JP3533941B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter

Info

Publication number
JP3533941B2
JP3533941B2 JP12571298A JP12571298A JP3533941B2 JP 3533941 B2 JP3533941 B2 JP 3533941B2 JP 12571298 A JP12571298 A JP 12571298A JP 12571298 A JP12571298 A JP 12571298A JP 3533941 B2 JP3533941 B2 JP 3533941B2
Authority
JP
Japan
Prior art keywords
ultrasonic
vibration
vibration transmission
fluid passage
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12571298A
Other languages
Japanese (ja)
Other versions
JPH11325992A (en
Inventor
茂 岩永
明久 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP12571298A priority Critical patent/JP3533941B2/en
Publication of JPH11325992A publication Critical patent/JPH11325992A/en
Application granted granted Critical
Publication of JP3533941B2 publication Critical patent/JP3533941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波により気体
や液体の流量や流速の計測を行う超音波流量計測装置に
関するものである。
The present invention relates to relates to ultrasonic wave flow rate measuring apparatus to measure the gas and liquid flow and a flow rate by ultrasonic waves.

【0002】[0002]

【従来の技術】従来この種の超音波流量計測装置に用い
る超音波振動子には、例えば特開平4−309817号
公報が知られており、図10に示すように圧電セラミッ
ク1を金属振動板2にロウ付けし、この金属振動板2を
金属ハウジング3に溶接していた。また、実開平6−7
8821号公報が知られており、図11に示すように圧
電セラミック1を測定流体から遮蔽する金属ハウジング
4の内面の底面4aに押圧手段5などによって接合し、
この金属ハウジング4は測定流体が流れる管路6の管軸
に傾斜した状態で溶接などによって取付けられていた。
2. Description of the Related Art Conventionally, as an ultrasonic transducer used in an ultrasonic flow rate measuring apparatus of this type, for example, Japanese Patent Laid-Open No. 4-309817 is known. As shown in FIG. The metal vibrating plate 2 was brazed to the metal housing 3 and welded to the metal housing 3. In addition, actual Kaihei 6-7
No. 8821 is known, and as shown in FIG. 11, the piezoelectric ceramic 1 is joined to the bottom surface 4a of the inner surface of the metal housing 4 that shields it from the measurement fluid by the pressing means 5 or the like.
The metal housing 4 was attached by welding or the like in a state of being inclined with respect to the pipe axis of the pipe line 6 through which the measurement fluid flows.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の構
成では、金属ハウジングに防振対策がなされていないた
め、金属ハウジングに伝わった圧電セラミックの振動が
ほとんど減衰されないで圧電セラミックに戻り、圧電セ
ラミックの振動がなかなか収まらず残響の長い超音波パ
ルスになる。この残響がノイズ要因となってS/Nが劣
化し、流量や流速の計測精度が低下するという課題を有
していた。また、他の従来の構成では、超音波振動子が
測定流体が流れる管路に直接取付けられているため、発
信側で圧電セラミックを振動させると、この振動が測定
流体中を伝搬して受信側に達するだけでなく、金属振動
板あるいは底面を通じて金属ハウジングに伝わった振動
が管路壁を通じて受信側に伝わり、この管路壁を伝搬し
た振動が測定流体中を伝搬した信号に干渉してノイズと
なり、S/Nを劣化させ流量や流速の計測範囲を拡大で
きないという課題があった。
However, in the conventional structure, since the metal housing is not provided with the antivibration measures, the vibration of the piezoelectric ceramic transmitted to the metal housing is returned to the piezoelectric ceramic without being damped, and the vibration of the piezoelectric ceramic is reduced. However, the ultrasonic pulse has a long reverberation. This reverberation causes a noise factor, which deteriorates the S / N, and thus has a problem that the measurement accuracy of the flow rate and the flow velocity decreases. In other conventional configurations, the ultrasonic transducer is directly attached to the conduit through which the measurement fluid flows, so when the piezoelectric ceramic is vibrated on the transmitting side, this vibration propagates through the measurement fluid and the receiving side. The vibration transmitted to the metal housing through the metal diaphragm or the bottom surface is also transmitted to the receiving side through the pipe wall, and the vibration propagating through this pipe wall interferes with the signal propagating in the measurement fluid and becomes noise. , S / N is deteriorated and the measurement range of the flow rate and the flow velocity cannot be expanded.

【0004】本発明は上記課題を解決するもので、残響
の短い超音波パルスの送受信が可能で、管路壁への振動
の伝搬を低減させる信頼性の高い超音波振動子を実現
し、超音波流量計測装置の計測特性を向上させることを
目的とする。
The present invention solves the above problems and realizes a highly reliable ultrasonic transducer capable of transmitting and receiving ultrasonic pulses with short reverberation and reducing the propagation of vibration to the conduit wall. The object is to improve the measurement characteristics of a sound wave flow rate measuring device.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、天部と側壁部と開口部を有する有天筒状の
ケースと、前記天部の内壁面に固定された圧電体と、前
記天部の外壁面に設けられた音響整合層と、前記側壁部
の端部に設けたフランジと、前記フランジと前記開口部
を塞ぐ封止体とを重ねて構成するとともに前記封止体の
厚みはフランジより厚くする支持体とを備えた超音波振
動子を、被計測流体が流れる流体通路壁に設けた取付穴
に取り付ける超音波流量計測装置であって、前記超音波
振動子の支持部を、前記超音波振動子の振動が流体通路
壁側に伝わるのを低減させる振動伝達抑止体を介して前
記取付穴に取付ける超音波流量計測装置である。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention has a ceiling-like cylindrical shape having a top portion, a side wall portion and an opening.
A case and a piezoelectric body fixed to the inner wall surface of the top,
An acoustic matching layer provided on the outer wall surface of the storage part and the side wall part
Provided at the end of the flange, the flange and the opening
And a sealing body for closing the
The thickness should be thicker than the flange.
Mounting hole on the fluid passage wall where the fluid to be measured flows
An ultrasonic flow rate measuring device attached to
The vibration of the ultrasonic transducers is
Through the vibration transmission suppression body that reduces the transmission to the wall side
It is an ultrasonic flow rate measuring device to be mounted in the mounting hole .

【0006】上記発明によれば、封止体により支持部を
補強できるためケースの板厚をさらに薄くでき、超音波
振動子の感度を高めることができる。
According to the above invention, the supporting portion is formed by the sealing body.
Since it can be reinforced, the thickness of the case can be made even thinner
The sensitivity of the vibrator can be increased .

【0007】[0007]

【発明の実施の形態】本発明は、天部と側壁部と開口部
を有する有天筒状のケースと、前記天部の内壁面に固定
された圧電体と、前記天部の外壁面に設けられた音響整
合層と、前記側壁部に設けた支持部とを備え、支持部は
側壁部の端部に設けたフランジと開口部を塞ぐ封止体と
を重ねた構成としたものである。そして、封止体により
支持部を補強できるためケースの板厚をさらに薄くで
き、超音波振動子の感度を高めることができる。さら
に、圧電体を気密に収納する封止体を支持部の剛性強化
部材に共用して生産性を高めることができ、ケース側の
フランジは容易に成形できるとともに接合面を広げたフ
ランジに封止体を接合するため気密性を高めて信頼性を
向上できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a case-like cylindrical case having a top portion, a side wall portion, and an opening, a piezoelectric body fixed to an inner wall surface of the top portion, and an outer wall surface of the top portion. an acoustic matching layer provided, and a support portion provided on the side wall portion, supporting lifting unit which was a configuration of repeating a sealing member for closing the flange and the opening portion provided at an end portion of the side wall portion is there. Further, since the supporting portion can be reinforced by the sealing body, the plate thickness of the case can be further reduced, and the sensitivity of the ultrasonic transducer can be increased. In addition, the sealing body that houses the piezoelectric body in an airtight manner can be shared with the rigidity-enhancing member of the support section to improve productivity, and the case-side flange can be easily molded and sealed with a flange with a wide joint surface. Since the body is joined, the airtightness can be improved and the reliability can be improved.

【0008】また、支持部の封止体の厚みはフランジよ
り厚くしたものである。そして、封止体の厚みを大きく
することで支持部の変形を防止し、被計測流体が超音波
振動子の取付部から外部に漏洩しないようにシールする
シール部分を支持部に確保できる。さらに、封止体の厚
みを大きくできるため、圧電体に電気的に接続する端子
およびこの端子を絶縁する絶縁部の成形が容易にできる
ため生産性を向上できる。
Further, the thickness of the sealing body of the supporting portion is thicker than that of the flange. Further, by increasing the thickness of the sealing body, it is possible to prevent the support portion from being deformed, and to secure a seal portion in the support portion that seals the fluid to be measured so as not to leak from the mounting portion of the ultrasonic transducer to the outside. Furthermore, since the thickness of the sealing body can be increased, the terminals electrically connected to the piezoelectric body and the insulating portion that insulates the terminals can be easily molded, so that the productivity can be improved.

【0009】また、超音波振動子の振動が流体通路壁側
に伝わるのを低減させる振動伝達抑止体を備え、この振
動伝達抑止体を介して流体通路壁に設けた取付穴に超音
波振動子を取付けたものである。そして、音響インピー
ダンスの不整合を設けて超音波振動子の振動が取付側に
伝わり難くでき、計測精度を高めることができる。ま
た、振動伝達抑止体の少なくとも流体通路壁側に突起部
を設け、振動伝達抑止体と流体通路壁とは部分接触させ
たものである。そして、部分接触により超音波振動子の
振動は取付側にいっそう伝わり難くでき、計測精度をよ
り高めることができる。
Further, a vibration transmission restraining member for reducing the transmission of the vibration of the ultrasonic transducer to the fluid passage wall side is provided, and the ultrasonic transducer is provided in a mounting hole provided in the fluid passage wall via the vibration transmission restraining member. Is attached. Then, by providing the acoustic impedance mismatch, it is possible to make it difficult for the vibration of the ultrasonic transducer to be transmitted to the mounting side, and to improve the measurement accuracy. In addition, a projection is provided at least on the fluid passage wall side of the vibration transmission suppressing body, and the vibration transmission suppressing body and the fluid passage wall are in partial contact. The partial contact makes it more difficult for the vibration of the ultrasonic transducer to be transmitted to the mounting side, and the measurement accuracy can be further improved.

【0010】また、振動伝達抑止体は弾性体で構成し、
この弾性体の変形を防止する変形防止体を前記振動伝達
抑止体に当接させて設けたものである。そして、振動伝
達抑止体は振動の伝達を低減するだけでなく被計測流体
の漏洩を防止して気密シールでき、変形防止体により弾
性体の変形を防止して長期間にわたり気密シールを維持
でき、気密シールの信頼性を向上できる。
Further, the vibration transmission restraining body is made of an elastic body,
A deformation preventing body for preventing the deformation of the elastic body is provided in contact with the vibration transmission suppressing body. And, the vibration transmission suppressing body not only reduces the transmission of vibration but also prevents leakage of the fluid to be measured and can be hermetically sealed, and the deformation preventing body prevents deformation of the elastic body and can maintain the hermetic sealing for a long time, The reliability of the airtight seal can be improved.

【0011】また、変形防止体は少なくともケースある
いはケースの開口部を寒ぐ封止体より音響インピーダン
スの小さい材料で構成したものである。そして、変形防
止体と超音波振動子が接触しても取付側に振動が伝わり
難いため、変形防止体は超音波振動子と接触させて配置
し、振動伝達抑止体の全域にわたり確実に変形を防止で
き、気密シールの信頼性を一層向上できる。
Further, the deformation preventing body is made of a material having a lower acoustic impedance than that of the cold sealing body at least in the case or the opening of the case. Even if the deformation preventive body and the ultrasonic transducer come into contact with each other, the vibration is hard to be transmitted to the mounting side. Therefore, the deformation preventive body is placed in contact with the ultrasonic transducer to ensure that the entire vibration suppression body is deformed. It can be prevented and the reliability of the airtight seal can be further improved.

【0012】また、取付穴は振動伝達抑止体の当りとな
る段差部を設けた段付取付穴とし、この段付取付穴に超
音波振動子を装着した振動伝達抑止体を挿入し、段付取
付穴の外部に設けた固定体で振動伝達抑止体を固定し、
超音波振動子と流体通路壁および固定体とは非接触とし
たものである。そして、超音波振動子は取付側に非接触
で取付けできるとともに、その取付位置が確実に精度高
く設定できるため、振動の伝搬の低減と取付位置精度の
確保で計測精度の向上ができる。
Further, the mounting hole is a stepped mounting hole provided with a stepped portion for hitting the vibration transmission suppressing body, and the vibration transmission suppressing body having the ultrasonic vibrator mounted therein is inserted into the stepped mounting hole to form the stepped mounting hole. Fix the vibration transmission suppression body with the fixed body provided outside the mounting hole,
The ultrasonic transducer is not in contact with the fluid passage wall and the fixed body. The ultrasonic vibrator can be mounted on the mounting side in a non-contact manner, and the mounting position can be set reliably with high accuracy, so that the measurement accuracy can be improved by reducing the propagation of vibration and ensuring the mounting position accuracy.

【0013】また、取付穴の流体通路への開口部は超音
波振動子の側壁部を収納する収納部よりも横断面積を小
さくしたものである。そして、開口部の面積を小さくす
ることで開口部による被計測流体の流れの乱れを低減し
て計測精度を向上できる。
Further, the opening of the mounting hole to the fluid passage has a smaller cross-sectional area than the accommodating portion for accommodating the side wall of the ultrasonic transducer. By reducing the area of the opening, the turbulence of the flow of the fluid to be measured due to the opening can be reduced and the measurement accuracy can be improved.

【0014】また、被測定流体が流れる計測部と、この
計測部に設けられ超音波を送受信する一対の請求項1な
いし3のいずれか1項記載の超音波振動子と、超音波振
動子間の伝搬時間を計測する計測制御部と、計測制御部
からの信号に基づいて流量を算出する演算部とを備えた
ものであり、さらに超音波振動子は請求項4ないし9の
いずれか1項に記載した支持構成としたものである。そ
して、被計測流体から圧電体を遮蔽するケースを有し残
響の短い超音波パルスを送受信できる超音波振動子と、
取付側への振動伝搬を低減できる超音波振動子の支持構
成と被計測流体の漏洩を防止する気密シール構成で、計
測精度を高め計測範囲を拡大し長期間にわたり計測特性
を維持できる流量計測装置が実現できる。
A measuring unit through which the fluid to be measured flows, a pair of ultrasonic transducers according to any one of claims 1 to 3 for transmitting and receiving ultrasonic waves provided in the measuring unit, and between the ultrasonic transducers. 10. A measurement control unit that measures the propagation time of the ultrasonic wave, and a calculation unit that calculates the flow rate based on a signal from the measurement control unit, and the ultrasonic transducer is any one of claims 4 to 9. The support structure is as described in (1). Then, an ultrasonic transducer having a case that shields the piezoelectric body from the fluid to be measured and capable of transmitting and receiving ultrasonic pulses with short reverberation,
A flow rate measurement device that can maintain measurement characteristics over a long period of time by increasing the measurement accuracy and expanding the measurement range with the ultrasonic transducer support structure that can reduce vibration propagation to the mounting side and the airtight seal structure that prevents leakage of measured fluid Can be realized.

【0015】また、計測部の流れに直交方向の断面は矩
形とし、超音波振動子を取付ける取付穴の流体通路側の
開口部の形状は矩形としたものである。そして、計測部
の高さ方向に開口面積が一定のため流体通路の高さ方向
に対して均等に超音波の受発信が可能で、高さ方向の流
れの分布に応じた超音波伝搬により平均流速が精度よく
検出できる。
Further, the cross section in the direction orthogonal to the flow of the measuring section is rectangular, and the shape of the opening on the fluid passage side of the mounting hole for mounting the ultrasonic transducer is rectangular. And since the opening area is constant in the height direction of the measurement part, it is possible to receive and transmit ultrasonic waves evenly in the height direction of the fluid passage, and to average by ultrasonic wave propagation according to the flow distribution in the height direction. The flow velocity can be detected accurately.

【0016】[0016]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】(実施例1) 図1は本発明の実施例1を示す超音波振動子の断面図で
ある。図1において、7はケース、8はケース7の天
部、9はケース7の側壁部、10はケース7の開口部で
あり、ケース7は天部8と側壁部9と開口部10を有し
た有天筒状の形状である。11はケース7の天部8の外
壁面に固定された音響整合層、12は天部8の内壁面に
固定された圧電体、13は側壁部9の外壁に設けた支持
部であり、支持部13は折り曲げ部14を設けるととも
に折り重ねて厚みを増加させて剛性を増大させている。
15は開口部10を塞ぐ封止体、16a、16bは封止
体15に設けられた端子、17は端子16aと端子16
bを絶縁するための絶縁部、18は圧電体12と端子1
6aを電気的に接続するためのリード線、19は圧電体
12に複数設けられた溝である。このように超音波振動
子20は有天筒状のケース7の内部に圧電体12を設け
て封止体15で封止するとともにケース7の外部に音響
整合層11と支持部13を備えている。
(Embodiment 1) FIG. 1 is a sectional view of an ultrasonic transducer showing Embodiment 1 of the present invention. In FIG. 1, 7 is a case, 8 is a top part of the case 7, 9 is a side wall part of the case 7, 10 is an opening part of the case 7, and the case 7 has a top part 8, a side wall part 9 and an opening part 10. It has the shape of a hollow cylinder. Reference numeral 11 denotes an acoustic matching layer fixed to the outer wall surface of the top portion 8 of the case 7, 12 is a piezoelectric body fixed to the inner wall surface of the top portion 8, and 13 is a support portion provided on the outer wall of the side wall portion 9. The portion 13 is provided with a bent portion 14 and is folded and folded to increase the thickness to increase the rigidity.
Reference numeral 15 is a sealing body that closes the opening 10, 16a and 16b are terminals provided in the sealing body 15, and 17 is a terminal 16a and a terminal 16.
Insulating part for insulating b, 18 is piezoelectric body 12 and terminal 1
A lead wire for electrically connecting 6 a and a groove 19 provided in the piezoelectric body 12 are provided. As described above, the ultrasonic transducer 20 is provided with the piezoelectric body 12 inside the ceiling-shaped case 7 and sealed with the sealing body 15, and the acoustic matching layer 11 and the support portion 13 are provided outside the case 7. There is.

【0018】以上のように構成した超音波振動子の作製
方法の一例について説明する。超音波振動子20はLP
ガスや天然ガス中で使用することを想定して、ケース7
にはステンレス、音響整合層11にはエポキシ樹脂と中
空ガラス球の混合体からなる材料を選択する。ケース7
の加工方法には量産性を考え、切削加工ではなく絞り加
工のような成形加工を選択する。また、ケース7のステ
ンレスの厚みは、超音波振動子20の感度、構造的強
度、成形加工性の観点から0.1から0.5mm程度を
選択する。このように薄い材料でケース7を成形するた
め支持部13はケース7の側壁部9から折り曲げ部14
を突出させ折り重ねて複数の板厚相当になるようにして
剛性を高めている。また、圧電体12はステンレスから
なる天部8に接着固定されるため、広がり方向の振動が
阻害される。超音波振動子20の高感度化を図るには広
がり振動よりも厚み縦振動を主モードに利用する方が有
利である。しかし、圧電体12は形状により振動の主モ
ードが決定されてしまい、圧電体12の形状と使用周波
数に対する許容範囲が狭い。そこで、圧電体12に例え
ば十文字状等に溝19を設けて分割した構造として、実
用可能な小型の寸法で厚み振動を主モードとすることが
可能となる。
An example of a method of manufacturing the ultrasonic vibrator configured as above will be described. Ultrasonic transducer 20 is LP
Case 7 assuming use in gas or natural gas
For the acoustic matching layer 11, a material made of a mixture of epoxy resin and hollow glass spheres is selected. Case 7
Considering mass productivity, the forming method such as drawing is selected instead of cutting. Further, the thickness of the stainless steel of the case 7 is selected to be about 0.1 to 0.5 mm from the viewpoint of the sensitivity, structural strength, and moldability of the ultrasonic vibrator 20. In order to form the case 7 with such a thin material, the support portion 13 is formed from the side wall portion 9 of the case 7 to the bent portion 14
Is projected and folded to have a plurality of plate thicknesses to enhance rigidity. Further, since the piezoelectric body 12 is adhesively fixed to the top portion 8 made of stainless steel, vibration in the spreading direction is hindered. In order to increase the sensitivity of the ultrasonic vibrator 20, it is more advantageous to use the thickness longitudinal vibration as the main mode than the spreading vibration. However, the main mode of vibration of the piezoelectric body 12 is determined by the shape, and the allowable range for the shape of the piezoelectric body 12 and the operating frequency is narrow. Therefore, it is possible to set thickness vibration to the main mode with a practically small size as a structure in which grooves 19 are provided in the piezoelectric body 12 in a cross shape, for example.

【0019】このような材料、形状として具体的な作製
手順として、まず厚み0.2mmのステンレス鋼板から
円形状の天部8を有する有天円筒状のケース7を成形加
工し、次にケース7の側壁部9に環状のビードを成形
し、このビードを円筒軸方向に潰すとともに重なり合う
ように圧縮して支持部13を形成する。なお、この支持
部13は複数のビードを成形し、圧縮することで支持部
の厚みを任意に増大できる。次に、天部8の外壁面に円
板状の音響整合層11、内壁面には圧電体12をエポキ
シ系接着剤を用いて接着固定する。このとき溝19によ
り分割された電極(図示せず)と天部8を10μm以下
の薄い接着層を介して接着固定することにより、分割さ
れた電極(図示せず)と天部8の電気的導通も取ること
ができる。リード線18は圧電体12の電極(図示せ
ず)と端子16aにそれぞれはんだ付けする。最後に、
1mm程度のステンレス板からなる封止体15を開口部
10に電気抵抗溶接などにより固定し、封止と電気的導
通を同時に行う。圧電体12はケース7をグランドとし
て共用し、さらにケース7および封止体15で覆われる
ためノイズの影響を低減できる。また、封止するときケ
ース7の内部に乾燥した窒素や不活性ガスを置換封入す
ると、圧電体12の電極、圧電体12とケース7の接着
層などの長期間使用による劣化防止が可能である。
As a concrete manufacturing procedure for such materials and shapes, first, a case 7 having a circular shape and having a circular top 8 is formed from a stainless steel plate having a thickness of 0.2 mm, and then the case 7 is formed. An annular bead is formed on the side wall portion 9 of the above, and the support portion 13 is formed by compressing the bead in the axial direction of the cylinder and compressing the bead. In addition, the thickness of the support portion 13 can be arbitrarily increased by forming a plurality of beads and compressing the beads. Next, the disk-shaped acoustic matching layer 11 is adhered to the outer wall surface of the top portion 8, and the piezoelectric body 12 is adhered and fixed to the inner wall surface using an epoxy adhesive. At this time, the electrodes (not shown) divided by the groove 19 and the top 8 are bonded and fixed via a thin adhesive layer of 10 μm or less, so that the divided electrodes (not shown) and the top 8 are electrically connected. The continuity can be taken. The lead wires 18 are soldered to the electrodes (not shown) of the piezoelectric body 12 and the terminals 16a, respectively. Finally,
A sealing body 15 made of a stainless steel plate of about 1 mm is fixed to the opening 10 by electric resistance welding or the like, and sealing and electrical conduction are performed at the same time. Since the piezoelectric body 12 shares the case 7 as a ground and is covered with the case 7 and the sealing body 15, the influence of noise can be reduced. Further, by substituting dry nitrogen or an inert gas in the case 7 for sealing, it is possible to prevent deterioration of the electrode of the piezoelectric body 12, the adhesive layer between the piezoelectric body 12 and the case 7, etc. due to long-term use. .

【0020】次に、この超音波振動子の動作について説
明する。まず、送信側では駆動電気入力を印可されて圧
電体12が振動し、この振動が音響整合層11を介して
被計測流体に超音波パルスとして放射されるだけでな
く、ケース7を振動させようとする。また、受信側では
受信した超音波パルスは圧電体12で電気信号に変換さ
れると同時にケース7も振動させようとする。もし、こ
こでケース7が振動してしまうと、圧電体12の長い残
響として送信側、受信側ともに観測されてしまい、送信
側の残響は計測回路(図示せず)に対して電気的ノイズ
となり、受信側の残響は受信した超音波パルスと合成さ
れるため振幅、位相に影響して計測に誤差を与える要因
となる。さらに、ケース7が振動してしまうと、ケース
7の振動が流体通路壁を介して受信側の超音波振動子に
伝わり、受信側では流体通路壁を介した振動と受信した
超音波パルスと合成されるため振幅、位相に影響して計
測に誤差を与える要因となる。
Next, the operation of this ultrasonic transducer will be described. First, on the transmission side, a driving electric input is applied to vibrate the piezoelectric body 12, and this vibration is not only emitted as ultrasonic pulses to the fluid to be measured via the acoustic matching layer 11 but also vibrates the case 7. And On the receiving side, the received ultrasonic pulse is converted into an electric signal by the piezoelectric body 12 and at the same time tries to vibrate the case 7. If the case 7 vibrates here, long reverberations of the piezoelectric body 12 are observed on both the transmitting side and the receiving side, and the reverberations on the transmitting side become electrical noise to a measuring circuit (not shown). Since the reverberation on the receiving side is combined with the received ultrasonic pulse, it affects the amplitude and the phase and causes an error in the measurement. Further, when the case 7 vibrates, the vibration of the case 7 is transmitted to the ultrasonic transducer on the receiving side via the fluid passage wall, and on the receiving side, the vibration via the fluid passage wall is combined with the received ultrasonic pulse. As a result, the amplitude and phase are affected, which causes a measurement error.

【0021】本実施例ではケース7は折り曲げ部14を
設けるとともに折り重ねて厚みを増した支持部13によ
り側壁部9の剛性が増大されているため、側壁部9およ
び支持部13は振動し難くなっている。このため、ケー
ス7の振動を抑えることができ、また支持部13から取
付側に振動が伝搬するのを低減できる。さらに、支持部
13の振動が小さいので長期間にわたり取付側とのズ
レ、振動の伝搬の仕方の変化などを発生し難くできる。
従って、残響の短い超音波パルスの送受信が可能で、取
付側への振動伝搬の低減が可能な超音波振動子を得るこ
とができ、残響によるノイズの発生の低減と取付側への
振動伝搬の低減ができ、S/Nが改善されて被測定流体
の流量、流速の計測精度、計測範囲の拡大など計測特性
が向上できる。また、振動を低減した支持部により取付
状態が長い時間経過にわたって安定化でき、計測の信頼
性が向上できる。
In the present embodiment, the case 7 is provided with the bent portion 14, and the rigidity of the side wall portion 9 is increased by the support portion 13 which is folded and thickened to increase the rigidity of the side wall portion 9 and the support portion 13. Has become. Therefore, the vibration of the case 7 can be suppressed, and the propagation of the vibration from the support portion 13 to the mounting side can be reduced. Further, since the vibration of the support portion 13 is small, it is possible to make it difficult to cause a deviation from the mounting side, a change in the propagation method of the vibration, and the like for a long period of time.
Therefore, it is possible to obtain an ultrasonic transducer capable of transmitting and receiving ultrasonic pulses with short reverberation and reducing the vibration propagation to the mounting side, and reducing the generation of noise due to reverberation and the vibration propagation to the mounting side. The measurement characteristics such as the flow rate of the fluid to be measured, the measurement accuracy of the flow velocity, and the expansion of the measurement range can be improved because the S / N can be reduced. In addition, the vibration-reduced support portion makes it possible to stabilize the attachment state over a long period of time and improve the measurement reliability.

【0022】また、本実施例の超音波振動子は取付側に
対して着脱自在であるため、取付側に溶接接合するもの
に対してメンテナンス性が向上でき、さらに寿命到達な
どで廃棄するときに流体通路から超音波振動子を容易に
分離できるためリサイクル性を確保できる。
Further, since the ultrasonic transducer of this embodiment is detachable from the mounting side, it is possible to improve the maintainability of the ultrasonic welding to the mounting side, and to dispose of it when it reaches the end of its service life. Since the ultrasonic vibrator can be easily separated from the fluid passage, recyclability can be secured.

【0023】なお、支持部13は図示したような形態に
かぎられず、例えば測壁部9に上下入向の突条リブを設
ける等して構成すればよく、その形態は種々考えられる
ものである。
The supporting portion 13 is not limited to the shape shown in the figure, and may be constituted by providing, for example, a vertically extending ridge rib on the wall portion 9, and various forms are possible. .

【0024】(実施例2) 図2は本発明の実施例2を示す超音波振動子の断面図で
ある。図2において、図1の実施例と同一部材、同一機
能は同一符号を付し詳細な説明は省略し、異なるところ
を中心に説明する。21はケース7の側壁部9の開口部
10側の端部に設けた環状に広がるフランジであり、支
持部13はこのフランジ21と開口部10を塞ぐ封止体
15とを重ね接合して構成している。
Example 2 FIG. 2 is a sectional view of an ultrasonic transducer showing Example 2 of the present invention. 2, the same members and functions as those of the embodiment of FIG. 1 are designated by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described. Reference numeral 21 denotes a ring-shaped flange provided at an end portion of the side wall portion 9 of the case 7 on the opening 10 side, and the support portion 13 is configured by stacking and joining the flange 21 and the sealing body 15 that closes the opening 10. is doing.

【0025】ここで、フランジ21はケース7の絞り加
工により形成されるもので、封止体15を重ねることで
構造的強度を高めた支持部13を得ることができる。ま
た、支持部13は封止体15で補強されるため、ケース
7をより薄い厚さの材料で成形でき、超音波振動子をよ
り高感度化できる。さらに、封止体15はケース7の封
止部材と支持部13の剛性強化部材とに共用することで
生産性を高めることができ、フランジ21はケース7の
成形と同時に容易に成形できるとともに、フランジ21
と封止体15の接合面は環状の広い面で接合するため気
密性を高めた封止ができ内部に収納した部材の信頼性を
向上できる。
Here, the flange 21 is formed by drawing the case 7. By stacking the sealing bodies 15, it is possible to obtain the supporting portion 13 having an increased structural strength. Further, since the supporting portion 13 is reinforced by the sealing body 15, the case 7 can be molded with a material having a thinner thickness, and the ultrasonic transducer can have higher sensitivity. Further, the sealing body 15 can be used for both the sealing member of the case 7 and the rigidity enhancing member of the supporting portion 13 to enhance the productivity, and the flange 21 can be easily formed at the same time as the case 7 is formed. Flange 21
Since the joining surface of the sealing body 15 and the sealing body 15 are joined to each other with a wide annular surface, sealing with enhanced airtightness can be achieved, and the reliability of the members housed inside can be improved.

【0026】また、封止体15の厚みT1はフランジ2
1の厚みT2より厚く(T1>T2)している。封止体
15の厚みを大きくすることで支持部13の変形が防止
できるとともに、封止体15とフランジ21を封止する
ときに電気抵抗溶接などで接合した場合など薄板のフラ
ンジ21側に変形を生じても厚板側の封止体15には変
形を生じないため、被計測流体が超音波振動子の取付部
から外部に漏洩しないようにシールするシール部分が支
持部13に確保できる。さらに、封止体15の厚みを大
きくできるため、圧電体12に電気的に接続する端子1
6a、16bおよびこの端子16aを絶縁する絶縁部1
7の成形が容易にできるため生産性を向上できる (実施例3) 図3は本発明の実施例3を示す超音波振動子の取付状態
を示す断面図である。図3において、図1、図2の実施
例と同一部材、同一機能は同一符号を付し詳細な説明は
省略し、異なるところを中心に説明する。
The thickness T1 of the sealing body 15 is equal to that of the flange 2
The thickness is larger than the thickness T2 of 1 (T1> T2). Deformation of the support portion 13 can be prevented by increasing the thickness of the sealing body 15, and the sealing portion 15 and the flange 21 can be deformed toward the flange 21 side of the thin plate when they are joined by electric resistance welding or the like. Since the sealing body 15 on the thick plate side is not deformed even if occurs, it is possible to secure a seal portion in the support portion 13 that seals the fluid to be measured from the mounting portion of the ultrasonic transducer to the outside. Further, since the thickness of the sealing body 15 can be increased, the terminal 1 electrically connected to the piezoelectric body 12
Insulating portion 1 for insulating 6a, 16b and this terminal 16a
Since the molding of No. 7 can be easily performed, the productivity can be improved (Example 3). FIG. 3 is a cross-sectional view showing an attached state of the ultrasonic transducer according to Example 3 of the present invention. 3, the same members and functions as those of the embodiment of FIGS. 1 and 2 are designated by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

【0027】22は超音波振動子20の支持部13に当
接して保持する振動伝達抑止体であり、超音波振動子2
0は内側に被計測流体が流れる流体通路壁23に設けた
被計測流体側に開口する取付穴24に取付けられてい
る。25は振動伝達抑止体22を収容し流体通路壁23
に取付けた位置決め体であり、位置決め体25は流体通
路壁23にねじ(図示せず)などの結合手段で着脱自在
に固定されている。26は流体通路壁23と位置決め体
25の間に設け気密シールする気密パッキン、27a、
27bは超音波振動子20の端子16a、16bに接続
される接続端子、28は接続端子27a、27bを互い
に絶縁する絶縁部である。なお、振動伝達抑止体22は
支持部13において封止体15側の押え側22aとフラ
ンジ21側の支え側22bのように分割され、支持部1
3の外周面および両平面(図中で支持部13の上下面)
を保持している。
Reference numeral 22 denotes a vibration transmission restraining member which abuts and holds the supporting portion 13 of the ultrasonic vibrator 20.
No. 0 is mounted in a mounting hole 24 provided in the fluid passage wall 23 through which the fluid to be measured flows, and is opened to the fluid to be measured side. The reference numeral 25 designates a vibration transmission suppressing body 22 and a fluid passage wall 23.
The positioning body 25 is detachably fixed to the fluid passage wall 23 by a coupling means such as a screw (not shown). 26 is an airtight packing provided between the fluid passage wall 23 and the positioning body 25 for airtightly sealing, 27a,
27b is a connection terminal connected to the terminals 16a and 16b of the ultrasonic transducer 20, and 28 is an insulating portion that insulates the connection terminals 27a and 27b from each other. In addition, the vibration transmission suppressing body 22 is divided in the supporting portion 13 into a pressing side 22a on the sealing body 15 side and a supporting side 22b on the flange 21 side, and the supporting portion 1 is divided.
3 outer peripheral surface and both planes (upper and lower surfaces of the support portion 13 in the figure)
Holding

【0028】ここで、振動伝達抑止体22は支持部13
の振動が流体通路壁23に音響的に伝わり難い不整合部
となるようにその音響インピーダンスはケース7あるい
は封止体15を形成する材料の音響インピーダンスより
も小さい材料で構成している。ケース7の材料としてス
テンレス鋼などの金属(音響インピーダンス30〜50
×103kg/m2s)を使用した場合では、振動伝達
抑止体22の材料として樹脂(音響インピーダンス3〜
5×103kg/m2s)や弾性体(音響インピーダン
ス1〜2×103kg/m2s)などを利用できる。ま
た、超音波振動子20は振動伝達抑止体22と位置決め
体25により側壁部9が取付穴24の壁面に接触しない
状態となるように位置決めされるとともに、位置決め体
25に設けた気密パッキン26により被測定流体が外部
に漏洩しないようにしている。
Here, the vibration transmission restraining body 22 has the supporting portion 13
The acoustic impedance is made of a material smaller than the acoustic impedance of the material forming the case 7 or the sealing body 15 so that the vibration becomes a non-matching portion that is difficult to be acoustically transmitted to the fluid passage wall 23. As a material for the case 7, a metal such as stainless steel (acoustic impedance 30 to 50
In the case of using (× 103 kg / m2 s), a resin (acoustic impedance 3 to
5 × 10 3 kg / m 2 s) or an elastic body (acoustic impedance 1 to 2 × 10 3 kg / m 2 s) can be used. The ultrasonic transducer 20 is positioned by the vibration transmission suppressing body 22 and the positioning body 25 so that the side wall portion 9 does not come into contact with the wall surface of the mounting hole 24, and by the airtight packing 26 provided on the positioning body 25. The fluid to be measured is prevented from leaking to the outside.

【0029】次に、動作について説明する。まず、送信
側では駆動電気入力を印可されて圧電体12が振動し、
この振動が音響整合層11を介して被計測流体に超音波
パルスとして放射されるだけでなく、ケース7を振動さ
せようとする。しかし、ケース7は剛性を高めた支持部
13により振動が低減されるとともに、振動伝達抑止体
22を介して流体通路壁23に設けた取付穴24に取付
けられているため超音波振動子20の振動が流体通路壁
23側に伝わるのが低減される。
Next, the operation will be described. First, on the transmitting side, a driving electric input is applied, and the piezoelectric body 12 vibrates,
This vibration is not only emitted as ultrasonic pulses to the fluid to be measured via the acoustic matching layer 11, but also attempts to vibrate the case 7. However, since the case 7 is reduced in vibration by the support portion 13 having increased rigidity, and is attached to the attachment hole 24 provided in the fluid passage wall 23 via the vibration transmission restraining body 22, the case 7 is not affected. Vibration is reduced from being transmitted to the fluid passage wall 23 side.

【0030】従って、受信側では流体通路壁23を介し
た振動と受信した超音波パルスとの合成による振幅、位
相への影響が防止され、計測に誤差を与える要因を排除
でき、計測精度を高めることができる。
Therefore, on the receiving side, the influence on the amplitude and the phase due to the combination of the vibration through the fluid passage wall 23 and the received ultrasonic pulse is prevented, the factor that gives the error in the measurement can be eliminated, and the measurement accuracy is improved. be able to.

【0031】なお、振動伝達抑止体22は支持部13を
利用して超音波振動子20に取付けるようにしたが、こ
れに限られるものではなく、例えばケース7の剛性を増
加させないような突起物を設けてこれに取付けるように
してもよく、要はケース7の振動が流体面外壁23に伝
わらないように超音波振動子20を保持するものであれ
ばよく、以下に述べる実施例においても同様である。
Although the vibration transmission suppressing member 22 is mounted on the ultrasonic vibrator 20 by utilizing the supporting portion 13, the present invention is not limited to this. For example, a protrusion that does not increase the rigidity of the case 7. May be provided and attached to this, as long as the ultrasonic transducer 20 is held so that the vibration of the case 7 is not transmitted to the outer wall 23 of the fluid surface, the same applies to the embodiments described below. Is.

【0032】(実施例4) 図4は本発明の実施例4を示す超音波振動子の取付状態
を示す断面図である。図4において、図1〜図3の実施
例と同一部材、同一機能は同一符号を付し詳細な説明は
省略し、異なるところを中心に説明する。
(Embodiment 4) FIG. 4 is a cross-sectional view showing an attached state of an ultrasonic transducer showing Embodiment 4 of the invention. 4, the same members and functions as those of the embodiment of FIGS. 1 to 3 are designated by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

【0033】29は振動伝達抑止体22に設けた突起部
であり、突起部29は流体通路壁23側だけでなく、位
置決め体25側にも設けている。このため、少なくとも
流体通路壁23に設けた突起部29により振動伝達抑止
体22は流体通路壁23と接触面積を低減した部分接触
となっている。
Reference numeral 29 denotes a protrusion provided on the vibration transmission suppressing body 22, and the protrusion 29 is provided not only on the fluid passage wall 23 side but also on the positioning body 25 side. Therefore, the vibration transmission suppressing member 22 is in partial contact with the fluid passage wall 23 in a reduced contact area due to at least the projection 29 provided on the fluid passage wall 23.

【0034】ここで、駆動電気入力を印可されて圧電体
12が振動すると、この振動が音響整合層11を介して
被計測流体に超音波パルスとして放射される。この時ケ
ース7の振動は剛性を高めた支持部13により振動が低
減されるとともに、振動伝達抑止体22を介して流体通
路壁23に設けた取付穴24に部分接触で取付けられて
いるため、超音波振動子20の振動の流体通路壁23側
への伝搬がより一層低減される。
Here, when the driving electric input is applied and the piezoelectric body 12 vibrates, this vibration is radiated to the fluid to be measured as an ultrasonic pulse through the acoustic matching layer 11. At this time, since the vibration of the case 7 is reduced by the support portion 13 having increased rigidity, and is attached to the attachment hole 24 provided in the fluid passage wall 23 through the vibration transmission suppressing body 22 with partial contact, Propagation of vibration of the ultrasonic transducer 20 to the fluid passage wall 23 side is further reduced.

【0035】従って、受信側では流体通路壁23を伝搬
した振動を大きく低減できるため、受信した超音波パル
スとの合成による振幅、位相への影響を防止して計測に
誤差を与える要因を排除でき、計測精度をより一層高め
ることができる。なお、突起部29を流体通路壁23側
だけでなく位置決め体25側にも設けることで、位置決
め体25を伝って流体通路壁23側に振動が伝搬するの
を防止でき、振動の流体通路壁23側への伝搬を一層低
減できる。
Therefore, on the receiving side, the vibration propagating through the fluid passage wall 23 can be greatly reduced, so that the influence on the amplitude and phase due to the combination with the received ultrasonic pulse can be prevented and the factor that gives an error to the measurement can be eliminated. The measurement accuracy can be further improved. By providing the protrusions 29 not only on the fluid passage wall 23 side but also on the positioning body 25 side, it is possible to prevent vibration from propagating along the positioning body 25 to the fluid passage wall 23 side, and thus the vibration fluid passage wall. It is possible to further reduce the propagation to the 23 side.

【0036】(実施例5) 図5は本発明の実施例5を示す超音波振動子の取付状態
を示す断面図である。図5において、図1〜図4の実施
例と同一部材、同一機能は同一符号を付し詳細な説明は
省略し、異なるところを中心に説明する。
(Embodiment 5) FIG. 5 is a cross-sectional view showing a mounted state of an ultrasonic transducer according to a fifth embodiment of the present invention. 5, the same members and functions as those of the embodiment of FIGS. 1 to 4 are designated by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

【0037】30はゴムなどの弾性体で形成し超音波振
動子20の支持部13を内周側に保持する環状の内周溝
30aを有した振動伝達抑止体で、31、32はこの振
動伝達抑止体30の内周側に当接させて設け振動伝達抑
止体30が内径方向に変形するのを防止する変形防止体
である。変形防止体31はその内周側がケース7の側壁
部9に接触せずに隙間を持つように環状となっていると
ともに、軸方向(図中で上下方向)にも隙間を持たせ支
持部13に力を加えないようにしている。また、変形防
止体32は端子16a、16bと接触しないように環状
となっている。33は振動伝達抑止体30の下面に設け
た環状の突起部、34は振動伝達抑止体30の外周面に
設けた環状の突起部である。35は振動伝達抑止体30
の当り部となる段差部36を設けた段付取付穴で、環状
の下面側の突起部33が当接する平坦面33aと環状の
外周面側の突起部34が当接する円筒面33bを有して
いる。37は段付取付穴35の外部に設けた振動伝達抑
止体30を押さえる固定体で、固定体37は端子16
a、16bが接触せずに貫通する取出穴38を設けると
ともに流体通路壁23にねじ等の結合手段で固定されて
いる。
Reference numeral 30 is a vibration transmission suppressing member formed of an elastic material such as rubber and having an annular inner peripheral groove 30a for holding the support portion 13 of the ultrasonic vibrator 20 on the inner peripheral side. This is a deformation preventing body that is provided in contact with the inner circumferential side of the transmission suppressing body 30 to prevent the vibration transmission suppressing body 30 from deforming in the inner diameter direction. The deformation preventing body 31 has an annular shape so that the inner peripheral side thereof does not come into contact with the side wall portion 9 of the case 7 and has a gap, and also has a gap in the axial direction (up and down direction in the drawing) of the support portion 13. I try not to apply force to. Further, the deformation preventing body 32 has an annular shape so as not to contact the terminals 16a and 16b. Reference numeral 33 is an annular projection provided on the lower surface of the vibration transmission suppressing body 30, and 34 is an annular projection provided on the outer peripheral surface of the vibration transmission suppressing body 30. Reference numeral 35 is a vibration transmission suppressing body 30.
It is a stepped mounting hole provided with a stepped portion 36 that serves as a contact portion, and has a flat surface 33a with which the annular lower surface side projection 33 abuts and a cylindrical surface 33b with which the annular outer peripheral surface side projection 34 abuts. ing. Reference numeral 37 is a fixed body that is provided outside the stepped mounting hole 35 and holds down the vibration transmission restraining body 30.
A take-out hole 38 is provided through which a and 16b penetrate without coming into contact with each other and is fixed to the fluid passage wall 23 by a connecting means such as a screw.

【0038】ここで取付方法を説明する。ゴムなどの弾
性体で形成した振動伝達抑止体30を引き伸ばして内周
溝30aに超音波振動子20の支持部13をはめ込み支
持部13を隙間無く保持するとともに、変形防止体3
1、32を振動伝達抑止体30の内周に挿入する。この
組付け状態で振動伝達抑止体30を段付取付穴35の段
差部36に挿入し、振動伝達抑止体30を固定体37で
押さえつけて超音波振動子20を取付ける。ここで、振
動伝達抑止体30の高さや長さなどの外形寸法(突起部
33、34を含む)を段差部36より若干大きくしてお
くことで、段差部36に挿入時あるいは固定体37で押
さえ付け時に弾性体の振動伝達抑止体30にたわみを生
じ、取付穴から被計測流体が漏洩しないように気密シー
ル性が確保できる。ところで、変形防止体31、32を
設けないで取付けた場合は、振動伝達抑止体30は外周
側は取付穴および固定体で拘束されているため時間経過
とともに内周側に変形しようとする。しかし、ここでは
内周側に変形防止体31、32が挿入されて変形しない
ように拘束しているため内側への変形が阻止され、長期
間にわたり気密シール性が確保できる。また、弾性体は
前述のように超音波振動子20のケース7の金属材料よ
りも音響インピーダンスが十分小さいため、流体通路へ
の振動の伝搬を低減できる。
Here, the mounting method will be described. The vibration transmission suppressing body 30 formed of an elastic body such as rubber is stretched to fit the support portion 13 of the ultrasonic transducer 20 into the inner circumferential groove 30a to hold the support portion 13 without a gap, and the deformation preventing body 3
1 and 32 are inserted into the inner circumference of the vibration transmission suppressing body 30. In this assembled state, the vibration transmission suppressing body 30 is inserted into the step portion 36 of the stepped mounting hole 35, and the vibration transmission suppressing body 30 is pressed by the fixed body 37 to mount the ultrasonic transducer 20. Here, the outer dimensions (including the protrusions 33 and 34) such as the height and the length of the vibration transmission suppressing body 30 are set to be slightly larger than the step portion 36, so that the vibration transmission suppressing body 30 can be inserted into the step portion 36 or the fixed body 37. The airtight sealing property can be ensured so that the vibration transmission suppressing body 30 of the elastic body is bent during pressing and the measured fluid does not leak from the mounting hole. By the way, when the deformation preventing bodies 31 and 32 are mounted without being provided, the vibration transmission suppressing body 30 tends to deform toward the inner peripheral side with the passage of time because the outer peripheral side is constrained by the mounting holes and the fixed body. However, here, since the deformation preventing bodies 31 and 32 are inserted on the inner peripheral side and constrained so as not to be deformed, the inward deformation is prevented and the airtight sealing property can be secured for a long period of time. Further, since the elastic body has a sufficiently smaller acoustic impedance than the metal material of the case 7 of the ultrasonic transducer 20 as described above, it is possible to reduce the propagation of vibration to the fluid passage.

【0039】このように、振動伝達抑止体30は振動の
伝達を低減するだけでなく被計測流体の漏洩を防止して
気密シールでき、変形防止体により弾性体の変形を防止
して長期間にわたり気密シールを維持でき、気密シール
の信頼性を向上できる。
As described above, the vibration transmission suppressing member 30 not only reduces the transmission of vibration but also prevents the fluid to be measured from leaking and can be hermetically sealed, and the deformation preventing member prevents the deformation of the elastic body for a long period of time. The hermetic seal can be maintained and the reliability of the hermetic seal can be improved.

【0040】(実施例6) 図6は本発明の実施例6を示す超音波振動子の取付状態
を示す断面図である。図6において、図1〜図5の実施
例と同一部材、同一機能は同一符号を付し詳細な説明は
省略し、異なるところを中心に説明する。
(Embodiment 6) FIG. 6 is a cross-sectional view showing an attached state of an ultrasonic transducer showing Embodiment 6 of the invention. 6, the same members and functions as those of the embodiment of FIGS. 1 to 5 are designated by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

【0041】39は振動伝達抑止体30の内周側に当接
させて設け振動伝達抑止体30のケース7側が内径方向
に変形するのを防止する変形防止体であり、変形防止体
39はその内周側がケース7の側壁部9に接触するよう
に隙間なく配置されるとともに、軸方向(図中で上下方
向)には支持部13と段付取付穴35の段差部36とに
当接するように隙間無く配置し、振動伝達抑止体30の
内側への変形を図中上下方向全域にわたり防止してい
る。また、40は振動伝達抑止体30の内周側に当接さ
せて設け振動伝達抑止体30の封止体15側が内径方向
に変形するのを防止する変形防止体であり、変形防止体
40はその内周側が端子16a、16bに接触せずに隙
間を持つように環状となっているとともに、軸方向(図
中で上下方向)には封止体15と固定体37とに当接す
るように隙間無く配置し、振動伝達抑止体30の内側へ
の変形を図中上下方向全域にわたり防止している。ここ
で、変形防止体39あるいは変形防止体40は超音波振
動子20の支持部13を形成するケース7あるいは封止
体15の材料の音響インピーダンスより小さい材料で構
成したもので、ケース7と流体通路23側が変形防止体
39を介して接触していてもケース7の振動が流体通路
23側に伝搬するのが防止され、支持部13と封止体1
5と固定体37を介して接触していてもケース7の振動
が流体通路23側に伝搬するのが防止されている。ここ
で、変形防止体39、40の材料として、超音波振動子
20のケース7の金属材料よりも前述のように音響イン
ピーダンスが十分小さい樹脂を使用することで、ゴムな
どの弾性体(変形防止体39、40の樹脂よりもさらに
音響インピーダンスが小さい)で形成した振動伝達抑止
体30の内周全域にわたり拘束して変形を防止できる。
Reference numeral 39 is a deformation preventing body which is provided in contact with the inner peripheral side of the vibration transmission suppressing body 30 to prevent the case 7 side of the vibration transmission suppressing body 30 from being deformed in the inner diameter direction. The inner peripheral side is arranged without any gap so as to come into contact with the side wall portion 9 of the case 7, and is brought into contact with the support portion 13 and the stepped portion 36 of the stepped mounting hole 35 in the axial direction (vertical direction in the drawing). The vibration transmission suppressing body 30 is prevented from being deformed inward over the entire area in the vertical direction in the figure. Reference numeral 40 denotes a deformation preventing body which is provided in contact with the inner peripheral side of the vibration transmission suppressing body 30 to prevent the sealing body 15 side of the vibration transmission suppressing body 30 from being deformed in the inner diameter direction. The inner peripheral side is annular so as to have a gap without contacting the terminals 16a and 16b, and contacts the sealing body 15 and the fixed body 37 in the axial direction (vertical direction in the drawing). The vibration transmission suppressing body 30 is arranged without gaps to prevent the vibration transmitting body 30 from being deformed inward over the entire area in the vertical direction in the drawing. Here, the deformation preventive body 39 or the deformation preventive body 40 is made of a material smaller than the acoustic impedance of the material of the case 7 or the sealing body 15 forming the support portion 13 of the ultrasonic transducer 20. Even if the passage 23 is in contact with the deformation preventive body 39, the vibration of the case 7 is prevented from propagating to the fluid passage 23 side, and the support portion 13 and the sealing body 1 are prevented.
The vibration of the case 7 is prevented from propagating to the fluid passage 23 side even when the case 7 and the fixed body 37 are in contact with each other. Here, as the material of the deformation preventing bodies 39 and 40, by using a resin having acoustic impedance sufficiently smaller than that of the metal material of the case 7 of the ultrasonic transducer 20 as described above, an elastic body such as rubber (deformation preventing body) is used. It is possible to prevent the deformation by constraining the entire inner circumference of the vibration transmission suppressing body 30 formed of the resin of the bodies 39 and 40 having an acoustic impedance smaller than that of the resin.

【0042】このように、変形防止体と超音波振動子が
接触しても取付側に振動が伝わり難いため、変形防止体
は超音波振動子と接触させて配置し、振動伝達抑止体の
全域にわたり確実に変形を防止でき、気密シールの信頼
性を一層向上できる。
As described above, even if the deformation preventing body and the ultrasonic transducer are in contact with each other, it is difficult for the vibration to be transmitted to the mounting side. Therefore, the deformation preventing body is placed in contact with the ultrasonic transducer, and the entire area of the vibration transmission suppressing body is arranged. Therefore, the deformation can be reliably prevented, and the reliability of the airtight seal can be further improved.

【0043】(実施例7) 前述の図5を基に本発明の実施例7を示す。図5におい
て、超音波振動子20の取付方法を説明する。まず、超
音波振動子20の支持部13に振動伝達抑止体30を装
着し、装着した振動伝達抑止体30を流体通路壁23に
設けた段付取付穴35に挿入する。このとき振動伝達抑
止体30の端面を段差部36の平坦面33aに当接させ
て軸方向の位置決めとし、振動伝達抑止体30の外周部
を段差部36の円筒面33bに当接させて径方向の位置
決めとしている。このあと、段付取付穴35の外部に設
けた固定体37を流体通路壁23にねじ止めすることに
より振動伝達抑止体30を押さえつけて抜け止めすると
ともに、軸方向の位置決めを確実にしている。このよう
に取付けることで、超音波振動子20は振動伝達抑止体
30により流体通路壁23および固定体37とは非接触
で支持される。
(Seventh Embodiment) A seventh embodiment of the present invention will be described with reference to FIG. A method of attaching the ultrasonic transducer 20 will be described with reference to FIG. First, the vibration transmission suppressing body 30 is mounted on the support portion 13 of the ultrasonic transducer 20, and the mounted vibration transmission suppressing body 30 is inserted into the stepped mounting hole 35 provided in the fluid passage wall 23. At this time, the end surface of the vibration transmission suppressing body 30 is brought into contact with the flat surface 33a of the step portion 36 for axial positioning, and the outer peripheral portion of the vibration transmission suppressing body 30 is brought into contact with the cylindrical surface 33b of the step portion 36 so as to have a diameter. Directional positioning. After that, the fixed body 37 provided outside the stepped mounting hole 35 is screwed to the fluid passage wall 23 to hold down the vibration transmission restraining body 30 to prevent it from coming off and to ensure the axial positioning. By mounting in this way, the ultrasonic transducer 20 is supported by the vibration transmission restraining body 30 without contacting the fluid passage wall 23 and the fixed body 37.

【0044】従って、超音波振動子20は流体通路壁2
3に対して正確に安定してその取付位置が決定されるた
め受信側と送信側の一対の超音波振動子を流路に取付け
る場合、超音波振動子間の距離が確定して正確な流体の
速度が検出でき、一対の超音波振動子の中心軸の芯を合
わせることで芯ずれによる感度低下を防止して高感度の
計測ができる。また、超音波振動子と流体通路壁は非接
触が保たれるため、流体通路壁への振動伝搬を防止して
S/Nを高めることで計測精度の向上あるいは計測範囲
の拡大ができる。
Therefore, the ultrasonic transducer 20 is installed in the fluid passage wall 2
When the pair of ultrasonic transducers on the receiving side and the transmitting side is attached to the flow path, the distance between the ultrasonic transducers is fixed and the accurate fluid is determined. The speed of can be detected, and by aligning the centers of the central axes of the pair of ultrasonic transducers, it is possible to prevent the sensitivity from degrading due to misalignment and to perform highly sensitive measurement. Further, since the ultrasonic transducer and the fluid passage wall are kept in non-contact with each other, it is possible to improve the measurement accuracy or extend the measurement range by preventing the vibration propagation to the fluid passage wall and increasing the S / N.

【0045】このため、超音波振動子は取付側に被接触
で取付けできるとともに、その取付位置が径方向および
軸方向ともに確実に精度高く設定できるため、振動の伝
搬の低減と取付位置精度の確保で計測精度の向上ができ
る。
Therefore, the ultrasonic vibrator can be mounted on the mounting side in a contacted manner, and the mounting position can be set reliably with high accuracy both in the radial direction and the axial direction, so that the propagation of vibration is reduced and the mounting position accuracy is ensured. Can improve the measurement accuracy.

【0046】(実施例8) 前述の図5を基に本発明の実施例8を示す。図5におい
て、41は取付穴24の流体通路への開口部、42は超
音波振動子20の側壁部9を収納する取付穴24に設け
た収納部であり、開口部41の断面方向の長さD1は収
納部42の断面方向の長さD2よりも小さく(D1<D
2)して、開口部41の横断面積は収納部42の横断面
積より小さくしている。
(Embodiment 8) Embodiment 8 of the present invention will be described based on FIG. 5 described above. In FIG. 5, 41 is an opening of the mounting hole 24 to the fluid passage, 42 is a housing provided in the mounting hole 24 for housing the side wall 9 of the ultrasonic transducer 20, and the length of the opening 41 in the cross-sectional direction. The length D1 is smaller than the length D2 of the storage portion 42 in the cross-sectional direction (D1 <D
2) Then, the cross-sectional area of the opening 41 is smaller than the cross-sectional area of the storage portion 42.

【0047】従って、超音波振動子20の大きさが大き
い場合でも非測定流体が流れる流体通路への開口部41
は小さくでき、流れに対して窪みとして作用する開口部
41による流れの乱れを低減でき、より正確な流速が測
定できる。また、超音波振動子20の側壁部9に対して
収納部42を大きくすることで、超音波振動子20と流
体通路壁23との距離を大きくすることで雷サージ特性
を向上でき、信頼性を一層高めることができる。
Therefore, even when the size of the ultrasonic transducer 20 is large, the opening 41 to the fluid passage through which the non-measurement fluid flows is formed.
Can be made smaller, turbulence of the flow due to the opening 41 acting as a depression for the flow can be reduced, and more accurate flow velocity can be measured. In addition, by enlarging the storage portion 42 with respect to the side wall portion 9 of the ultrasonic transducer 20 and increasing the distance between the ultrasonic transducer 20 and the fluid passage wall 23, it is possible to improve lightning surge characteristics and improve reliability. Can be further enhanced.

【0048】このため、開口部の面積を小さくすること
で開口部による被計測流体の流れの乱れを低減して計測
精度を向上でき、耐電圧特性の改善により信頼性を高め
ることができる。
Therefore, by reducing the area of the opening, it is possible to reduce the turbulence of the flow of the fluid to be measured due to the opening, improve the measurement accuracy, and improve the withstand voltage characteristics to improve the reliability.

【0049】(実施例9) 図7は本発明の実施例9を示す超音波流量計測装置の構
成図である。図7において、図1〜図6の実施例と同一
部材、同一機能は同一符号を付し詳細な説明は省略し、
異なるところを中心に説明する。
(Embodiment 9) FIG. 7 is a block diagram of an ultrasonic flow rate measuring apparatus showing Embodiment 9 of the present invention. 7, the same members and functions as those of the embodiment of FIGS. 1 to 6 are designated by the same reference numerals and detailed description thereof will be omitted.
The different points will be mainly explained.

【0050】43は流体通路壁23に囲まれた計測部で
あり、44および45は互いに対向するように流体通路
壁23の取付穴24に振動伝達抑止体30を介して取付
けた超音波振動子であり、上流側の超音波振動子44と
下流側の超音波振動子45は距離Lを隔てるとともに速
度Vの被計測流体の流れに対して角度θ傾けて設置され
ている。46は接続された超音波振動子44,45に対
して超音波の送受信をさせる計測制御部であり、47は
計測制御部46での信号を基に流速を計算し流量を算出
する演算部である。
Reference numeral 43 is a measuring portion surrounded by the fluid passage wall 23, and reference numerals 44 and 45 are ultrasonic transducers attached to the attachment hole 24 of the fluid passage wall 23 via the vibration transmission restraining body 30 so as to face each other. The ultrasonic transducer 44 on the upstream side and the ultrasonic transducer 45 on the downstream side are installed at a distance L and at an angle θ with respect to the flow of the fluid to be measured at the velocity V. Reference numeral 46 is a measurement control unit that transmits and receives ultrasonic waves to and from the connected ultrasonic transducers 44 and 45, and 47 is a calculation unit that calculates a flow velocity based on a signal from the measurement control unit 46 and calculates a flow rate. is there.

【0051】次にこの超音波流量計測装置の動作を説明
する。計測部43を被計測流体が流れている時に、計測
制御部46の作用により超音波振動子44,45間で計
測部43を横切るようにして超音波の送受が行われる。
すなわち、上流側の超音波振動子44から発せられた超
音波が下流側の超音波振動子45で受信されるまでの経
過時間T1を計測する。また一方、下流側の超音波振動
子45から発せられた超音波が上流側の超音波振動子4
4で受信されるまでの経過時間T2を計測する。このよ
うにして測定された経過時間T1およびT2を基に、以
下の演算式により演算部47で流量が算出される。
Next, the operation of this ultrasonic flow rate measuring device will be described. When the fluid to be measured is flowing through the measurement unit 43, the ultrasonic wave is transmitted and received between the ultrasonic transducers 44 and 45 by the action of the measurement control unit 46 so as to cross the measurement unit 43.
That is, the elapsed time T1 until the ultrasonic wave emitted from the upstream ultrasonic transducer 44 is received by the downstream ultrasonic transducer 45 is measured. On the other hand, the ultrasonic wave emitted from the ultrasonic transducer 45 on the downstream side is transmitted to the ultrasonic transducer 4 on the upstream side.
The elapsed time T2 until it is received at 4 is measured. Based on the elapsed times T1 and T2 measured in this way, the flow rate is calculated by the calculation unit 47 by the following calculation formula.

【0052】いま、被計測流体の流れと超音波伝播路と
のなす角度をθとし、流量測定部である超音波振動子4
4,45間の距離をL、被測定流体の音速をCとする
と、流速Vは以下の式にて算出される。
Now, the angle formed by the flow of the fluid to be measured and the ultrasonic wave propagation path is θ, and the ultrasonic transducer 4 serving as the flow rate measuring unit
When the distance between 4 and 45 is L and the sound velocity of the fluid to be measured is C, the flow velocity V is calculated by the following formula.

【0053】T1=L/(C+Vcosθ) T2=L/(C−Vcosθ) T1の逆数からT2の逆数を引き算する式より音速Cを
消去して V=(L/2cosθ)((1/T1)−(1/T2)) θおよびLは既知なのでT1およびT2の値より流速V
が算出できる。いま、空気の流量を計ることを考え、角
度θ=45度、距離L=70mm、音速C=340m/
s、流速V=8m/sを想定すると、T1=2.0×1
0−4秒、T2=2.1×10−4秒であり、瞬時計測
ができる。
T1 = L / (C + Vcosθ) T2 = L / (C-Vcosθ) V = (L / 2cosθ) ((1 / T1) by eliminating the sound velocity C from the equation of subtracting the inverse of T2 from the inverse of T1. -(1 / T2)) Since θ and L are known, the flow velocity V is calculated from the values of T1 and T2.
Can be calculated. Considering measuring the flow rate of air, angle θ = 45 degrees, distance L = 70 mm, sound velocity C = 340 m /
s and the flow velocity V = 8 m / s, T1 = 2.0 × 1
Since 0-4 seconds and T2 = 2.1 × 10-4 seconds, instantaneous measurement is possible.

【0054】ここで、計測部43の流れ方向に直交する
横断面積sより、流量Qは Q=kVs ここで、kは横断面積sにおける流速分布を考慮した換
算係数である。
Here, from the cross-sectional area s orthogonal to the flow direction of the measuring section 43, the flow rate Q is Q = kVs, where k is a conversion coefficient considering the flow velocity distribution in the cross-sectional area s.

【0055】このようにして演算部47で流量を求める
ことができる。超音波による流量計測では、時間T1、
T2を高精度に計測することが重要である。すなわち、
送信側では残響の少ない超音波振動を被計測流体中のみ
に発することが大切であり、受信側では流体通路壁を伝
搬した超音波振動は排除し被計測流体中を伝搬した超音
波振動のみを残響を少なく受信することが大切である。
本発明の超音波流量計測装置では、超音波振動子20に
おいて、圧電体12をケース7により被計測流体と遮断
することで信頼性を高めるとともに、剛性を増大した支
持部13の形状により残響を低減して感度向上とノイズ
の低減による計測精度向上を実現できる。また、振動の
低減を図った支持部13を振動伝達抑止体30を介して
流体通路壁23に非接触で取付けることで、流体通路壁
23を伝わる振動を一層低減して被計測流体を伝搬した
信号の検出精度が向上できるので流速が1mm/s程度
の微小流量の検出ができる。また、ケース7により圧電
体12を被計測流体から隔離するとともに振動伝達抑止
体30を振動伝達の抑止と被計測流体が外部に漏洩しな
いように気密保持するシール部材とに両用することで、
空気の他に都市ガス、LPガスなどの可燃性ガスなど種
々の流体に適用でき利用範囲の拡大ができる。さらに、
開口部を小さくすることで開口部による流れの乱れを低
減し大流量時(高流速時)の計測範囲を拡大できレンジ
アビリティ(最少流速と最大流速の比)を拡大して実用
性を一層高めることができる。
In this way, the flow rate can be calculated by the calculation unit 47. In the flow rate measurement using ultrasonic waves, time T1,
It is important to measure T2 with high accuracy. That is,
On the transmitting side, it is important to generate ultrasonic vibrations with little reverberation only in the fluid to be measured.On the receiving side, ultrasonic vibrations propagating through the fluid passage wall should be eliminated and only ultrasonic vibrations propagating in the fluid to be measured should be eliminated. It is important to receive less reverberation.
In the ultrasonic flow rate measuring device of the present invention, in the ultrasonic transducer 20, the piezoelectric body 12 is shielded from the fluid to be measured by the case 7 to enhance reliability, and the shape of the supporting portion 13 having increased rigidity causes reverberation. It is possible to improve the measurement accuracy by reducing the sensitivity and improving the noise. Further, by mounting the support portion 13 for reducing the vibration to the fluid passage wall 23 through the vibration transmission restraining body 30 in a non-contact manner, the vibration transmitted through the fluid passage wall 23 is further reduced and the fluid to be measured is propagated. Since the signal detection accuracy can be improved, it is possible to detect a minute flow rate with a flow velocity of about 1 mm / s. Further, by separating the piezoelectric body 12 from the fluid to be measured by the case 7 and using the vibration transmission suppressing body 30 both as a vibration transmission suppressing body and as a seal member for holding the fluid to be measured airtight so as not to leak to the outside,
In addition to air, it can be applied to various fluids such as combustible gases such as city gas and LP gas, and its application range can be expanded. further,
By reducing the size of the opening, turbulence of the flow due to the opening can be reduced and the measurement range at large flow rate (high flow velocity) can be expanded, and rangeability (ratio of minimum flow velocity to maximum flow velocity) can be expanded to further enhance practicality. be able to.

【0056】このように、被計測流体から圧電体を遮蔽
するケースを有し残響の短い超音波パルスを送受信でき
る超音波振動子と、取付側への振動伝搬を低減できる超
音波振動子の支持構成と被計測流体の漏洩を防止する気
密シール構成で、計測精度を高め計測範囲を拡大し長期
間にわたり計測特性を維持できる流量計測装置が実現で
きる。
As described above, the ultrasonic transducer having the case for shielding the piezoelectric body from the fluid to be measured and capable of transmitting and receiving the ultrasonic pulse with short reverberation, and the ultrasonic transducer capable of reducing the vibration propagation to the mounting side are supported. With the structure and the airtight seal structure that prevents the fluid to be measured from leaking, it is possible to realize a flow rate measuring device that can improve the measurement accuracy, expand the measurement range, and maintain the measurement characteristics for a long period of time.

【0057】なお、演算部47で経過時間T1の逆数と
T2の逆数を足し算して得られる以下の式で音速Cを算
出し、 C=L((1/T1)+(1/T2))/2 この算出された音速Cにより被計測流体の種類を判別す
るとともに音速あるいは被計測流体の種類に適した超音
波流量計測装置としての計測条件を設定することもでき
る。この超音波流量計測装置としての計測条件として
は、超音波振動子の駆動周波数や駆動電圧などの駆動パ
ワーあるいは経過時間T1、T2を何回計測して流速を
算出するのかという繰返し回数などがある。なお、使用
されると想定される流体を予め登録しておくことで被計
測流体の種類を判別する精度を高めることができ、さら
に温度により音速Cは変化するため被計測流体の温度を
検出する温度センサ(図示せず)を設けることで一層被
計測流体の種類を判別する精度を高めることができるの
は言うまでもない。
The calculation unit 47 calculates the sound velocity C by the following formula obtained by adding the reciprocal of the elapsed time T1 and the reciprocal of T2, and C = L ((1 / T1) + (1 / T2)) / 2 It is possible to discriminate the type of the fluid to be measured from the calculated sound velocity C and set the measurement condition as the ultrasonic flow rate measuring device suitable for the sound velocity or the type of the fluid to be measured. The measurement conditions of the ultrasonic flow rate measuring device include the number of repetitions such as how many times the driving power such as the driving frequency and driving voltage of the ultrasonic transducer or the elapsed times T1 and T2 are measured to calculate the flow velocity. . It should be noted that by registering the fluid that is supposed to be used in advance, it is possible to improve the accuracy of determining the type of the fluid to be measured, and since the sonic velocity C changes depending on the temperature, the temperature of the fluid to be measured is detected. It goes without saying that the accuracy of determining the type of the fluid to be measured can be further improved by providing the temperature sensor (not shown).

【0058】(実施例10) 図8、図9は本発明の実施例10を示す超音波流量計測
装置の部分断面図であり、図8は図7のA−A断面図、
図9は図7のB−B断面矢視図である。図において、図
1〜図7の実施例と同一部材、同一機能は同一符号を付
し詳細な説明は省略し、異なるところを中心に説明す
る。
(Embodiment 10) FIGS. 8 and 9 are partial sectional views of an ultrasonic flow rate measuring apparatus showing Embodiment 10 of the present invention. FIG. 8 is a sectional view taken along line AA of FIG.
FIG. 9 is a sectional view taken along the line BB of FIG. In the drawing, the same members and the same functions as those in the embodiment of FIGS. 1 to 7 are designated by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

【0059】図に示すように、計測部43の流れに直交
する方向の断面は幅W、高さHの矩形であり、凹部を持
つ流体通路壁23aと凸部を持つ流体通路壁23bを嵌
め合わせてこの矩形断面の流体通路壁23により計測部
43を形成している。また、超音波振動子を取付ける取
付穴24の流体通路側の開口部41の形状は図9の左右
方向に長さD1、上下方向(計測部43の高さ方向)に
長さD3の矩形であり、ここではD1=D3の正方形と
している。計測部43の流れに直交する方向の断面は矩
形とすることにより計測部43での流れを二次元流れと
するとともに、流れの高さH方向全域に超音波を発信可
能にしている。さらに、開口部41の形状を矩形にする
ことにより開口幅は高さH方向のどの位置でもD1の寸
法となり、計測部43の高さH方向に対して均等に超音
波を発信および受信することができる。このように、計
測部43の矩形断面と開口部の矩形断面により計測部4
3の流れの全域に超音波を印加でき、さらに高さH方向
に均等な超音波を発信、受信することにより、流れ全域
を均等に計測することにより精度の高い流速あるいは流
量の計測ができる。
As shown in the drawing, the cross section of the measuring section 43 in the direction orthogonal to the flow is a rectangle having a width W and a height H, and a fluid passage wall 23a having a concave portion and a fluid passage wall 23b having a convex portion are fitted therein. In addition, the fluid passage wall 23 having the rectangular cross section forms the measuring portion 43. The shape of the opening 41 on the fluid passage side of the mounting hole 24 for mounting the ultrasonic transducer is a rectangle having a length D1 in the left-right direction and a length D3 in the up-down direction (the height direction of the measuring unit 43) in FIG. Yes, here, it is assumed that the square is D1 = D3. By making the cross section in the direction orthogonal to the flow of the measurement unit 43 rectangular, the flow in the measurement unit 43 is made into a two-dimensional flow, and ultrasonic waves can be transmitted throughout the height H direction of the flow. Furthermore, by making the shape of the opening 41 rectangular, the opening width becomes the dimension of D1 at any position in the height H direction, and ultrasonic waves are evenly transmitted and received in the height H direction of the measurement unit 43. You can In this way, the measurement unit 4 is determined by the rectangular cross section of the measurement unit 43 and the rectangular cross section of the opening.
The ultrasonic waves can be applied to the entire region of the flow No. 3, and the ultrasonic waves are evenly transmitted and received in the height H direction, so that the entire region of the flow is uniformly measured, and thus the flow velocity or the flow rate can be accurately measured.

【0060】このように、計測部の高さ方向に開口面積
が一定のため流体通路の高さ方向に対して均等に超音波
の受発信が可能で、高さ方向の流れの分布に応じた超音
波伝搬により平均流速が精度よく検出できる。
As described above, since the opening area is constant in the height direction of the measuring portion, ultrasonic waves can be evenly transmitted and received in the height direction of the fluid passage, depending on the distribution of the flow in the height direction. The average velocity can be accurately detected by ultrasonic wave propagation.

【0061】なお、開口部41は左右方向の長さD1を
上下方向(計測部43の高さ方向)の長さD3より小さ
くする(D1<D3)ことで、流体通路の高さ方向に均
等に超音波を発信、受信するとともに、開口部41の窪
みによる流れの乱れ発生をより一層低減して計測精度を
より向上できる。
The opening 41 is made uniform in the height direction of the fluid passage by making the length D1 in the left-right direction smaller than the length D3 in the up-down direction (height direction of the measuring section 43) (D1 <D3). In addition to transmitting and receiving ultrasonic waves, the occurrence of turbulence in the flow due to the depression of the opening 41 can be further reduced and the measurement accuracy can be further improved.

【0062】上の説明から明らかなように本発明の実
施形態の流量計測装置によれば、次の効果が得られる。
[0062] As will be apparent from the description on the following fruit of the present invention
According to the flow rate measuring device of the embodiment , the following effects can be obtained.

【0063】圧電体は被測定流体から遮蔽するケースに
内包し、このケースの天部に音響整合層を設け、このケ
ースの側壁部には剛性を高めた支持部を設けているの
で、残響の短い超音波パルスの送受信ができ、取付側へ
の振動伝搬の低減が可能な超音波振動子を得ることがで
きるという効果があり、また流量、流速の計測精度、計
測範囲の拡大など計測特性が向上できるという効果があ
り、さらに、振動を低減した支持部により取付状態が長
い時間経過にわたって安定化でき計測の信頼性が向上で
きるという効果がある。
The piezoelectric body is enclosed in a case that shields it from the fluid to be measured, an acoustic matching layer is provided on the top of the case, and a supporting portion with increased rigidity is provided on the side wall of the case. There is an effect that it is possible to obtain an ultrasonic transducer that can send and receive short ultrasonic pulses and reduce the vibration propagation to the mounting side, and the measurement characteristics such as flow rate, flow velocity measurement accuracy, and measurement range expansion. There is an effect that it can be improved, and further, there is an effect that the mounting state can be stabilized over a long period of time by the supporting portion with reduced vibration and the reliability of measurement can be improved.

【0064】また、支持部は側壁部の端部に設けたフラ
ンジと開口部を塞ぐ封止体とを重ねて構成しているの
で、封止体による支持部の補強によりケースの板厚をさ
らに薄くして超音波振動子の感度を高めることができる
という効果があり、また封止体を支持部の剛性強化部材
に共用して生産性を向上できるという効果がある。さら
に、接合面を広げたフランジに封止体を接合することで
内部気密性を高め信頼性を向上できるという効果があ
る。
Further, since the support portion is formed by stacking the flange provided at the end of the side wall portion and the sealing body that closes the opening, the support portion is reinforced by the sealing body to further increase the plate thickness of the case. There is an effect that the sensitivity can be increased by thinning the ultrasonic vibrator, and there is an effect that productivity can be improved by sharing the sealing body with the rigidity reinforcing member of the supporting portion. Furthermore, there is an effect that the internal airtightness can be enhanced and the reliability can be improved by joining the sealing body to the flange having the widened joining surface.

【0065】また、支持部の封止体の厚みはフランジよ
り厚くしているので、支持部の変形を防止し、被計測流
体の外部への気密性が確保できるという効果があり、ま
た封止体の厚みを大きくして端子およびこの端子の絶縁
部の成形が容易にできるため生産性を向上できるという
効果がある。
Further, since the thickness of the sealing body of the supporting portion is larger than that of the flange, there is an effect that the deformation of the supporting portion can be prevented and the airtightness of the fluid to be measured can be secured to the outside. Since the thickness of the body can be increased and the terminal and the insulating portion of the terminal can be easily molded, the productivity can be improved.

【0066】また、超音波振動子の振動が流体通路壁側
に伝わるのを低減させる振動伝達抑止体を備え、この振
動伝達抑止体を介して流体通路壁に設けた取付穴に超音
波振動子を取付けているので、音響インピーダンスの不
整合を設けて超音波振動子の振動が取付側に伝わり難く
でき、計測精度を高めることができるという効果があ
る。
Further, a vibration transmission suppressing member for reducing the transmission of the vibration of the ultrasonic vibrator to the fluid passage wall side is provided, and the ultrasonic vibrator is installed in the mounting hole provided in the fluid passage wall via the vibration transmission suppressing member. Since the acoustic wave is attached, it is possible to prevent the vibration of the ultrasonic transducer from being transmitted to the attachment side by providing the acoustic impedance mismatch, and to improve the measurement accuracy.

【0067】また、振動伝達抑止体の少なくとも流体通
路壁側に突起部を設け、振動伝達抑止体と流体通路壁と
は部分接触させているので、超音波振動子の振動は取付
側にいっそう伝わり難くでき、計測精度をより高めるこ
とができるという効果がある。
Further, since the projection is provided at least on the fluid passage wall side of the vibration transmission suppressing body and the vibration transmission suppressing body and the fluid passage wall are in partial contact, the vibration of the ultrasonic transducer is further transmitted to the mounting side. This has the effect of making it difficult and improving the measurement accuracy.

【0068】また、振動伝達抑止体は弾性体で構成し、
この弾性体の変形を防止する変形防止体を前記振動伝達
抑止体に当接させて設けているので、振動伝達抑止体は
振動伝達の低減だけでなく被計測流体の気密シールに併
用できるという効果があり、また変形防止体により弾性
体の変形を防止して長期間にわたり気密シールを維持し
て気密シールの信頼性を向上できるという効果がある。
Further, the vibration transmission restraining body is made of an elastic body,
Since the deformation preventing body for preventing the deformation of the elastic body is provided in contact with the vibration transmission suppressing body, the vibration transmission suppressing body can be used not only for reducing the vibration transmission but also for airtight sealing of the fluid to be measured. In addition, there is an effect that the deformation preventing body prevents the elastic body from being deformed, maintains the airtight seal for a long period of time, and improves the reliability of the airtight seal.

【0069】また、変形防止体は少なくともケースある
いはケースの開口部を寒ぐ封止体より音響インピーダン
スの小さい材料で構成しているので、変形防止体と超音
波振動子が接触しても取付側に振動が伝わり難いため、
変形防止体は超音波振動子と接触させて配置することで
振動伝達抑止体の全域にわたり確実に変形を防止して気
密シールの信頼性を一層向上できるという効果がある。
Further, since at least the case or at least the opening of the case is made of a material having a smaller acoustic impedance than the cold sealing body, the deformation preventing body is mounted on the mounting side even if the deformation preventing body and the ultrasonic transducer come into contact with each other. Because it is difficult to transmit vibration to
By arranging the deformation preventing body in contact with the ultrasonic vibrator, there is an effect that the deformation is surely prevented over the entire area of the vibration transmission suppressing body and the reliability of the hermetic seal can be further improved.

【0070】また、取付穴は振動伝達抑止体の当りとな
る段差部を設けた段付取付穴とし、この段付取付穴に超
音波振動子を装着した振動伝達抑止体を挿入し、段付取
付穴の外部に設けた固定体で振動伝達抑止体を固定し、
超音波振動子と流体通路壁および固定体とは非接触とし
ているので、非接触による振動伝搬が低減できるという
効果があり、また取付位置精度の確保で計測精度の向上
ができるいう効果がある。
Further, the mounting hole is a stepped mounting hole provided with a stepped portion which hits the vibration transmission suppressing body, and the vibration transmission suppressing body having the ultrasonic vibrator mounted therein is inserted into the stepped mounting hole to form the stepped mounting hole. Fix the vibration transmission suppression body with the fixed body provided outside the mounting hole,
Since the ultrasonic vibrator is not in contact with the fluid passage wall and the fixed body, there is an effect that vibration propagation due to non-contact can be reduced, and measurement accuracy can be improved by securing the mounting position accuracy.

【0071】また、取付穴の流体通路への開口部は超音
波振動子の側壁部を収納する収納部よりも横断面積を小
さくしているので、開口部による被計測流体の流れの乱
れを低減して計測精度を向上できるという効果がある。
Further, since the cross-sectional area of the opening of the mounting hole to the fluid passage is smaller than that of the accommodating portion for accommodating the side wall of the ultrasonic transducer, the disturbance of the flow of the fluid to be measured due to the opening is reduced. This has the effect of improving the measurement accuracy.

【0072】また、被測定流体が流れる計測部と、この
計測部に設けられ超音波を送受信する一対の請求項1な
いし3のいずれか1項記載の超音波振動子と、超音波振
動子間の伝搬時間を計測する計測制御部と、計測制御部
からの信号に基づいて流量を算出する演算部とを備えた
ものであり、さらに超音波振動子は請求項4ないし9の
いずれか1項に記載した支持構成としているので、超音
波振動子は被計測流体から圧電体を遮蔽するケースを有
し残響の短い超音波パルスを送受信でき、超音波振動子
の支持構成は取付側への振動伝搬を低減と被計測流体の
漏洩の防止ができ、計測精度を高めることがてきるとい
う効果があり、また計測範囲を拡大できるという効果が
ある。さらに、長期間にわたり計測特性を維持できると
いう効果がある。
Further, a measuring section through which the fluid to be measured flows, a pair of ultrasonic transducers according to any one of claims 1 to 3 for transmitting and receiving ultrasonic waves provided in the measuring section, and between the ultrasonic transducers. 10. A measurement control unit that measures the propagation time of the ultrasonic wave, and a calculation unit that calculates the flow rate based on a signal from the measurement control unit, and the ultrasonic transducer is any one of claims 4 to 9. The ultrasonic transducer has a case that shields the piezoelectric body from the fluid to be measured, and can transmit and receive ultrasonic pulses with short reverberation. There is an effect that the propagation can be reduced and the fluid to be measured can be prevented from leaking, the measurement accuracy can be improved, and the measurement range can be expanded. Furthermore, there is an effect that the measurement characteristics can be maintained for a long period of time.

【0073】また、計測部の流れに直交方向の断面は矩
形とし、超音波振動子を取付ける取付穴の流体通路側の
開口部の形状は矩形としているので、計測部の高さ方向
に開口面積が一定のため流体通路の高さ方向に対して均
等に超音波の受発信ができるという効果があり、また高
さ方向の流れの分布に応じた超音波伝搬により平均流速
が精度よく検出できるという効果がある。
Further, since the cross section in the direction orthogonal to the flow of the measuring section is rectangular and the shape of the opening on the fluid passage side of the mounting hole for mounting the ultrasonic transducer is rectangular, the opening area in the height direction of the measuring section is set. Since there is a constant value, there is an effect that ultrasonic waves can be evenly transmitted and received in the height direction of the fluid passage, and the average flow velocity can be accurately detected by ultrasonic wave propagation according to the flow distribution in the height direction. effective.

【0074】[0074]

【発明の効果】以上の説明から明らかなように本発明のAs is apparent from the above description, the present invention
流量計測装置によれば、封止体により支持部を補強できAccording to the flow rate measuring device, the support part can be reinforced by the sealing body.
るためケースの板厚をさらに薄くでき、超音波振動子のTherefore, the plate thickness of the case can be further reduced, and the ultrasonic transducer
感度を高めることができる。The sensitivity can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の超音波振動子の断面図FIG. 1 is a sectional view of an ultrasonic transducer according to a first embodiment of the present invention.

【図2】本発明の実施例2の超音波振動子の断面図FIG. 2 is a sectional view of an ultrasonic transducer according to a second embodiment of the present invention.

【図3】本発明の実施例3の超音波振動子の支持構成の
断面図
FIG. 3 is a sectional view of a supporting structure of an ultrasonic transducer according to a third embodiment of the present invention.

【図4】本発明の実施例4の超音波振動子の支持構成の
断面図
FIG. 4 is a sectional view of a supporting structure of an ultrasonic transducer according to a fourth embodiment of the present invention.

【図5】本発明の実施例5、7、8の超音波振動子の支
持構成の断面図
FIG. 5 is a cross-sectional view of a supporting structure of an ultrasonic transducer according to embodiments 5, 7, and 8 of the present invention.

【図6】本発明の実施例6の超音波振動子の支持構成の
断面図
FIG. 6 is a sectional view of a supporting structure of an ultrasonic transducer according to a sixth embodiment of the present invention.

【図7】本発明の実施例9の超音波流量計測装置の構成
FIG. 7 is a configuration diagram of an ultrasonic flow rate measuring device according to a ninth embodiment of the present invention.

【図8】本発明の実施例10を示す図7の超音波流量計
測装置のA−A断面図
FIG. 8 is a cross-sectional view taken along line AA of the ultrasonic flow rate measuring device of FIG. 7 showing Example 10 of the present invention.

【図9】本発明の実施例10を示す図7の超音波流量計
測装置のB−B断面図
FIG. 9 is a cross-sectional view taken along line BB of the ultrasonic flow rate measurement device of FIG. 7 showing the tenth embodiment of the present invention.

【図10】従来の超音波振動子の断面図FIG. 10 is a sectional view of a conventional ultrasonic transducer.

【図11】従来の他の超音波振動子の断面図FIG. 11 is a sectional view of another conventional ultrasonic transducer.

【符号の説明】[Explanation of symbols]

7 ケース 8 天部 9 側壁部 10 開口部 11 音響整合層 12 圧電体 13 支持部 15 封止体 20、44、45 超音波振動子 21 フランジ 22、30 振動伝達抑止体 23 流体通路壁 24 取付穴 29 突起部 31、32、39、40 変形防止体 35 段付取付穴 36 段差部 37 固定体 41 開口部 42 収納部 43 計測部 46 計測制御部 47 演算部 7 cases 8 Heaven 9 Side wall 10 openings 11 Acoustic matching layer 12 Piezoelectric body 13 Support 15 Sealed body 20, 44, 45 ultrasonic transducer 21 flange 22, 30 Vibration transmission suppression body 23 Fluid passage wall 24 mounting holes 29 Projection 31, 32, 39, 40 Anti-deformation body 35 stepped mounting holes 36 Step 37 Fixed body 41 opening 42 Storage 43 Measuring unit 46 Measurement control unit 47 Operation part

フロントページの続き (56)参考文献 特開 昭58−174813(JP,A) 特開 昭59−190621(JP,A) 実開 昭59−46078(JP,U) 実開 平4−53389(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01F 1/00 - 9/02 Continuation of the front page (56) References JP-A-58-174813 (JP, A) JP-A-59-190621 (JP, A) Actually open 59-46078 (JP, U) Actual-opening 4-53389 (JP , U) (58) Fields investigated (Int.Cl. 7 , DB name) G01F 1/00-9/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 天部と側壁部と開口部を有する有天筒状
のケースと、前記天部の内壁面に固定された圧電体と、
前記天部の外壁面に設けられた音響整合層と、前記側壁
部の端部に設けたフランジと、前記フランジと前記開口
部を塞ぐ封止体とを重ねて構成するとともに前記封止体
の厚みはフランジより厚くする支持体とを備えた超音波
振動子を、被計測流体が流れる流体通路壁に設けた取付
穴に取り付ける超音波流量計測装置であって、前記超音
波振動子の支持部を、前記超音波振動子の振動が流体通
路壁側に伝わるのを低減させる振動伝達抑止体を介して
前記取付穴に取付ける超音波流量計測装置。
1. A cylindrical case having a ceiling, a side wall, and an opening, and a piezoelectric body fixed to an inner wall surface of the ceiling.
The sealing body as well as formed by stacking an acoustic matching layer provided on the outer wall surface of the top portion, and a flange provided at an end portion of the side wall portion, and a sealing member for closing said flange and said opening
Is an ultrasonic flow rate measuring device in which an ultrasonic transducer having a support thicker than a flange is attached to a mounting hole provided in a fluid passage wall through which a fluid to be measured flows. An ultrasonic flow rate measuring device, wherein a part is attached to the attachment hole via a vibration transmission suppressing body that reduces transmission of vibration of the ultrasonic transducer to a fluid passage wall side.
【請求項2】 振動伝達抑止体の少なくとも流体通路壁
側に突起部を設け、振動伝達抑止体と流体通路壁とは部
分接触させた請求項1記載の超音波流量計測装置。
2. At least a fluid passage wall of the vibration transmission suppressing body.
The protrusion is provided on the side, and the vibration transmission suppressor and the fluid passage wall are
The ultrasonic flow rate measuring device according to claim 1, which is in minute contact .
【請求項3】 振動伝達抑止体は弾性体で構成し、この
弾性体の変形を防止する変形防止体を前記振動伝達抑止
体に当接させて設けた請求項1または2記載の超音波流
量計測装置。
3. The vibration transmission restraining body is made of an elastic body.
The deformation prevention body that prevents deformation of the elastic body suppresses the vibration transmission.
The ultrasonic flow rate measuring device according to claim 1, which is provided in contact with a body .
【請求項4】 変形防止体は少なくともケース、あるい
はケースの開口部を塞ぐ封止体より音響インピーダンス
の小さい材料で構成した請求項3記載の超音波流量計測
装置。
4. The deformation preventing body is at least a case or a deformation preventing body.
Is the acoustic impedance of the sealing body that closes the opening of the case.
The ultrasonic flow rate measuring device according to claim 3 , wherein the ultrasonic flow rate measuring device is made of a material having a small size .
【請求項5】 取付穴は振動伝達抑止体の当りとなる段
差部を設けた段付取付穴とし、この段付取付穴に超音波
振動子を装着した振動伝達抑止体を挿入し、段付取付穴
の外部に設けた固定体で振動伝達抑止体を固定し、超音
波振動子と流体通路壁および固定体とは非接触とした請
求項1ないし4のいずれか1項に記載の超音波流量計測
装置。
5. A step in which the mounting hole comes into contact with the vibration transmission suppressing body.
A stepped mounting hole with a difference is made, and ultrasonic waves are placed in this stepped mounting hole.
Insert a vibration transmission suppression body with a vibrator and step mounting holes
The vibration transmission suppression body is fixed with a fixed body provided outside the
The wave oscillator is not in contact with the fluid passage wall and the fixed body.
The ultrasonic flow rate measuring device according to any one of claims 1 to 4 .
【請求項6】 取付穴の流体通路への開口部は超音波振
動子の側壁部を収納する収納部よりも横断面積を小さく
した請求項1ないし5のいずれか1項に記載の超音波流
量計測装置。
6. An ultrasonic vibration is applied to the opening of the mounting hole to the fluid passage.
Smaller cross-sectional area than the storage unit that stores the side wall of the pendulum
The ultrasonic flow rate measuring device according to any one of claims 1 to 5 .
JP12571298A 1998-05-08 1998-05-08 Ultrasonic flow meter Expired - Fee Related JP3533941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12571298A JP3533941B2 (en) 1998-05-08 1998-05-08 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12571298A JP3533941B2 (en) 1998-05-08 1998-05-08 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JPH11325992A JPH11325992A (en) 1999-11-26
JP3533941B2 true JP3533941B2 (en) 2004-06-07

Family

ID=14916887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12571298A Expired - Fee Related JP3533941B2 (en) 1998-05-08 1998-05-08 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3533941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098563A (en) * 2012-11-13 2014-05-29 Panasonic Corp Flow rate measurement apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611796B2 (en) * 2001-02-28 2005-01-19 松下電器産業株式会社 Ultrasonic transducer, manufacturing method of ultrasonic transducer, and ultrasonic flowmeter
JP4582011B2 (en) * 2006-01-30 2010-11-17 パナソニック株式会社 Ultrasonic flow meter
KR100811984B1 (en) * 2007-02-15 2008-03-10 삼성에스디아이 주식회사 Fuel cartridge and fuel cell using the same
JP2012160825A (en) * 2011-01-31 2012-08-23 Taiheiyo Cement Corp Support structure of ultrasonic transceiver and formation method of the same
DE102012108254A1 (en) 2012-09-05 2014-03-06 systec Controls Meß- und Regeltechnik GmbH Ultrasonic transducer and method of making an ultrasonic transducer
JP6382707B2 (en) * 2014-12-18 2018-08-29 京セラ株式会社 Sound generator and speaker equipped with the same
CN107765234A (en) * 2016-08-16 2018-03-06 上海白泉声学科技有限公司 A kind of ultrasonic unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098563A (en) * 2012-11-13 2014-05-29 Panasonic Corp Flow rate measurement apparatus

Also Published As

Publication number Publication date
JPH11325992A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP3528726B2 (en) Ultrasonic vibrator and ultrasonic fluid flow measurement device using the same
JP5659956B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP3533941B2 (en) Ultrasonic flow meter
RU2691285C1 (en) Vortex flowmeter vortex converter
KR20170131265A (en) Measuring apparatus and method for determining the flow speed of a fluid flowing in a conduit
EP2597432A1 (en) Construction for mounting ultrasonic transducer and ultrasonic flow meter using same
US7082810B2 (en) Gas sensor
JP2002135894A (en) Ultrasonic sensor and electronic device using it
JP3518268B2 (en) Ultrasonic flow meter
US6892565B2 (en) Gas sensor and gas concentration detecting device
JP2012018030A (en) Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same
JP3562261B2 (en) Ultrasonic transducer and ultrasonic flowmeter using the same
JP2012007975A (en) Attachment structure of ultrasonic transducer and ultrasonic flow measuring device therewith
JP2008252202A (en) Ultrasonic transmitter-receiver, and ultrasonic flowmeter using the same
JP4079075B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP3629481B2 (en) Ultrasonic vibrator and ultrasonic flow meter using the same
JP2004045439A (en) Ultrasonic vibrator and ultrasonic flowmeter using the same
JPH09287990A (en) Ultrasonic flowmeter
JP2004294181A (en) Ultrasonic oscillator and fluid flow measuring device using it
JP2006180317A (en) Ultrasonic wave transmitter receiver and flow measuring instrument for fluid using same
JP2000193502A (en) Flowmeter
JP2505647Y2 (en) Ultrasonic flow meter
JP2003270012A (en) Ultrasonic transducer and ultrasonic flowmeter
JP4765642B2 (en) Ultrasonic vibrator and fluid flow measuring device using the same
JPH10160535A (en) Detector of ultrasonic gas flowmeter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees