to fill the high-pressure gas of 35 to 75 MPa, and it is possible to realize a high-pressure tank 1 that is small, light and excellent in pressure resistance.

さらに、補強繊維層23を構成する各繊維層24,25,26を、繊維を偏平に集束して熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で巻き付けて上記熱硬化性樹脂を硬化させて構成していることから、硬い高剛性繊維を滑り易くてライナー2に巻き難く弛みが生じてライナー2に作用する引張応力を全繊維に均等に分配し辛い紐状の形態で用いる場合に比べ、高剛性繊維が偏平なテープ状の形態であってライナー2に沿わせ易く、ライナー2に弛みなく巻き付けることができて上記引張応力を全繊維に均等に分配して、ライナー2の耐疲労性向上を容易に実現することができる。   Further, the fiber layers 24, 25, and 26 constituting the reinforcing fiber layer 23 are wound in a prepreg state with a fiber tape impregnated with a thermosetting resin by concentrating the fibers flatly to cure the thermosetting resin. Compared to the case where hard high-rigid fibers are slippery and difficult to wind around the liner 2 and are loosened, and the tensile stress acting on the liner 2 is evenly distributed to all fibers and used in the form of a difficult string. The high-stiffness fiber is in the form of a flat tape that is easy to fit along the liner 2 and can be wound around the liner 2 without slack, and the tensile stress is evenly distributed to all the fibers, so that the fatigue resistance of the liner 2 is achieved. Improvement can be easily realized.

また、ガス取出筒部5及び筒部13を胴部3の3倍以上の厚みに設定し、そこから鏡部4,12を漸次薄くして胴部3に続かせていることから、上記ガス取出筒部5、筒部13及び鏡部4,12の強度を確保することができ、上述の補強繊維層23によるライナー2の耐疲労性向上及び耐衝撃性確保と相俟って、35〜75MPaの高圧に一層に耐え得る高圧タンク1とすることができる。また、上記胴部3が薄くてもガス取出筒部5、筒部13及び鏡部4,12を厚くして強度を確保しているので、胴部3が薄い分だけ高圧タンク1全体の重量を軽減することができ、かつ材料費もあまり掛けないようにすることができる。   Further, since the gas extraction tube portion 5 and the tube portion 13 are set to a thickness three times or more than that of the body portion 3, the mirror portions 4 and 12 are gradually made thinner from there and are continued to the body portion 3. The strength of the take-out cylinder part 5, the cylinder part 13 and the mirror parts 4 and 12 can be ensured, and together with the improvement in fatigue resistance and impact resistance of the liner 2 by the above-described reinforcing fiber layer 23, 35-35 The high-pressure tank 1 can withstand a high pressure of 75 MPa. Even if the body 3 is thin, the gas extraction tube 5, the tube 13, and the mirrors 4 and 12 are thickened to ensure the strength, so that the weight of the entire high-pressure tank 1 is reduced by the thickness of the body 3. Can be reduced and the material cost can be reduced.

加えて、ライナー2のガス取出筒部5及び筒部13から鏡部4,12にかけての外周に補強カラー18を嵌着していることから、応力が集中し易いガス取出筒部5、筒部13及びその近傍の鏡部4,12の実質的な厚みを上記補強カラー18の厚みにより増大させて当該箇所の強度を十分に確保することができ、35〜75MPaの高圧に一段と耐え得る高圧タンク1とすることができる。また、補強カラー18をライナー2全体ではなく、応力が集中し易い鏡部4,12、ガス取出筒部5及び筒部13にだけ部分的に嵌着させているので、高圧タンク1の重量をそれほど増加させず軽量化を図ることができるとともに、加工の簡易化、低価格化を図ることができる。   In addition, since the reinforcing collar 18 is fitted to the outer periphery of the liner 2 from the gas extraction cylinder part 5 and the cylinder part 13 to the mirror parts 4 and 12, the gas extraction cylinder part 5 and the cylinder part where stress is likely to concentrate. 13 and the mirror portions 4 and 12 in the vicinity thereof can be increased in thickness by the thickness of the reinforcing collar 18 to sufficiently secure the strength of the portion, and can withstand a high pressure of 35 to 75 MPa. 1 can be used. Further, since the reinforcing collar 18 is partially fitted not only to the entire liner 2 but only to the mirror parts 4 and 12, the gas extraction cylinder part 5 and the cylinder part 13 where stress is easily concentrated, the weight of the high-pressure tank 1 is reduced. The weight can be reduced without increasing so much, and the processing can be simplified and the price can be reduced.

さらにまた、繊維をまとめてテープ状の形態でライナー2に巻き付けることから、巻付け作業を簡単に行うことができる。また、熱硬化性樹脂がある程度してプリプレグ状態(B状態)となった繊維テープをライナー2に巻き付けるため、液状の熱硬化性樹脂が作業場に滴り落ちて作業環境が悪化するウェットワインディング法の場合に比べ、熱硬化性樹脂が作業場に滴り落ちず、作業環境の悪化を防止することができる。   Furthermore, since the fibers are collectively wound around the liner 2 in the form of a tape, the winding operation can be easily performed. In the case of a wet winding method in which a liquid thermosetting resin is dripped into the work place and the working environment is deteriorated because the fiber tape in which the thermosetting resin is in a prepreg state (B state) is wound around the liner 2 to some extent. Compared to the above, the thermosetting resin does not drip into the work place, and the work environment can be prevented from deteriorating.

また、乾燥室27に搬入されたライナー2を内外から加熱するので、補強繊維層23の熱硬化性樹脂が層内外両側からほぼ同時に硬化し、これにより、補強繊維層23の熱硬化性樹脂を外側からのみ加熱する場合において、熱硬化性樹脂が外側から内側へと順に硬化収縮して内側の未硬化樹脂が外側の硬化樹脂から圧縮力を受けて繊維に弛みが生ずる事態を回避することができ、ガス充填圧によってライナー2に作用する引張応力を全繊維に均等に分配して早期破断に至らないようにすることができる。   Further, since the liner 2 carried into the drying chamber 27 is heated from inside and outside, the thermosetting resin of the reinforcing fiber layer 23 is cured almost simultaneously from both the inside and outside of the layer, whereby the thermosetting resin of the reinforcing fiber layer 23 is In the case of heating only from the outside, it is possible to avoid a situation in which the thermosetting resin is cured and contracted in order from the outside to the inside and the uncured resin on the inside receives a compressive force from the outside cured resin and the fibers are slackened. In addition, the tensile stress acting on the liner 2 by the gas filling pressure can be evenly distributed to all the fibers so as not to cause early breakage.

(実施の形態2)
図4はこの発明の実施の形態2に係る高剛性繊維を用いた高圧タンク1を示す。この高圧タンク1は補強カラー18の形状が実施の形態1と異なっている。つまり、上記補強カラー18の張出部20の裏面にリング状膨出部21が一体に膨出して形成されている。これに伴い、ライナー2における鏡部4のガス取出筒部5との境目近傍における外周にリング状嵌合凹部17が形成されている。そして、上記補強カラー18の張出部20は、その膨出部21を上記鏡部4の嵌合凹部17に嵌入した状態で焼ばめにより鏡部4外表面に一体に接合されている。図示しないが、反対側の鏡部12の筒部13にも同様に補強カラー18を嵌合している。そのほかは、実施の形態1と同様に構成されているので、同一の構成箇所には同一の符号を付してその詳細な説明を省略する。
(Embodiment 2)
FIG. 4 shows a high-pressure tank 1 using high-rigidity fibers according to Embodiment 2 of the present invention. The high-pressure tank 1 is different from the first embodiment in the shape of the reinforcing collar 18. That is, the ring-shaped bulging portion 21 is integrally formed on the back surface of the overhanging portion 20 of the reinforcing collar 18. Accordingly, a ring-shaped fitting recess 17 is formed on the outer periphery of the liner 2 in the vicinity of the boundary between the mirror portion 4 and the gas extraction tube portion 5. The overhanging portion 20 of the reinforcing collar 18 is integrally joined to the outer surface of the mirror portion 4 by shrink fitting with the bulging portion 21 fitted in the fitting recess 17 of the mirror portion 4. Although not shown, a reinforcing collar 18 is similarly fitted to the cylindrical portion 13 of the opposite mirror portion 12. Other than that, the configuration is the same as in the first embodiment, and therefore, the same components are denoted by the same reference numerals and detailed description thereof is omitted.

したがって、この実施の形態2では、上記の実施の形態1と同様の作用効果を奏することができる。   Therefore, in the second embodiment, the same effects as those of the first embodiment can be obtained.

加えて、この実施の形態2では、補強カラー18の張出部20に膨出形成したリング状膨出部21を、鏡部4,12のガス取出筒部5及び筒部13との境目近傍における外周に形成したリング状嵌合凹部17に嵌入して焼ばめにより接合しているので、補強カラー18とライナー2とを確実に嵌合させることができる。また、上記膨出部21があることで当該部分の補強カラー18の厚みが増大し、その分だけ強度アップを図ることができる。   In addition, in the second embodiment, the ring-shaped bulging portion 21 bulging and formed on the protruding portion 20 of the reinforcing collar 18 is provided near the boundary between the gas extraction tube portion 5 and the tube portion 13 of the mirror portions 4 and 12. Since it fits in the ring-shaped fitting recessed part 17 formed in the outer periphery in and is joined by shrink fitting, the reinforcement collar 18 and the liner 2 can be reliably fitted. Further, the presence of the bulging portion 21 increases the thickness of the reinforcing collar 18 in the portion, and the strength can be increased accordingly.

なお、上記の実施の形態1,2では、フローフォーミングに供する短筒状ブランク材Bとして、両端が開口した円筒体のものを例示したが、有底筒状のものであってもよい。   In the first and second embodiments described above, the short cylindrical blank material B used for flow forming is exemplified by a cylindrical body having both ends opened, but a bottomed cylindrical material may be used.

この発明は、小型で軽量でありながら35〜75MPaの高圧ガスに耐え得る自動車用水素燃料タンク等の高圧タンクとして有用である。   The present invention is useful as a high-pressure tank such as an automobile hydrogen fuel tank that can withstand a high pressure gas of 35 to 75 MPa while being small and light.

この発明の実施の形態1に係る高剛性繊維を用いた高圧タンクのガス取出筒部側を拡大して示す断面図である。It is sectional drawing which expands and shows the gas extraction cylinder part side of the high pressure tank using the highly rigid fiber which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る高剛性繊維を用いた高圧タンク全体の断面図である。It is sectional drawing of the whole high pressure tank using the highly rigid fiber which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る高剛性繊維を用いた高圧タンクの製造工程図である。It is a manufacturing-process figure of the high pressure tank using the highly rigid fiber which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る高剛性繊維を用いた高圧タンクの図1相当図である。It is the FIG. 1 equivalent view of the high-pressure tank using the highly rigid fiber which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 高圧タンク
2 ライナー
3 胴部
4 鏡部
5 ガス取出筒部
17 嵌合凹部
18 補強カラー
19 筒部
20 張出部
21 膨出部
23 補強繊維層
24 内側繊維層
25 中間繊維層
26 外側繊維層
27 乾燥室
28 ヒーター
B′ 長筒状ブランク材
DESCRIPTION OF SYMBOLS 1 High pressure tank 2 Liner 3 trunk | drum 4 mirror part 5 gas extraction cylinder part 17 fitting recessed part 18 reinforcement collar 19 cylinder part 20 overhang part 21 bulging part 23 reinforcement fiber layer 24 inner fiber layer 25 intermediate fiber layer 26 outer fiber layer 27 Drying room 28 Heater B 'Long cylindrical blank

Claims (7)

筒状の金属製ライナーと、このライナー外周面を被覆する補強繊維層とを備え、
上記補強繊維層は、ヤング率350GPa以上で破断時の伸び0.7%以上の高剛性繊維をフープ巻きしてなり熱硬化性樹脂が含浸硬化された内側繊維層と、
ヤング率280GPa以上350GPa未満で破断時の伸び1.5%以上2.0%未満の繊維をヘリカル巻きしてなり熱硬化性樹脂が含浸硬化された中間繊維層と、
ヤング率230GPa以上280GPa未満で破断時の伸び2.0%以上の繊維をライナー中心線に対する繊維角度が上記中間繊維層の繊維角度よりも大きくなるようにハイアングルヘリカル巻きしてなり熱硬化性樹脂が含浸硬化された外側繊維層とで構成されていることを特徴とする高剛性繊維を用いた高圧タンク。
A cylindrical metal liner, and a reinforcing fiber layer covering the outer peripheral surface of the liner,
The reinforcing fiber layer has a Young's modulus of 350 GPa or more and an inner fiber layer in which a thermosetting resin is impregnated and cured by hoop-wrapping a high-rigidity fiber having an elongation at break of 0.7% or more;
An intermediate fiber layer in which a Young's modulus is 280 GPa or more and less than 350 GPa and a fiber having an elongation at break of 1.5% or more and less than 2.0% is helically wound and impregnated and cured with a thermosetting resin;
A thermosetting resin in which a fiber having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more is helically wound at a high angle so that the fiber angle with respect to the center line of the liner is larger than the fiber angle of the intermediate fiber layer. A high-pressure tank using high-rigidity fibers, characterized in that it comprises an outer fiber layer impregnated and cured.
請求項1に記載の高剛性繊維を用いた高圧タンクにおいて、
補強繊維層を構成する各繊維層は、繊維を偏平に集束して熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で巻き付けて上記熱硬化性樹脂を硬化させて構成されていることを特徴とする高剛性繊維を用いた高圧タンク。
In the high-pressure tank using the highly rigid fiber according to claim 1,
Each fiber layer constituting the reinforcing fiber layer is formed by winding a fiber tape impregnated with a thermosetting resin in a prepreg state by concentrating the fibers flatly and curing the thermosetting resin. A high-pressure tank using high-rigidity fibers.
請求項1に記載の高剛性繊維を用いた高圧タンクにおいて、
ライナーは、金属製の短筒状ブランク材を塑性変形させて筒状胴部の一端に椀状鏡部を介してガス取出筒部が突設されて構成され、
このガス取出筒部は上記胴部の3倍以上の厚みに設定され、上記鏡部は胴部からガス取出筒部に行くに従って胴部の厚みからガス取出筒部の厚みに漸次増大していることを特徴とする高剛性繊維を用いた高圧タンク。
In the high-pressure tank using the highly rigid fiber according to claim 1,
The liner is configured by plastically deforming a metal short cylindrical blank material and projecting a gas extraction cylinder part at one end of the cylindrical body part via a bowl-shaped mirror part,
This gas extraction cylinder part is set to a thickness three times or more than the trunk part, and the mirror part gradually increases from the thickness of the trunk part to the thickness of the gas extraction cylinder part as it goes from the trunk part to the gas extraction cylinder part. A high-pressure tank using highly rigid fibers.
請求項3に記載の高剛性繊維を用いた高圧タンクにおいて、
ライナーのガス取出筒部から鏡部にかけての外周には、金属製の筒状補強カラーが嵌着されていることを特徴とする高剛性繊維を用いた高圧タンク。
In the high-pressure tank using the highly rigid fiber according to claim 3,
A high-pressure tank using a high-rigidity fiber, characterized in that a metal cylindrical reinforcing collar is fitted on the outer periphery from the gas extraction cylinder part to the mirror part of the liner.
請求項4に記載の高剛性繊維を用いた高圧タンクにおいて、
補強カラーは、ガス取出筒部に嵌着される筒部と、この筒部の一端から外側方に張り出す張出部とからなり、この張出部裏面には、リング状膨出部が膨出して形成され、
一方、鏡部のガス取出筒部との境目近傍における外周には、上記補強カラーを上記ライナーのガス取出筒部から鏡部にかけての外周に嵌着した状態で、上記膨出部が嵌入するリング状嵌合凹部が形成されていることを特徴とする高剛性繊維を用いた高圧タンク。
In the high-pressure tank using the highly rigid fiber according to claim 4,
The reinforcing collar is composed of a cylinder part fitted to the gas extraction cylinder part and an overhang part projecting outward from one end of the cylinder part, and a ring-like bulge part is inflated on the back surface of the overhang part. Formed out of
On the other hand, on the outer periphery in the vicinity of the boundary between the gas extraction cylinder part of the mirror part and the ring where the bulging part is inserted in a state where the reinforcement collar is fitted on the outer periphery from the gas extraction cylinder part to the mirror part of the liner A high-pressure tank using high-rigidity fibers, characterized in that a shaped fitting recess is formed.
ヤング率350GPa以上で破断時の伸び0.7%以上の高剛性繊維を偏平に集束して熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で筒状の金属製ライナー外周面にフープ巻きして内側繊維層を形成し、
次いで、ヤング率280GPa以上350GPa未満で破断時の伸び1.5%以上2.0%未満の繊維を偏平に集束して熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で上記内側繊維層外周面にヘリカル巻きして中間繊維層を形成し、
その後、ヤング率230GPa以上280GPa未満で破断時の伸び2.0%以上の繊維を偏平に集束して熱硬化性樹脂を含浸させた繊維テープをプリプレグ状態で上記中間繊維層外周面にライナー中心線に対する繊維角度が上記中間繊維層の繊維角度よりも大きくなるようにハイアングルヘリカル巻きして外側繊維層を形成して、上記内側繊維層、中間繊維層及び外側繊維層で構成された補強繊維層により上記ライナー外周面を被覆し、
しかる後、上記補強繊維層で被覆されたライナーを乾燥室に搬入して加熱し、補強繊維層に含浸している熱硬化性樹脂を硬化させることを特徴とする高剛性繊維を用いた高圧タンクの製造方法。
A fiber tape impregnated with a thermosetting resin and flatly gathered high-rigidity fibers with a Young's modulus of 350 GPa or more and an elongation at break of 0.7% or more is hoop-wound around a cylindrical metal liner outer peripheral surface in a prepreg state. To form an inner fiber layer,
Next, a fiber tape in which fibers having a Young's modulus of 280 GPa or more and less than 350 GPa and an elongation at break of 1.5% or more and less than 2.0% are flatly focused and impregnated with a thermosetting resin is preliminarily placed on the outer periphery of the inner fiber layer. Helically wound on the surface to form an intermediate fiber layer,
Thereafter, a fiber tape in which fibers having a Young's modulus of 230 GPa or more and less than 280 GPa and an elongation at break of 2.0% or more are flatly focused and impregnated with a thermosetting resin is placed on the outer peripheral surface of the intermediate fiber layer in the prepreg state. Reinforcing fiber layer composed of the inner fiber layer, the intermediate fiber layer, and the outer fiber layer by forming high-angle helical winding so that the fiber angle with respect to the intermediate fiber layer is larger than the fiber angle of the intermediate fiber layer. The liner outer peripheral surface is covered by
Thereafter, the liner covered with the reinforcing fiber layer is carried into a drying chamber and heated to cure the thermosetting resin impregnated in the reinforcing fiber layer, and a high-pressure tank using high-rigidity fibers. Manufacturing method.
請求項6に記載の高剛性繊維を用いた高圧タンクの製造方法において、
乾燥室に搬入されたライナーを内外から加熱することを特徴とする高剛性繊維を用いた高圧タンクの製造方法。
In the manufacturing method of the high-pressure tank using the highly rigid fiber according to claim 6,
A method for producing a high-pressure tank using a high-rigidity fiber, wherein a liner carried into a drying chamber is heated from inside and outside.
JP2003275438A 2003-07-16 2003-07-16 High-pressure tank using high-rigidity fiber and method for manufacturing the same Expired - Fee Related JP3534743B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003275438A JP3534743B1 (en) 2003-07-16 2003-07-16 High-pressure tank using high-rigidity fiber and method for manufacturing the same
DE10345159A DE10345159B4 (en) 2003-07-16 2003-09-29 High pressure tank using high stiffness fibers and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275438A JP3534743B1 (en) 2003-07-16 2003-07-16 High-pressure tank using high-rigidity fiber and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP3534743B1 JP3534743B1 (en) 2004-06-07
JP2005036918A true JP2005036918A (en) 2005-02-10

Family

ID=32821721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275438A Expired - Fee Related JP3534743B1 (en) 2003-07-16 2003-07-16 High-pressure tank using high-rigidity fiber and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP3534743B1 (en)
DE (1) DE10345159B4 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300194A (en) * 2005-04-20 2006-11-02 Kyushu Univ High pressure tank, its manufacturing device, and manufacturing method of high pressure tank
CN100430641C (en) * 2006-11-06 2008-11-05 哈尔滨工业大学 High pressure hydrogen storage bottle made of PBO fiber and carbon fiber mixed composite material and preparation method
CN100430640C (en) * 2006-11-06 2008-11-05 哈尔滨工业大学 High pressure nitrogen storage bottle made of PBO fiber and carbon fiber composite material and its preparation method
WO2010116526A1 (en) * 2009-04-10 2010-10-14 トヨタ自動車株式会社 Tank and fabrication method thereof
JP2010236587A (en) * 2009-03-31 2010-10-21 Jfe Container Co Ltd Fiber-reinforced plastic pressure vessel
JP2010270878A (en) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd Pressure vessel structure
CN102085724A (en) * 2009-12-02 2011-06-08 上海康巴赛特科技发展有限公司 Wet fully-winding and curing process for preparing hydrogen cylinder with carbon fiber lining
CN105333302A (en) * 2015-09-25 2016-02-17 石家庄安瑞科气体机械有限公司 Manufacturing method of wounded composite shell of high-capacity high-pressure hydrogen storage container
JP2017048912A (en) * 2015-09-03 2017-03-09 新日鐵住金株式会社 High pressure tank
JP2017072244A (en) * 2015-10-08 2017-04-13 トヨタ自動車株式会社 High-pressure tank
JP2017517705A (en) * 2014-05-20 2017-06-29 スチールヘッド コンポジッツ,エルエルシー. Metal liner pressure vessel with polar boss
JP2017215001A (en) * 2016-06-01 2017-12-07 サムテック株式会社 Composite container
KR20180017377A (en) * 2016-08-09 2018-02-21 현대자동차주식회사 High pressure tank
US10436388B2 (en) 2017-05-26 2019-10-08 Hyundai Motor Company High-pressure container having hoop layers and helical layers

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006043582B3 (en) * 2006-09-16 2008-03-06 Xperion Gmbh pressure vessel
US8474647B2 (en) * 2008-02-08 2013-07-02 Vinjamuri Innovations, Llc Metallic liner with metal end caps for a fiber wrapped gas tank
BRPI0915395B1 (en) 2008-06-24 2020-02-18 Dsm Ip Assets B.V. REINFORCEMENT ELEMENT, PRESSURE CONTAINER, ITEM AND USE OF AN ELEMENT
DE102008059591B4 (en) * 2008-11-28 2011-01-27 Xperion Gmbh container
US9091395B2 (en) 2010-03-10 2015-07-28 GM Global Technology Operations LLC Process for forming a vessel
DE102010023923B4 (en) * 2010-06-16 2012-05-16 Benteler Sgl Gmbh & Co. Kg Pressure gas tank
DE102010002881A1 (en) * 2010-03-15 2011-09-15 Benteler Sgl Gmbh & Co. Kg Container for use as liquid gas tank of motor car, has outer wall region partly or completely surrounding inner wall region, where outer wall region is attached to outer side of liner and formed from carbon fiber reinforced material
DE102010017413B4 (en) 2010-06-17 2012-08-30 Xperion Gmbh Pressure vessel for storing a fluid
DE102017200302A1 (en) * 2017-01-10 2018-07-12 Bayerische Motoren Werke Aktiengesellschaft Method for producing a pressure tank and a corresponding pressure tank
JP7439687B2 (en) * 2020-07-31 2024-02-28 トヨタ自動車株式会社 high pressure tank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8408506U1 (en) * 1984-03-20 1985-02-07 Felten & Guilleaume Energietechnik GmbH, 5000 Köln COMPRESSED GAS BOTTLE WITH A FIBER REINFORCED PLASTIC COVER
US5499739A (en) 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels
WO1997020683A1 (en) * 1995-12-04 1997-06-12 Toray Industries, Inc. Pressure vessel and method of manufacturing same
JP4180676B2 (en) * 1997-04-18 2008-11-12 高圧ガス工業株式会社 Natural gas automotive fuel device composite container
DE19952611A1 (en) * 1999-11-02 2001-05-23 Eberhard Haack High pressure container for the food industry comprises a metal inner layer with fiber reinforced layers of progressively increasing modulus wound around the outside

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300194A (en) * 2005-04-20 2006-11-02 Kyushu Univ High pressure tank, its manufacturing device, and manufacturing method of high pressure tank
CN100430641C (en) * 2006-11-06 2008-11-05 哈尔滨工业大学 High pressure hydrogen storage bottle made of PBO fiber and carbon fiber mixed composite material and preparation method
CN100430640C (en) * 2006-11-06 2008-11-05 哈尔滨工业大学 High pressure nitrogen storage bottle made of PBO fiber and carbon fiber composite material and its preparation method
JP2010236587A (en) * 2009-03-31 2010-10-21 Jfe Container Co Ltd Fiber-reinforced plastic pressure vessel
US8727174B2 (en) 2009-04-10 2014-05-20 Toyota Jidosha Kabushiki Kaisha Tank and manufacturing method thereof
JP5348570B2 (en) * 2009-04-10 2013-11-20 トヨタ自動車株式会社 Tank and manufacturing method thereof
WO2010116526A1 (en) * 2009-04-10 2010-10-14 トヨタ自動車株式会社 Tank and fabrication method thereof
JP2010270878A (en) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd Pressure vessel structure
CN102085724A (en) * 2009-12-02 2011-06-08 上海康巴赛特科技发展有限公司 Wet fully-winding and curing process for preparing hydrogen cylinder with carbon fiber lining
JP2017517705A (en) * 2014-05-20 2017-06-29 スチールヘッド コンポジッツ,エルエルシー. Metal liner pressure vessel with polar boss
JP2017048912A (en) * 2015-09-03 2017-03-09 新日鐵住金株式会社 High pressure tank
CN105333302A (en) * 2015-09-25 2016-02-17 石家庄安瑞科气体机械有限公司 Manufacturing method of wounded composite shell of high-capacity high-pressure hydrogen storage container
JP2017072244A (en) * 2015-10-08 2017-04-13 トヨタ自動車株式会社 High-pressure tank
JP2017215001A (en) * 2016-06-01 2017-12-07 サムテック株式会社 Composite container
KR20180017377A (en) * 2016-08-09 2018-02-21 현대자동차주식회사 High pressure tank
US10436388B2 (en) 2017-05-26 2019-10-08 Hyundai Motor Company High-pressure container having hoop layers and helical layers

Also Published As

Publication number Publication date
JP3534743B1 (en) 2004-06-07
DE10345159A1 (en) 2005-02-17
DE10345159B4 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP2005036918A (en) High pressure tank using highly rigid fiber and its manufacturing method
JP3527737B1 (en) High-pressure tank using high-rigidity fiber and method for manufacturing the same
US9956712B2 (en) Method for producing a pressure accumulator, and pressure accumulator
US10487981B2 (en) High-pressure composite vessel and the method of manufacturing high-pressure composite vessel
JP4436148B2 (en) Pressure vessel liner and method of manufacturing the same
JP5909331B2 (en) High pressure gas container and manufacturing method thereof
JP2020520828A5 (en)
CN109386727A (en) High-pressure bottle and shell enhancement layer winding method
US20230173771A1 (en) Method for manufacturing tube body made of fiber-reinforced resin
JP6958326B2 (en) How to manufacture high pressure tank
JPH06331032A (en) Pressure vessel
US7137526B2 (en) High-pressure tank and method for fabricating the same
US6908006B2 (en) High-pressure tank and method for fabricating the same
JP2007113590A (en) Pressure container liner and its manufacturing method
JP2010090938A (en) Tank and method of manufacturing the same
JP2004263827A (en) Pressure container, and method for manufacturing the same
US6767071B2 (en) Lightweight spindle
JP2005113971A (en) Liner for pressure resistant container
JP4774228B2 (en) Pressure vessel and method for manufacturing the same
WO1998034064A1 (en) Pressure vessel and process for making the same
CN114556009A (en) Method for producing a pressure vessel and pressure vessel
JP2005337392A (en) Manufacturing method of liner for gas cylinder, liner for gas cylinder and gas cylinder
JP2002106787A (en) High pressure gas container and manufacturing method thereof
JP4029068B2 (en) High pressure tank and manufacturing method thereof
CN112219057B (en) Tank liner with two cylindrical sections

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040309

R150 Certificate of patent or registration of utility model

Ref document number: 3534743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees