JP3629481B2 - Ultrasonic vibrator and ultrasonic flow meter using the same - Google Patents

Ultrasonic vibrator and ultrasonic flow meter using the same Download PDF

Info

Publication number
JP3629481B2
JP3629481B2 JP2002273136A JP2002273136A JP3629481B2 JP 3629481 B2 JP3629481 B2 JP 3629481B2 JP 2002273136 A JP2002273136 A JP 2002273136A JP 2002273136 A JP2002273136 A JP 2002273136A JP 3629481 B2 JP3629481 B2 JP 3629481B2
Authority
JP
Japan
Prior art keywords
plate
acoustic matching
area
ultrasonic
piezoelectric body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002273136A
Other languages
Japanese (ja)
Other versions
JP2003348681A (en
JP2003348681A5 (en
Inventor
庸介 入江
明久 足立
和夫 横山
勝彦 浅井
真人 佐藤
英知 永原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002273136A priority Critical patent/JP3629481B2/en
Publication of JP2003348681A publication Critical patent/JP2003348681A/en
Application granted granted Critical
Publication of JP3629481B2 publication Critical patent/JP3629481B2/en
Publication of JP2003348681A5 publication Critical patent/JP2003348681A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波により気体や液体の流量や流速の計測を行う超音波振動子および超音波流量計に関するものである。
【0002】
【従来の技術】
従来この種の超音波流量計測装置に用いる超音波振動子には、例えば特開平11−325992号公報が知られており、ケースの天部の内面に圧電体を備え、天部に音響整合層を設けたものである。
【0003】
【特許文献1】
特開平11−325992号公報
【0004】
【発明が解決しようとする課題】
しかしながら、従来の構成では、単に音響整合層を設けただけであり、適切な音響整合層、圧電体、ケースに関する考察はなされていないのが実情である。
【0005】
特に、送受信の感度の点から音響整合層、圧電体、ケースの最適な組み合わせを考慮したものはなく、効率、信頼性の観点から述べられたものではない。
【0006】
そして、近年のガス流量計においては、その使用ガスの種類や計測精度(例えば都市ガスの流量計測装置に要求される精度は0.5nsec以上であり、超音波振動子にはこれ以上の精度が要求される)の点から超音波振動子の機能向上が望まれており、このような産業上のニーズからも超音波振動子の機能向上が望まれている。
【0007】
特に、超音波振動子は、ある超音波振動子から発信した超音波信号をもう一方の超音波振動子にて受信をすることにより、その機能を果たすが、その際に、発信、受信の感度が問題となる。感度が向上すると計測精度が向上し、また圧電体に必要以上の電力を供給する必要もなく経済的である。
【0008】
本発明の目的は、上記課題を解決するもので、超音波振動子の感度を向上させ、それを用いた超音波流量計の計測特性を向上させる超音波振動子およびそれを用いた超音波流量計を提供する。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下のように構成する。
【0010】
本発明の第1態様によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記音響整合層の設置面積は、上記圧電体が上記板状部材と接合される接合面積以上、あるいは上記圧電体が上記板状部材を介して上記音響整合層に対向する面積以上である超音波振動子を提供する。
【0011】
また、本発明の第2態様によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記板状部材の上記音響整合層に対する対向面積は、上記板状部材と上記音響整合層とが上記接着層を介して接合される接合面積以上、あるいは上記音響整合層が上記板状部材に対向する対向面積以上である超音波振動子を提供する。
【0012】
また、本発明の第3態様によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記板状部材の上記圧電体に対する対向面積は、上記接着層を介して上記板状部材と上記圧電体が接合されるの接合面積以上、あるいは上記板状部材と上記圧電体が対向する対向面積以上である超音波振動子を提供する。
【0013】
また、本発明の第4態様によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記音響整合層の対向面積は上記圧電体が上記板状部材と接合される面の接合面積以上、あるいは上記圧電体が上記板状部材を介して上記音響整合層に対向する対向面積以上、かつ上記板状部材の対向面積は上記板状部材と上記音響整合層が上記接着層を介して接合される接合面積以上、あるいは上記音響整合層が上記板状部材に対向する対向面積以上である超音波振動子を提供する。
【0014】
また、本発明の第5態様によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記接着層の対向面積は上記圧電体が上記板状部材と接合される接合面の接合面積以上、あるいは上記圧電体が上記接着層に対向する対向面積以上である超音波振動子を提供する。
【0015】
また、本発明の第6態様によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記接着層の対向面積は上記音響整合層が上記板状部材と接合するの接合面積以上、あるいは上記音響整合層が上記接着層に対向する対向面積以上である超音波振動子を提供する。
【0016】
本発明の第7態様によれば、上記音響整合層の面積は、上記板状部材の面積の100〜110%である第1〜のいずれか1つの態様に記載の超音波振動子を提供する。
【0017】
本発明の第8態様によれば、被測定流体が流れる流量測定部と、この流量測定部に設けられて超音波を送受信する一対の第1〜7のいずれか1項の態様に記載の超音波振動子と、上記超音波振動子間の伝搬時間を計測する計測回路と、上記計測回路からの信号に基づいて流量を算出する流量演算手段とを備えた超音波流量計を提供する。
【0018】
本発明の第9態様によれば、上記一対の超音波振動子は大略同一形状であり、インピーダンスの周波数が200KHz〜750KHzの使用範囲において、上記一対の超音波振動子のインピーダンスの周波数特性相関係数は0.80以上である第8の態様に記載の超音波流量計を提供する。
【0019】
【発明の実施の形態】
以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。
【0020】
まず、本発明の種々の実施形態にかかる超音波振動子およびそれを用いた超音波流量計を詳細に説明する前に、本発明の種々の形態について説明する。
【0021】
本発明の第1形態によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記音響整合層の設置面積は、上記圧電体が上記板状部材と接合される接合面積以上、あるいは上記圧電体が上記板状部材を介して上記音響整合層に対向する面積以上である超音波振動子である。この構成により送受信感度の点から説明すると、送受信を兼ねる超音波振動子の場合、音響整合層が駆動源である圧電体より大きいときには、圧電体から発生した超音波信号(または音圧)が板状部材を介して音響整合層に伝搬され、伝搬された超音波信号(または音圧)は殆ど低下しない。
【0022】
一方、音響整合層の対向面積が圧電体と板状部材の接合面積より小さい場合には、圧電体で発生した超音波信号(または音圧)の一部しか音響整合層に伝搬できないため、送信感度は低下する。また、受信感度については、音響整合層が圧電体より大きい場合にはあまり問題にはならないが、音響整合層が圧電体より小さい場合には、圧電体に伝搬する超音波信号(または音圧)のエネルギー密度が低くなり受信感度が低下する。
【0023】
また、本発明の第2形態によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記板状部材の音響整合層に対する対向面積は、上記板状部材と上記音響整合層とが接着層を介して接合される接合面積以上、あるいは音響整合層が板状部材に対向する対向面積以上である超音波振動子であり、伝搬される超音波信号の低下を抑制できる。
【0024】
一方、音響整合層が板状部材よりも大きい場合には、接合面積以外の領域は剛性が不十分となる。従って、機械的強度も低くなることから信頼性に欠ける。また、音響的な観点においては、接合面積以外の領域は不要な振動を引き起こし、接合面積で伝搬されるの主たる振動モードと異なる振動モードを発生させやすい。そのため、超音波信号の指向性や感度に悪影響を与える。
【0025】
また、本発明の第3形態によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記板状部材の上記圧電体に対する対向面積は、接着層を介して上記板状部材と上記圧電体が接合されるの接合面積以上、あるいは上記板状部材と上記圧電体が対向する対向面積以上である超音波振動子であり、伝搬される超音波信号の低下を抑制できる。
【0026】
一方、板状部材が圧電体より小さな場合は、明らかに板状部材としての効果は低下、あるいは殆ど効力を果たさない。
【0027】
また、本発明の第4形態によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記音響整合層の対向面積は圧電体が板状部材と接合される面の接合面積以上、あるいは圧電体が板状部材を介して音響整合層に対向する対向面積以上、かつ板状部材の対向面積は板状部材と音響整合層が接着層を介して接合される接合面積以上、あるいは音響整合層が板状部材に対向する対向面積以上である超音波振動子であり、伝搬される超音波信号の低下を殆ど抑制できる。
【0028】
また、本発明の第5形態によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記接着層の対向面積は上記圧電体が上記板状部材と接合される接合面の接合面積以上、あるいは上記圧電体が上記接着層に対向する対向面積以上である超音波振動子であり、伝搬される超音波信号の低下を殆ど抑制できる。
【0029】
音響整合層と板状部材を音響的に結合、物理的に接合する接着層について述べる。上記接着層が板状部材と音響整合層の接合面積あるいは対向面積より小さい場合には、圧電体から板状部材に伝搬された超音波信号は接着層を介して音響整合層に伝搬されるため伝搬効率が低下し、送信感度が低下する。一方、受信感度においても、音響整合層に伝搬された超音波信号は接着層を介して板状部材に伝搬される。従って、接着層が音響整合層よりも小さい場合には、音響整合層で受けた超音波信号が面積の減少に応じて減少するために低下する。ここで対向面積とは、板状部材、音響整合層の各々がお互いに対向して重なる面積を示す。信頼性の一つの指標として音響整合層と板状部材の接着強度があげられるが、この接着強度は接着層の膜厚が一定の場合、その面積に依存する傾向がある。従って、接着層は板状部材と音響整合層の接合面積以上にすることで接着強度を高め信頼性を向上できる。
【0030】
また、本発明の第6形態によれば、板状部材と、上記板状部材の一方の面に接着層を介して設置した音響整合層と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層を介して設置した圧電体とを備え、上記接着層の対向面積は上記音響整合層が上記板状部材と接合するの接合面積以上、あるいは上記音響整合層が上記接着層に対向する対向面積以上である超音波振動子であり、伝搬される超音波信号の低下を殆ど抑制できる。
【0031】
一方、圧電体と板状部材を音響的に結合、物理的に接合する接着層について述べる。接着層が圧電体と板状部材の対向面積あるいは接合面積より小さい場合には、圧電体から板状部材に伝搬される超音波信号は接着層を介して板状部材に伝搬されるため、接着層の面積が減少するにつれ伝搬効率が低下し、送信感度が低下する。一方、受信感度においても、音響整合層に伝搬され、接着層を介して板状部材に伝搬された超音波信号は接着層を介して圧電体に伝搬される。従って、接着層が圧電体よりも小さい場合には、圧電体で受けた超音波信号が面積の減少に依存して低下する。
【0032】
また、本発明の第7形態によれば、被測定流体が流れる流量測定部と、この流量測定部に設けら超音波を送受信する一対の上記第1〜6形態のいずれか1つの超音波振動子と、上記超音波振動子間の伝搬時間を計測する計測回路と、上記計測回路からの信号に基づいて流量を算出する流量演算手段とを備えた超音波流量計であり、被測定流体の流量を精度良く(例えば、都市ガスでは少なくとも3リットル/h以上の精度で)測定することができる。
【0033】
尚、本願明細書において、対向面積とは、圧電体、板状部材、音響整合層の各々が直接的に又は間接的に対向して重なる面積を示す。
【0034】
以下、本発明の種々の実施形態にかかる超音波振動子およびそれを用いた超音波流量計について図1から図16を用いて説明する。
【0035】
(第1実施形態)
図1に本発明の第1実施形態における超音波振動子の外観図、図2に同実施形態の断面図、図3、図4に同実施形態における超音波流量計の断面図を示す。
【0036】
図1において、1は超音波振動子であり、6は駆動源となる圧電体、4は気体又は液体などの伝達媒体に超音波を伝えるための音響整合層、3は、片面(外壁面)3aに音響整合層4を、反対側(内壁面)3bに圧電体6をそれぞれ設けた板状部材であり、具体的には接着層30、接着層(接合層の一例)31を介して音響整合層4、圧電体6を設ける。また、板状部材3は、圧電体6の振動を音響整合層4に伝達する振動伝搬部材であり、圧電体6と音響整合層4を音響的に接続している。
【0037】
2は板状部材3を支える支持体であり、具体的には、板状部材3の外周部を筒状の内周部に係合し接合させている。尚、第1実施形態では、板状部材3と支持体2とで天部32aと側壁部32bと開口部32cを有する有底状ケース32を構成している。5は後述するように超音波流量計の流路に対して連結される超音波振動子1の取付穴を形成する側壁部と超音波振動子1とを接合するためのフランジ部である。
【0038】
図2において、6は板状部材3の内壁面に配置された圧電体であり、7はフランジ部5に固定された端子板、8a、8bは端子板7に設けられた端子、9は端子8a、8bを絶縁する絶縁物、10は圧電体6と端子8aとを電気的に接続するための導電性ゴムである。圧電体6は有底状ケース32と端子板7により塞がれ不活性ガスで密閉されている。
【0039】
図3に超音波振動子1を備えた超音波流量計100の断面図を示す。
【0040】
超音波流量計100の概略構成を示すと、ガスなどの被測定流体が供給される供給管と連結した入口路100aから流入された被測定流体の流量を測定する流量測定部11と、流量測定部11と連通し、被測定流体を外部へ導く出口路100bと、この流量測定部11に設けられて超音波を送受信する一対の超音波振動子17、18(それぞれは超音波振動子1に対応する。)と、超音波振動子17、18間の伝搬時間を計測する計測回路101と、計測回路101からの信号に基づいて流量を算出する流量演算手段102とを備えている。よって、一方の超音波振動子17から他方の超音波振動子18に向けて超音波を送信し、ガスなどの被測定流体を通過した超音波が上記他方の超音波振動子18で受信されることにより、計測回路101で超音波振動子17、18間の伝搬時間を計測する。次いで、逆に、上記他方の超音波振動子17から上記一方の超音波振動子18に向けて超音波を送信し、ガスなどの被測定流体を通過した超音波が上記一方の超音波振動子18で受信されることにより、計測回路101で超音波振動子17、18間の伝搬時間を計測する。このように所定回数だけ、上記一対の超音波振動子17、18間で超音波の伝搬時間を計測し、流量演算手段102でその平均値を基に、ガスなどの被測定流体の流量を算出するようにしている。よって、各超音波振動子17,18は送受信を行えるようにしている。ここで、上記計測回路101と流量演算手段102とより流量算出システムを構成している。
【0041】
実例として、流量測定部11では、材料としてLPガスや天然ガスの流量計測する家庭用ガスメータを想定しアルミニウム合金ダイカストとする。そして図4に示すようにガスの流路を構成する側壁部12、13の端面に例えばコルク材からなるシール材14を介して上板部15をネジ止めして、流路断面16が矩形のものを構成する。また、図3に示すように、超音波振動子17、18は、超音波を発信・受信する送受波面が相対するように側壁部12、13に斜めに設ける。具体的には側壁部12、13に設けた超音波振動子17、18の取付穴19、20に例えばOリングからなるシール材21、22を介して固定する。これは1つの実例であり、本発明はこれに限られるものではない。
【0042】
一方、板状部材3は、音響整合層4と圧電体6に挟まれて位置し、物理的な観点からは音響整合層4及び圧電体6の接合部または固定部の役割を果たす。また、音響的な観点からは、音響整合層4から圧電体6に圧電体6から音響整合層4へ超音波信号(または音圧)を伝搬するためのコネクターであり、板状部材3の役割を果たす。そのため、音響整合層4、板状部材3、圧電体6の物理的な接合面積は非常に重要である。
【0043】
次に、超音波振動子1の動作について説明するとともに発信の伝搬効率を考察する。
【0044】
圧電体6から発信された超音波信号は、接着層31、板状部材(振動伝搬部材)3、接着層30を介して音響整合層4に伝搬される。
【0045】
(圧電体と板状部材との間の発信の伝搬効率の考察)
圧電体6から発信した超音波信号が板状部材3に伝搬されるとき、圧電体6から板状部材3への伝搬効率は、駆動源である圧電体6が板状部材3と音響的に結合される結合面積の大きさに依存する。この結合面積は、接着層31を用いて板状部材3に圧電体6を接合される場合の板状部材3、圧電体6、接着層31が重なる接合面積とほぼ一致する。従って、圧電体6から板状部材3に効率よく超音波信号を伝搬するためには、板状部材3は、板状部材3と圧電体6との接合面積以上(板状部材3と圧電体6とが対向する対向面積以上)が望ましい。
【0046】
さらに、板状部材3に伝搬された超音波信号は、板状部材3と音響整合層4を接合する接着層30を介して音響整合層4に伝搬される。
【0047】
(板状部材と音響整合層との間の発信の伝搬効率の考察)
板状部材3と音響整合層4の音響的な結合面積は、板状部材3と音響整合層4、接着層30が重なる面積と一致する。従って、板状部材3から音響整合層4に効率よく超音波信号を伝搬するためには、板状部材3は、板状部材3と音響整合層4との接合面積以上(音響整合層4が板状部材3と対向する対向面積以上)が望ましい。
【0048】
以上から、圧電体6、板状部材3、音響整合層4の音響的な結合面積が重なる面積が、有効結合面積であり、各々を接合する接合面積にほぼ一致する。よって、音響整合層4は、圧電体6と板状部材3の接合面積以上、あるいは圧電体6が音響整合層4に対向する対向面積以上を必要とし、その面積が上記条件より小さい場合には圧電体6で発生された超音波信号が結合面積の割合しか伝搬されないため、伝搬効率が低下して超音波の送信感度も低下する。従って、圧電体4、板状部材3、音響整合層6の結合面積が重なる面積が、音響的な有効結合面積であり、物理的な有効接合面積である。
【0049】
次に、超音波信号を受信する場合について考える。
【0050】
受信の場合は送信の場合と反対の伝搬工程になる。すなわち、音響整合層4から受信された超音波信号は、接着層30、板状部材3、接着層31を介して圧電体6に伝搬される。
【0051】
(板状部材と音響整合層との間の受信の伝搬効率の考察)
音響整合層4で受信した超音波信号は、音響整合層4と板状部材3とを接合する接着層30を介して板状部材3に伝搬されるため、送信の場合と同様、板状部材3と音響整合層4の接合面積は、板状部材3と音響整合層4、接着層30とが重なる面積と一致する。従って、音響整合層4から板状部材3に効率よく超音波信号を伝搬するためには、板状部材3は板状部材3と音響整合層4の接合面積以上(音響整合層4が板状部材3に対向する対向面積以上)が望ましい。
【0052】
さらに板状部材3に伝搬された超音波信号は、板状部材3と圧電体6を接合する接着層31を介して圧電体6に伝搬される。
【0053】
(板状部材と圧電体との間の受信の伝搬効率の考察)
板状部材3と圧電体6との接合面積は、板状部材3と圧電体6、接着層31が重なる面積と一致する。従って、板状部材3から圧電体6に効率よく超音波信号を伝搬するためには、板状部材3は、板状部材3と圧電体6の接合面積以上(板状部材3と圧電体6が対向する対向面積以上)が望ましい。
【0054】
以上から、送信時と同様に、圧電体6、板状部材3、音響整合層4の接合面積が重なる面積が、音響的な有効結合面積あるいは物理的な有効接合面積である。
【0055】
従って、受信時においても送信時同様、音響整合層4は圧電体6と板状部材3の接合面積以上、あるいは圧電体6が音響整合層4に対向する対向面積以上を必要とし、その面積が上記条件より小さい場合には圧電体6で発生された超音波信号が接合面積の割合しか伝搬されないため、伝搬効率が低下して超音波の受信感度も低下する。
【0056】
次に、接着層31に関して考察する。
【0057】
圧電体6と板状部材3を接合する接着層31は、圧電体6と板状部材3を物理的に接合するだけでなく音響的にも結合させるという役割を持つ。接着剤31は、例えばエポキシ系の熱硬化性接着剤であり、圧電体6と板状部材3とを粘性状態で仮接合し、熱などにより硬化して本接合される。そして、接着層31は接合のための硬化後、圧電体6および板状部材3と対向する対向面積が圧電体6よりも小さい場合、圧電体6から発生した超音波信号を板状部材3に伝搬する際に圧電体6と板状部材3との接合面積が小さくなってしまい、伝搬効率が低下する。そのため、超音波の送信感度が低下する。
【0058】
尚、接着層31の接着剤としてはウレタン系、シアノ系、シリコーン系の樹脂接着剤がある。
【0059】
一方、音響整合層4から伝搬された超音波信号が板状部材3に伝搬され、接着層31を介して圧電体6に伝搬される受信では、板状部材3と対向する対向面積が圧電体6よりも小さい場合、板状部材3に伝搬された超音波信号を圧電体6に伝搬する際に圧電体6と板状部材3との接合面積が小さくなってしまい、伝搬効率が低下するため、超音波の受信感度が低下する。
【0060】
よって、板状部材3と圧電体6を接合する接着層31は、接着層31の硬化後の面積は圧電体6と板状部材3との接合面積以上(圧電体6が接着層31に対向する対向面積以上)であることで、伝搬効率の低下を最小限に止めることが可能になる。
【0061】
また、物理的な接合、すなわち接着強度面から説明すると、接着層31の硬化後の面積は、圧電体6が板状部材3と対向する対向面積以上必要とされる。接着層31の硬化後の面積が圧電体6の板状部材3に対する対向面積より小さい場合には、接着層31が圧電体6に対して外側に包み込むように回りこまないため、実質的な接合面積が小さくなり、アンカー効果が殆ど期待できないため接着強度が低下する。従って、物理的な接合からも接着層31の硬化後の面積は圧電体6と板状部材3の接合面積以上、あるいは圧電体6が接着層31に対向する対向面積以上であることが必要であり、接着強度を向上させ、信頼性の向上を確保できる。
【0062】
また、音響整合層4と板状部材3を接合する接着層30も同様に熱硬化性接着剤であり、音響整合層4と板状部材3を物理的に接合するだけでなく音響的にも結合させるという役割を持つ。従って、硬化後の接着層30は、硬化後、音響整合層4および板状部材3と対向する対向面積が音響整合層4よりも小さい場合、圧電体6から発生した超音波信号を板状部材3、板状部材3から音響整合層4に伝搬する際に板状部材3と音響整合層4の接合面積が小さくなってしまい、伝搬効率が低下し、超音波の送信感度が低下する。
【0063】
一方、超音波信号を音響整合層4で受けた後、音響整合層4から板状部材3に伝搬される場合、接着層30を介して板状部材3に伝搬される受信では、接着層30は硬化後、板状部材3および音響整合層4と対向する対向面積が音響整合層4よりも小さい場合、音響整合層4に伝搬された超音波信号を板状部材3に伝搬する際に音響整合層4と板状部材3との接合面積が小さくなってしまい、伝搬効率が低下するため、超音波の受信感度が低下する。
【0064】
よって、音響整合層4と板状部材3を接合する接着層30の硬化後の面積は音響整合層4の接合面積以上、あるいは音響整合層4が接着層30に対向する対向面積以上であることで、伝搬効率の低下を最小限に止めることが可能になる。また、物理的な接合、すなわち接着強度面から説明すると、接着層30の硬化後の面積は、音響整合層4が板状部材3と対向する対向面積以上必要とされる。接着層30の硬化後の面積が音響整合層4の板状部材3に対する対向面積より小さい場合には、接着層30が音響整合層4に対して外側に包み込むように回りこまないため、実質的な接合面積が小さくなり、アンカー効果が殆ど期待できないため接着強度が低下する。従って、物理的な接合からも、接着層30の硬化後の面積は、音響整合層4の接合面積以上、あるいは音響整合層4が接着層30に対向する対向面積以上であることが必要であり、接着強度を向上させ、信頼性の向上を確保できる。
【0065】
なお、以上、第1実施形態で述べてきた関係は、音響整合層4、板状部材3、圧電体6の形状、大きさに関わらず、常に成り立つ。
【0066】
また、図8、図9に示すように、板状部材3と支持体2とを別々に構成するものではなく、図8に示すように板状部材と支持体とを一体形成して設けた有底状ケース33を用いた第2実施形態や、図9に示すように接着層が存在しない第3実施形態でも同様の効果が得られる。
【0067】
【実施例】
以下、具体的な実施例により、上記第1実施形態の実験的考察を行う。
【0068】
(実施例1)
圧電体6に対する音響整合層4の有効面積を確認するために、有限要素法(FEM)による3次元シュミレーションを用いて圧電体6から発生された音圧が音響整合層4に対してどのように影響を及ぼしているかを調べた。
【0069】
構造は図2に示すようなものであり、圧電体/接着剤/ケース/接着剤/音響整合層とし、圧電体については圧電定数d31=−185.9×10−12m/V、d31=366.5×10−12m/V、d15=578.5×10−12m/V、弾性定数s11=15.8×10−12/N、s33=17.6×10−12/Nを用い、s12、s13は周波数定数と電気機械結合係数より演算した(周波数定数n=1960Hz・m、n=1430Hz・m、n=1410Hz・m、n=1980Hz・m、n=856Hz・m、電気機械結合係数k=0.65、k31=0.38、k33=0.71、k=0.50、k15=0.70)。また、ポアソン比:0.3、誘電率:ε33=1950×0.9、ε=2130×0.9、密度:7.70g/cm、機械Q:70(減衰比0.0007114)、支持体と板状部材からなるケースの板状部材はヤング率:0.178(1012N/m)、ポアソン比:0.29、密度7.93g/cm、接着剤はヤング率:0.003、ポアソン比:0.3、密度1.4g/cm、減衰比:0.01、音響整合層はヤング率:0.001906N/m、ポアソン比:0.3718、横弾性係数:G=0.0006946N/m、横波速度(2MHz):1167m/s(実測値)、縦波速度:2494m/s(横波の実測値より演算)、機械Q:50(減衰比0.001)として計算を行った。
【0070】
その結果を図5〜図7で示す。図5(A)、(B)はインピーダンスと位相の周波数特性を実測したものと、シュミレーション解析したものである。左は超音波振動子に交流電圧を供給し、その周波数を変化させて出力インピーダンスを測定した実測値であり、右は解析値である。実測値と解析値が非常によく適合していることがわかる。特にA〜Dの共振周波数を比較すると、ほぼ同じ周波数でそれぞれの共振が見られる。それぞれの共振モードを解析すると、A:主共振(縦波)でf=475KHz、B:主共振(横波)でf=190KHz、C:2次共振で590KHz、D:スプリット共振でf=430KHz、E:反共振でf=650KHzである。この中で超音波信号の発生に大きく寄与する共振モードはA:主共振(縦波)とC:2次共振である。この2つの共振モードで超音波信号が発生する。それぞれの共振周波数におけるモード解析結果を図示する。
【0071】
図6(A)はA:主共振(縦波)でf=475KHzの時の圧電体、板状部材、音響整合層それぞれの変位を濃度分布で示した図である。変位としては、音響整合層の中心部を中心にほぼ圧電体と板状部材との接合面、または圧電体の板状部材に対する接合面で特に大きく変位していることがわかる。
【0072】
また、図6(B)はC:2次共振で590KHzの時の圧電体、板状部材、音響整合層それぞれの変位を濃度分布で示した図である。変位は、音響整合層の外周付近を中心に、Aの主共振と同様にほぼ圧電体と板状部材との接合面、または圧電体の板状部材に対する接合面で特に大きく変位していることがわかる。
【0073】
そして、この主共振と2次共振とが音響整合層の振動に影響を与え、その合成成分は図6(A)、(B)との合成となり、結果として音響整合層に関し、ほぼ圧電体と板状部材との接合面、または圧電体の板状部材に対する接合面で特に大きく変位している。
【0074】
図7(A)、(B)は図6(A)、(B)の変位を音響整合層の真上側から示した図である。
【0075】
図7(A)はA:主共振(縦波)でf=475KHzの時の圧電体、板状部材、音響整合層それぞれの変位を濃度分布で示した。また、図7(B)はC:2次共振で590KHzの時の圧電体、板状部材、音響整合層それぞれの変位を濃度分布で示した。このモデルでは圧電素子は板状部材との対向面側がスリット状に加工されていて4分割されている。またケースは筒状の支持体と板状部材から構成(ここでは板状部材と支持体が同じ材質で連続的につながっていると仮定)され、音響整合層は板状部材に比べて少し小さめの円形状とした。主共振では主にその4分割された中央の2本を中心に大きな変位が見られる。変位面積は、ほぼ圧電体が板状部材と接着される接合面積より少し大きい。
【0076】
一方、図7(B)の2次共振は、圧電体の外側の2本と中央付近で大きな変位が見られ、圧電体と板状部材の接合面積あるいは結合面積が主な駆動範囲であり、主な変位を検出可能な範囲である。板状部材は円形状であるため支持体の筒部分との境界は剛性が非常に高いと仮定した。従って主に振動する部分は天面部分の形状(ここでは板状部材)に変位分布が見られる。
【0077】
以上の点から、音響整合層は圧電体と板状部材の接合面積以上、あるいは圧電体が音響整合層に対向する対向面積以上必要であることは明らかである。
【0078】
(実施例2)
実施例1の3次元シュミレーション解析の結果を確認するために以下の検討を行った。圧電体の大きさは縦・横・高さが7.4mm×7.4mm×2.65mmの直方体とした。3次元解析と同様に圧電体の板状部材との対向面側にスリット構造を設けている。音響整合層は形状を主に2種類用いた。1つは3次元解析と同様な円形のものであり、もう1つは平面的に圧電体の形状に近い正方形のものである。円形のものは圧電体を包み込める最小大きさ、すなわち対角線の長さ(10.46mm)を直径とした円形状を、正方形のものは圧電体と同じ大きさ(7.4mm×7.4mm)を基準として、それぞれの音響整合層の面積を相似的に50%縮小したものから150%まで拡大したものを作製し、それぞれの形状で超音波振動子の送受信感度を測定した。その結果を表1に示す。
【0079】
測定は、超音波振動子の間隔を70mmとし、測定電圧30V、測定周波数500KHzにて条件で行った。
【0080】
【表1】

Figure 0003629481
【0081】
以上の結果より、音響整合層の設置面積(対向面積)は、圧電体が板状部材と接合する接合面積(縮小拡大率100%以上)あるいは圧電体が板状部材と対向する対向面積より小さい場合、送信感度、受信感度が極端に低下していき、逆に圧電体が板状部材と接合する接合面積(縮小拡大率100%以上)あるいは圧電体が板状部材と対向する対向面積以上にすることで、送信感度、受信感度の変化はほとんどなく感度変化の差は小さく、伝搬効率の低下を抑制でき、送受信感度の低下を防止することが可能となる。
【0082】
(実施例3)
次に板状部材と圧電体について検討した。圧電体の大きさは縦・横・高さが7.4mm×7.4mm×2.65mmの直方体とした。3次元解析と同様に圧電体の板状部材との対向面側にスリット構造を設けている。板状部材は円形と正方形とし、板状部材の面積を変化させて超音波振動子を作製した。圧電体を包み込める最小大きさすなわち対角線の長さ(10.46mm)を直径とした円の面積と圧電体の接合面積7.4mm×7.4mmをそれぞれの基準として、面積を相似的に50%縮小したものから150%まで拡大したものを作製し、それぞれの板状部材の形状で超音波振動子の送受信感度を測定した。表2にその結果を示す。測定条件は実施例2と同様である。
【0083】
【表2】
Figure 0003629481
【0084】
表2に示される結果から、円形および正方形の板状部材の両方において、板状部材が圧電体に対して縮小された(天部の面積比が100%以下)場合、送信感度、受信感度が極端に低下していき、逆に板状部材が圧電体に対して増加する場合は、送信感度、受信感度の変化はほとんどなく感度変化の差は小さい。
【0085】
このように圧電体が板状部材を介して音響整合層と音響的に結合あるいは物理的に接合される面積が縮小されるため送受信感度は低下する。しかし、圧電体に比べて板状部材の面積が大きくなる場合には、板状部材が大きくなっても音響的に結合する有効面積は殆ど変化しないため、送受信感度へも殆ど影響を与えない。
【0086】
以上の結果から、板状部材は、板状部材と圧電体との接合面積以上、あるいは板状部材と圧電体が対向する対向面積以上が望ましい。
【0087】
(実施例4)
次に板状部材と音響整合層について検討した。圧電体の大きさは縦・横・高さが7.4mm×7.4mm×2.65mmの直方体とした。3次元解析と同様に圧電体の板状部材との接合面側にスリット構造を設けている。板状部材は円形と正方形とし、音響整合層の面積を変化させて超音波振動子を作製した。圧電体を包み込める最小大きさ、すなわち対角線の長さ(10.46mm)を直径とした円形および圧電体の接合面積と同面積を基準として、それぞれの面積を相似的に50%縮小したものから150%まで拡大したものを作製し、それぞれの形状で超音波振動子の送受信感度を測定した。表3にその結果を示す。測定条件は実施例2と同様である。
【0088】
【表3】
Figure 0003629481
【0089】
以上の結果から音響整合層の面積が板状部材の面積に対して増加する場合には、音響的に結合する面積に変化はないものの、板状部材と接合面積が増加しないために、自由に振動する面積が増加し、主共振、2次共振とは異なるモードが発生する。そのため送受信感度が低下する現象が見られた。また、ノイズレベルも増加した。一方、音響整合層の面積が減少する場合には、板状部材の面積よりも圧電体の面積が大きく影響し、圧電体と音響整合層の関係、すなわち実施例2で検討した結果(表1)と同様の傾向が見られた。従って、板状部材は板状部材と音響整合層の接合面積以上、あるいは音響整合層が板状部材に対向する対向面積以上必要であり、更に音響整合層は圧電体と板状部材の接合面積以上、あるいは圧電体が音響整合層に対向する対向面積以上必要である。
【0090】
(実施例5)
次に圧電体と、圧電体と板状部材を接合する接着層31について検討した。圧電体の大きさは縦・横・高さが7.4mm×7.4mm×2.65mmの直方体とした。3次元解析と同様に圧電体の板状部材との接合面側にスリット構造を設けている。音響整合層は圧電体をカバーできる最小面積(直径は10.46mm)とした。また、板状部材は円形とし、接着層31の面積を変化させて超音波振動子を作製した。圧電体の最大接合面積(7.4mm×7.4mm)を基準とし、接着層31の面積を相似的に50%縮小したものから150%まで拡大したものを作製し、超音波振動子の送受信感度を測定した。さらに、−40℃〜80℃のヒートサイクルによる信頼性試験の結果を表4に示す。測定条件は実施例2と同様である。
【0091】
【表4】
Figure 0003629481
〇:感度変化なし、△:感度低下率10%以下、×:感度低下率50%以上
【0092】
表4の結果から接着層31の面積が減少すると、送受信感度の低下見られた。また、信頼性試験の結果からも面積比が70%以下になると感度低下率が50%以上となり、超音波振動子としての信頼性が低下する。よって、接着層31の硬化後の面積は圧電体の接合面積以上、あるいは圧電体が接着層31に対向する対向面積以上必要である。
【0093】
(実施例6)
次に音響整合層と、音響整合層と板状部材を接合する接着層30について検討した。圧電体の大きさは縦・横・高さが7.4mm×7.4mm×2.65mmの直方体とした。3次元解析と同様に圧電体の板状部材との接合面側にスリット構造を設けている。音響整合層は圧電体をカバーできる最小面積(直径は10.46mm)とした。また、板状部材は円形、面積は128.84mmとして、接着層30の面積を変化させて超音波振動子を作製した。音響整合層の最大接合面積(85.89mm)を基準とし、接着層30の面積を相似的に50%縮小したものから150%まで拡大したものを作製し、超音波振動子の送受信感度を測定した。さらに、−40℃〜80℃のヒートサイクルによる信頼性試験の結果を表5に示す。
【0094】
【表5】
Figure 0003629481
〇:感度変化なし、△:感度低下率10%以下、×:感度低下率50%以上
【0095】
表5の結果から接着層30の面積が減少すると、送受信感度の低下見られた。これは板状部材との接合面積が減少し、音響的な結合面積が減少するために伝搬効率が低下する要因と、接合されていない部分が主共振モードとは異なるモードの振動を生じさせる要因から感度が低下する。
【0096】
また、信頼性試験の結果からも面積比が70%以下になると感度低下率が50%以上となり、超音波振動子としての信頼性が低下する。よって、接着層30の硬化後の面積は音響整合層の接合面積以上、あるいは音響整合層が接着層30に対向する対向面積以上にする必要がある。
【0097】
上記各実施例は板状部材との関係にて述べたものであるが、板状部材が図8、図9に示す一体型の有底型のケースであっても同様の効果を示す。但し、実施例3、4に関しては圧電体とケースとの収納関係により、実験結果が異なるために、以下、実施例7、実施例8は図8、図9に示す一体型の有底型のケースに関する第2及び第3実施形態を用いて説明する。
【0098】
(実施例7)
ケースと圧電体について検討した。圧電体の大きさは縦・横・高さが7.4mm×7.4mm×2.65mmの直方体とした。3次元解析と同様にケースとの圧電体の接合面側にスリット構造を設けている。ケースは有底筒状形状と有底箱形とし、ケース天面の面積を変化させて超音波振動子を作製した。圧電体を包み込める最小大きさすなわち対角線の長さ(10.46mm)を直径とした円形状を基準として、それぞれの面積を相似的に50%縮小したものから150%まで拡大したものを作製し、それぞれの形状で超音波振動子の送受信感度を測定した。表6にその結果を示す。
【0099】
【表6】
Figure 0003629481
【0100】
表6示される結果から、有天面筒状および箱形のケース両方とも、ケースが縮小されたとき圧電体がケース内に入らないため超音波振動子ーとして作製することが不可能である。しかし、圧電体に比べてケースが大きい場合には、送受信感度の感度低下は見られない。一方、圧電体と対向するケース面積が大きくなる場合には、ケースが大きくなっても音響的に結合する有効面積は殆ど変化しないため、感度へも殆ど影響を与えない。以上の結果から、ケースはケースと圧電体の接合面積以上、あるいはケースと圧電体が対向する対向面積以上が望ましい。
【0101】
(実施例8)
ケースと音響整合層について検討した。圧電体の大きさは縦・横・高さが7.4mm×7.4mm×2.65mmの直方体とした。3次元解析と同様に圧電体はケースとの接合面側にスリット構造を設けている。ケースは有天面筒状形状と有底箱型とし、音響整合層の面積を変化させて超音波振動子を作製した。圧電体を包み込める最小大きさすなわち対角線の長さ(10.46mm)を直径とした円形状を基準として、それぞれの面積を相似的に50%縮小したものから150%まで拡大したものを作製し、それぞれの形状で超音波振動子の超音波送受信感度を測定した。表7にその結果を示す。
【0102】
【表7】
Figure 0003629481
【0103】
以上の結果から音響整合層の面積がケースの天面の面積に対して増加する場合には、音響的に結合する面積に変化はないものの、ケースと接合面積が増加しないために、自由に振動する面積が増加し、主共振、2次共振とは異なるモードが発生する。そのため、超音波の送受信感度が低下する現象が見られた。また、ノイズレベルも増加した。一方、音響整合層の面積が減少する場合には、ケースの面積よりも圧電体の面積が大きく影響し、圧電体と音響整合層の関係、すなわち実施例2で検討した結果(表1)と同様の傾向が見られた。従って、ケースはケースと音響整合層の接合面積以上、あるいは音響整合層がケースに対向する対向面積以上必要であり、更に、音響整合層は圧電体とケースの接合面積以上、あるいは圧電体が音響整合層に対向する対向面積以上必要である。
【0104】
次に、1つの超音波振動子1,17,18における、ケース(板状部材)3と音響整合層4との関係について説明する。ここでは、圧電体を基準に、圧電体と音響整合層の面積比を100%としたときについて説明する。
【0105】
ケース(板状部材)3と音響整合層4との面積比率の範囲は、異常共振モードが発生しない範囲として、音響整合層4の面積は、ケース(板状部材)3の面積の15%〜150%が好ましい。ケース(板状部材)3の面積の150%とはケース天面と同面積であることを意味する。音響整合層4の面積がケース(板状部材)3の面積の150%より大きい場合には、インピーダンスの周波数特性に異常な共振モードが発生するため使用不可能となる。また、音響整合層4の面積が15%未満になると、音響整合層自身の厚さ方向の形状異方性が強くなり、異なる共振モードが発生するため、使用不可能となる。
【0106】
一方、音響整合層4の面積と感度低下率(送信時)のグラフより、感度低下率が25%以下の範囲とするためには、圧電体6と音響整合層4の形状が同一のときは音響整合層4の面積が圧電体6の面積の35%〜150%、圧電体6と音響整合層4の形状が異なるときは音響整合層4の面積が圧電体6の面積の45%〜150%とすることが好ましい(:図10、図11参照)。この理由は、音響整合層4の面積が圧電体6の面積の(35%〜45%)未満では、上記流量算出システム上、検出限界に近くなって計測性能(精度)が低下してしまう一方、150%を超えると、異常共振が発生してしまうからである。すなわち、図10によれば、送信時の感度低下率が25%以下の範囲は、ケース(板状部材)3の面積が128.84mmのとき、正方形の音響整合層4の面積が30mm以上、円形の音響整合層4の面積が38mm以上とすればよい。図11によれば、送受信時の感度低下率が25%以下の範囲は、ケース(板状部材)3の面積が128.84mmのとき、正方形の音響整合層4の面積が38mm以上、円形の音響整合層4の面積が45mm以上とすればよい。感度低下率が25%を超えると、上記流量算出システム上、検出限界に近くなって計測性能(精度)が低下することから、感度低下率が25%以下の範囲とすることが好ましい。
【0107】
また、超音波振動子の指向性及び感度から考慮すると、音響整合層4の面積は大きいほうがよいので、音響整合層4の面積は、ケース(板状部材)3の面積の100%〜150%の範囲が好ましい。これは、感度低下は20%までは許されるが、感度低下25%は限界値であるため上記流量算出システム上の不安定な領域に近く、保証範囲の余裕が無いことから、100%以上とする一方、150%を超えると、異常共振が発生してしまうので、150%以下とする。また、100%〜150%の範囲ならば、超音波振動子の指向性を良くすることによって、余計な信号を検出しないため、外乱に強くなる。従って、計測精度を向上させることができる。ただし、音響整合層4が接着層30より大きい場合には指向性は狭くなり、逆に、音響整合層4が接着層30より小さい場合には指向性は広くなる。また、圧電体6が接着層31より大きい場合には感度は高くなり、逆に、圧電体6が接着層31より小さい場合には感度は低くなる。
【0108】
以上から総合的に判断して、音響整合層4の面積は、ケース(板状部材)3の面積の100〜150%が望ましい。ただし、指向性、感度、異常共振を考慮して、超音波振動子を使用する場合にどの特性を重要視するかで、上記100〜150%の範囲内で面積範囲を適宜選択することが望ましい。すなわち、上記100〜150%の範囲内で面積範囲を適宜選択すれば、指向性が良くなり、感度低下率を25%以下の範囲とすることができ、さらに、異常共振モードの発生を防止することができる。
【0109】
(実施例9)
次に、圧電体と音響整合層について検討した。圧電体の大きさは縦・横・高さが7.4mm×7.4mm×2.65mmの直方体とした。3次元解析と同様にケースとの圧電体の接合面側にスリット構造を設けている。ケースは有底筒状形状と有底箱型とし、有底形状のケース天面と同じ形状の音響整合層の面積を変化させて超音波振動子を作製した。有底筒状ケースの天面はφ11mm、有底箱形ケースの天面は8mm×8mmである。圧電体を覆うことが可能な最小の面積を基準として、相対的に50%縮小したものからケース天面の面積まで拡大したものまで変化させて感度低下率を調べた。その結果を表8に示す。
【0110】
【表8】
Figure 0003629481
【0111】
以上の結果、音響整合層を圧電体の面積に対して相対的に小さくすると感度が低下し、逆にケース天面の大きさを最大として大きくすると殆ど感度は変化しないことがわかった。よって、音響整合層は圧電体の面積以上、ケースの天面以下必要である。
【0112】
次に、超音波振動子の指向性と感度について考察する。
【0113】
(I)送信の場合:
超音波振動子に指向性が生じる理由は、以下の理由からである。すなわち、遠距離であっても超音波の送信方向が超音波振動子の板状部材3の中心軸からずれると、
【0114】
【数1】
Figure 0003629481
【0115】
の積分において位相差が大きくなって、積分された速度ポテンシャルは超音波振動子の板状部材3の中心軸方向より小さくなる。ここで、図12(A),(B)に示すように、超音波振動子の板状部材3が円形ピストンの場合、中心軸からγの方向で中心からの距離がrである点P点とを含む平面と、振動面上の(x,y)にあるdsからP点までの距離は、図12のように
【0116】
【数2】
r=r−ysinγ
であるから、
【0117】
【数3】
Figure 0003629481
となる。ただし、分母ではr≒rとして距離を無視しているが、これはΦの絶対値に影響するだけであるから、r≫aならば差し支えない。この積分の結果は、
【0118】
【数4】
Figure 0003629481
となる。ただし、aは板状部材3の半径である。
また、Zは
Z=k×a×sinγ=(πd/λ)×sinγ=(πdf/c)×sinγ
である。ただし、aは板状部材3の半径、cは超音波の伝搬速度、kは超音波の波長定数、dは板状部材3の直径、J(Z)はベッセル関数である。
【0119】
以上より、超音波振動子において、周波数が一定の場合は、板状部材3の直径が大きいほど指向性が鋭いことになる。板状部材3の直径が一定の場合には、周波数が高いほど指向性が鋭いことになる。
【0120】
(II)受信の場合:
送音の指向性利得は、同じ音響出力を出しても指向性送音器はその軸方向には無指向性送音器に比べて指向性利得倍の強度を与える。しかし、受波においては指向性利得は全く別の意味を持つ。一つの方向から来る平面波を受けるのに、指向性受音器の軸を向ければ無指向性受音器より感度が良いという傾向があるが、その程度は指向性利得と直接の関係はない。周波数を一定とすれば、指向性受音器の方が受音面積が大きいから感度の良い受音器を作れる。あるいは、両受音器の能率を等しいとすれば、入力パワーが受音面積に比例するから電気出力もそれだけ多くとれる。同じ大きさの受音器を高周波で使えば低周波の場合より指向性利得は大きいが、音圧を一定としたとき高周波の方が指向性利得も比して電気出力が大きくなることはあり得ない。従って、受音の場合は、目的の信号は一つの方向から来る平面波であり、妨害する雑音は全立体角から均等に来ると仮定すると、無指向性受話器を使った場合に比べてSN比が指向性利得だけ改善される。
【0121】
以上より判断して、音響整合層4の大きさはできるだけケース(振動板)3の大きさと等しいほうが望ましい。
【0122】
一方、超音波流量計として一対の超音波振動子17,18を用いた場合の特徴は以下のとおりである。
【0123】
まず、一対の超音波振動子17,18の相関係数は、インピーダンスの周波数が200KHz〜750KHz(より好ましくは、350KHz〜750KHz)のとき、0.80以上、好ましくは0.960以上とするのが好ましい。ここで、相関係数とは、各超音波振動子17,18のインピーダンスの周波数特性(図13及び図14)を測定した後、それぞれの周波数に対するインピーダンスがどの程度一致しているかを求めたものである。周波数範囲は使用周波数域の200KHz〜750KHzの各測定点で計算する。
【0124】
電流型回路を用いた場合、超音波振動子17,18のインピーダンスとしてはできるだけ似ている必要がある。理由としては、図15及び図16に示すように理想的な電流型回路の場合には、2次側短絡であれば流路、超音波振動子のインピーダンスに関係なく、出力電流は受信、送信を入れ替えても同じである。しかし、出力電流を測定するためには2次側を完全に短絡状態にすることは不可能で、ある程度の抵抗が必要となる。このとき、理想的な電流型回路にならないため、超音波振動子17,18に対してできるだけ似たインピーダンスが要求される。超音波振動子17,18の相関係数の値が0.80以上、好ましくは0.960以上であれば、計測回路側でその相関係数を補正することにより、被測定流体の流量を精度良く(例えば、都市ガスでは少なくとも3リットル/h以上の精度で)測定することができる超音波流量計として、それらの超音波振動子17,18が使用可能となる。
【0125】
また、超音波流量計として使用するときの一対の対向するそれぞれの超音波振動子17,18は大略同一形状であり、かつ、それぞれの中心はできるだけ合わせた方がよいとともに、上記一対の対向する超音波振動子17,18の対向面(対向する音響整合層の対向面)間の平行度は、できるだけ合わせるほうが望ましい。
【0126】
なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
【0127】
【発明の効果】
この発明によれば、音響整合層、板状部材、圧電体、接着層の大きさを適正化することで、効率性と信頼性を兼ね備えた超音波振動子および超音波流量計を実現する。
【0128】
また、音響整合層の面積を板状部材の面積の100〜110%とする場合には、指向性が良くなり、感度低下率を25%以下の範囲とすることができ、さらに、異常共振モードの発生を防止することができる。
【0129】
さらに、一対の超音波振動子を備える超音波流量計において、上記一対の超音波振動子は大略同一形状であり、インピーダンスの周波数が200KHz〜750KHzのとき、上記一対の超音波振動子の相関係数は0.80以上であるようにすれば、被測定流体の流量を精度良く(例えば、都市ガスでは少なくとも3リットル/h以上の精度で)測定することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における超音波振動子の外観図である。
【図2】上記第1実施形態における超音波振動子の断面図である。
【図3】上記第1実施形態における超音波流量計の断面図である。
【図4】上記第1実施形態における超音波流量計の断面図である。
【図5】(A)上記第1実施形態の超音波振動子におけるインピーダンスの周波数特性の実測値を示す図、(B)上記第1実施形態の超音波振動子におけるインピーダンスの周波数特性の解析値を示す図である。
【図6】(A)上記第1実施形態における超音波振動子の主共振の解析結果を示す図、(B)上記第1実施形態における超音波振動子の2次共振の解析結果を示す図である。
【図7】(A)上記第1実施形態における超音波振動子の主共振の解析結果を示す図、(B)上記第1実施形態における超音波振動子の2次共振の解析結果を示す図である。
【図8】本発明の第2実施形態における超音波振動子の断面図である。
【図9】本発明の第3実施形態における超音波振動子の断面図である。
【図10】整合層の面積と感度低下率(送信)の関係を示すグラフである。
【図11】整合層の面積と感度低下率(送受信)の関係を示すグラフである。
【図12】(A),(B)は板状部材が円形ピストンの場合の超音波振動子の指向性と感度について説明するための超音波振動子の模式例の正面図及び断面側面図である。
【図13】超音波振動子のインピーダンスと周波数との関係を示すグラフである。
【図14】超音波振動子の位相と周波数との関係を示すグラフである。
【図15】理想的な電流型回路を示す説明図である。
【図16】理想的な電流型回路を示す説明図である。
【符号の説明】
1…超音波振動子、2…支持体、3…板状部材、4…音響整合層、5…フランジ部、6…圧電体、7…端子板、8a,8b…端子、9…絶縁物、10…導電性ゴム、11…流量測定部、12…側壁部、13…側壁部、14…シール材、15…上板部、16…流路断面、17…超音波振動子、18…超音波振動子、19…振動子取り付け穴、20…振動子取り付け穴、21…シール材、22…シール材、30…接着層、31…接着層、32…有底状ケース、100…超音波流量計、100a…入口路、100b…出口路、101…計測回路、102…流量演算手段。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic transducer and an ultrasonic flowmeter that measure the flow rate and flow velocity of a gas or liquid using ultrasonic waves.
[0002]
[Prior art]
Conventionally, for example, Japanese Patent Application Laid-Open No. 11-325992 is known as an ultrasonic transducer used in this type of ultrasonic flow measuring device, and a piezoelectric body is provided on the inner surface of the top of the case, and an acoustic matching layer is provided on the top. Is provided.
[0003]
[Patent Document 1]
JP-A-11-325992
[0004]
[Problems to be solved by the invention]
However, in the conventional configuration, the acoustic matching layer is simply provided, and no consideration has been given to an appropriate acoustic matching layer, piezoelectric body, and case.
[0005]
In particular, there is nothing that considers an optimal combination of an acoustic matching layer, a piezoelectric body, and a case in terms of transmission / reception sensitivity, and it is not described from the viewpoint of efficiency and reliability.
[0006]
In recent gas flowmeters, the type of gas used and the measurement accuracy (for example, the accuracy required for a flow measurement device for city gas is 0.5 nsec or more, and the ultrasonic transducer has a higher accuracy than this. Improvement of the function of the ultrasonic transducer is desired from the point of (required), and the function improvement of the ultrasonic transducer is also desired from such industrial needs.
[0007]
In particular, an ultrasonic transducer performs its function by receiving an ultrasonic signal transmitted from one ultrasonic transducer with the other ultrasonic transducer. Is a problem. When the sensitivity is improved, the measurement accuracy is improved, and it is economical because it is not necessary to supply more power than necessary to the piezoelectric body.
[0008]
An object of the present invention is to solve the above-described problems, and to improve the sensitivity of an ultrasonic transducer and improve the measurement characteristics of an ultrasonic flowmeter using the ultrasonic transducer, and an ultrasonic flow rate using the ultrasonic transducer Provide a total.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
[0010]
According to the first aspect of the present invention, the plate-shaped member, the acoustic matching layer installed on one surface of the plate-shaped member via the adhesive layer, and the surface of the plate-shaped member provided with the acoustic matching layer And a piezoelectric body installed on a surface opposite to the piezoelectric layer through a bonding layer, and an installation area of the acoustic matching layer is equal to or larger than a bonding area where the piezoelectric body is bonded to the plate member, or the piezoelectric body is An ultrasonic transducer having an area larger than an area facing the acoustic matching layer via a plate-like member is provided.
[0011]
Moreover, according to the 2nd aspect of this invention, the plate-shaped member, the acoustic matching layer installed in one surface of the said plate-shaped member through the contact bonding layer, and the said acoustic matching layer of the said plate-shaped member are provided. A piezoelectric body disposed on the opposite surface to the surface through a bonding layer, and the opposing area of the plate-like member to the acoustic matching layer is such that the plate-like member and the acoustic matching layer serve as the adhesive layer. There is provided an ultrasonic transducer having a bonding area that is greater than or equal to a bonding area or an area in which the acoustic matching layer is opposed to the plate-like member.
[0012]
Moreover, according to the 3rd aspect of this invention, the plate-shaped member, the acoustic matching layer installed in one surface of the said plate-shaped member through the contact bonding layer, and the said acoustic matching layer of the said plate-shaped member are provided. A piezoelectric body disposed on the opposite surface to the piezoelectric body via a bonding layer, and the area of the plate-like member facing the piezoelectric body is such that the plate-like member and the piezoelectric body are bonded via the adhesive layer. There is provided an ultrasonic transducer having a bonding area equal to or greater than or equal to or greater than an opposing area where the plate member and the piezoelectric body face each other.
[0013]
Moreover, according to the 4th aspect of this invention, the plate-shaped member, the acoustic matching layer installed in one surface of the said plate-shaped member through the contact bonding layer, and the said acoustic matching layer of the said plate-shaped member are provided. And a piezoelectric body disposed on the opposite surface to the surface of the acoustic matching layer via a bonding layer, the opposing area of the acoustic matching layer being greater than or equal to the bonding area of the surface where the piezoelectric body is bonded to the plate member, or the piezoelectric More than the opposing area which a body opposes the said acoustic matching layer via the said plate-shaped member, and the opposing area of the said plate-shaped member is the joining area where the said plate-shaped member and the said acoustic matching layer are joined via the said adhesive layer An ultrasonic transducer in which the acoustic matching layer is greater than or equal to the facing area facing the plate-like member is provided.
[0014]
Moreover, according to the 5th aspect of this invention, the plate-shaped member, the acoustic matching layer installed in one surface of the said plate-shaped member through the contact bonding layer, and the said acoustic matching layer of the said plate-shaped member are provided. And a piezoelectric body disposed on the opposite surface to the surface of the adhesive layer via a bonding layer, and the opposing area of the adhesive layer is greater than or equal to the bonding area of the bonding surface where the piezoelectric body is bonded to the plate-like member, or the piezoelectric Provided is an ultrasonic transducer whose body is not less than the facing area facing the adhesive layer.
[0015]
According to the sixth aspect of the present invention, a plate-shaped member, an acoustic matching layer installed on one surface of the plate-shaped member via an adhesive layer, and the acoustic matching layer of the plate-shaped member are provided. And a piezoelectric body disposed on the opposite surface to the surface of the adhesive layer via a bonding layer, and the opposing area of the adhesive layer is greater than or equal to the bonding area of the acoustic matching layer to be bonded to the plate-like member, or the acoustic matching layer Provides an ultrasonic transducer having an area equal to or greater than the facing area facing the adhesive layer.
[0016]
According to the seventh aspect of the present invention, the area of the acoustic matching layer is 100 to 110% of the area of the plate member. 6 An ultrasonic transducer according to any one of the embodiments is provided.
[0017]
According to the eighth aspect of the present invention, the flow rate measurement unit through which the fluid to be measured flows, and the ultrasonic wave according to any one of the first to seventh aspects, which are provided in the flow rate measurement unit and transmit and receive ultrasonic waves. There is provided an ultrasonic flowmeter comprising an acoustic transducer, a measurement circuit for measuring a propagation time between the ultrasonic transducers, and a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit.
[0018]
According to the ninth aspect of the present invention, the pair of ultrasonic transducers have substantially the same shape, and the frequency characteristic phase relationship of the impedance of the pair of ultrasonic transducers is within a use range of impedance frequencies of 200 KHz to 750 KHz. The ultrasonic flow meter according to the eighth aspect, wherein the number is 0.80 or more.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below in detail with reference to the drawings.
[0020]
First, before describing in detail an ultrasonic transducer according to various embodiments of the present invention and an ultrasonic flowmeter using the ultrasonic transducer, various embodiments of the present invention will be described.
[0021]
According to the first embodiment of the present invention, a plate-shaped member, an acoustic matching layer installed on one surface of the plate-shaped member via an adhesive layer, and a surface provided with the acoustic matching layer of the plate-shaped member; A piezoelectric body disposed on the opposite surface via a bonding layer, and the installation area of the acoustic matching layer is greater than or equal to the bonding area where the piezoelectric body is bonded to the plate member, or the piezoelectric body is the plate An ultrasonic transducer having an area larger than the area facing the acoustic matching layer via a member. In terms of transmission / reception sensitivity with this configuration, in the case of an ultrasonic transducer that also performs transmission / reception, when the acoustic matching layer is larger than the piezoelectric body that is a driving source, the ultrasonic signal (or sound pressure) generated from the piezoelectric body is a plate. The ultrasonic signal (or sound pressure) propagated to the acoustic matching layer through the shaped member and hardly propagates.
[0022]
On the other hand, when the opposing area of the acoustic matching layer is smaller than the bonding area between the piezoelectric body and the plate-like member, only part of the ultrasonic signal (or sound pressure) generated by the piezoelectric body can propagate to the acoustic matching layer. Sensitivity decreases. Also, the reception sensitivity is not so much a problem when the acoustic matching layer is larger than the piezoelectric body, but when the acoustic matching layer is smaller than the piezoelectric body, an ultrasonic signal (or sound pressure) that propagates to the piezoelectric body. As a result, the reception density is lowered.
[0023]
Moreover, according to the 2nd form of this invention, the plate-shaped member, the acoustic matching layer installed in one surface of the said plate-shaped member through the contact bonding layer, and the acoustic matching layer of the said plate-shaped member were provided. A piezoelectric body installed on a surface opposite to the surface via a bonding layer, and the area of the plate member facing the acoustic matching layer is such that the plate member and the acoustic matching layer are bonded via an adhesive layer. It is an ultrasonic transducer having a bonding area that is greater than or equal to or greater than the opposing area where the acoustic matching layer is opposed to the plate-like member, and can suppress a decrease in the propagated ultrasonic signal.
[0024]
On the other hand, when the acoustic matching layer is larger than the plate-like member, the region other than the bonding area has insufficient rigidity. Therefore, the mechanical strength is also lowered, so that it is not reliable. Also, from an acoustic point of view, regions other than the junction area cause unnecessary vibration, and a vibration mode different from the main vibration mode propagated in the junction area is likely to be generated. This adversely affects the directivity and sensitivity of the ultrasonic signal.
[0025]
Moreover, according to the 3rd form of this invention, the plate-shaped member, the acoustic matching layer installed through the contact bonding layer on one surface of the said plate-shaped member, and the acoustic matching layer of the said plate-shaped member were provided. A piezoelectric body disposed on a surface opposite to the surface via a bonding layer, and the area of the plate member facing the piezoelectric body is such that the plate member and the piezoelectric body are bonded via the adhesive layer. The ultrasonic transducer has a bonding area of not less than or a facing area where the plate-like member and the piezoelectric body face each other, and can suppress a decrease in the propagated ultrasonic signal.
[0026]
On the other hand, when the plate-like member is smaller than the piezoelectric body, the effect as the plate-like member is obviously lowered or hardly effective.
[0027]
Moreover, according to the 4th form of this invention, the plate-shaped member, the acoustic matching layer installed in one surface of the said plate-shaped member through the contact bonding layer, and the acoustic matching layer of the said plate-shaped member were provided. A piezoelectric body disposed on the opposite surface to the surface through a bonding layer, and the opposing area of the acoustic matching layer is equal to or greater than the bonding area of the surface where the piezoelectric body is bonded to the plate member, or the piezoelectric body is plate-shaped More than the opposing area facing the acoustic matching layer through the member, and the opposing area of the plate-like member is more than the bonding area where the plate-like member and the acoustic matching layer are joined via the adhesive layer, or the acoustic matching layer is the plate-like member This is an ultrasonic transducer having an opposed area that is greater than or equal to the distance between them, and can substantially suppress a decrease in the transmitted ultrasonic signal.
[0028]
According to the fifth aspect of the present invention, the plate-shaped member, the acoustic matching layer installed on one surface of the plate-shaped member via the adhesive layer, and the acoustic matching layer of the plate-shaped member are provided. A piezoelectric body disposed on a surface opposite to the surface via a bonding layer, and an opposing area of the adhesive layer is equal to or greater than a bonding area of a bonding surface where the piezoelectric body is bonded to the plate-like member, or the piezoelectric body Is an ultrasonic transducer having an area larger than the facing area facing the adhesive layer, and can substantially suppress a decrease in the propagated ultrasonic signal.
[0029]
An adhesive layer that acoustically couples and physically joins the acoustic matching layer and the plate-like member will be described. When the adhesive layer is smaller than the bonding area or the opposing area of the plate-like member and the acoustic matching layer, the ultrasonic signal propagated from the piezoelectric body to the plate-like member is propagated to the acoustic matching layer via the adhesive layer. Propagation efficiency decreases and transmission sensitivity decreases. On the other hand, also in the reception sensitivity, the ultrasonic signal propagated to the acoustic matching layer is propagated to the plate member via the adhesive layer. Therefore, when the adhesive layer is smaller than the acoustic matching layer, the ultrasonic signal received by the acoustic matching layer decreases because the area decreases as the area decreases. Here, the facing area refers to an area in which the plate member and the acoustic matching layer are opposed to each other and overlap each other. One index of reliability is the adhesive strength between the acoustic matching layer and the plate-like member. This adhesive strength tends to depend on the area when the thickness of the adhesive layer is constant. Accordingly, by setting the adhesive layer to be equal to or larger than the bonding area between the plate-like member and the acoustic matching layer, the adhesive strength can be increased and the reliability can be improved.
[0030]
According to the sixth aspect of the present invention, the plate-like member, the acoustic matching layer installed on one surface of the plate-like member via the adhesive layer, and the acoustic matching layer of the plate-like member are provided. And a piezoelectric body disposed on the opposite surface to the surface of the adhesive layer via a bonding layer, and the opposing area of the adhesive layer is greater than or equal to the bonding area of the acoustic matching layer to be bonded to the plate-like member, or the acoustic matching layer Is an ultrasonic transducer having an area larger than the facing area facing the adhesive layer, and can substantially suppress a decrease in the propagated ultrasonic signal.
[0031]
On the other hand, an adhesive layer for acoustically coupling and physically joining the piezoelectric body and the plate-like member will be described. When the adhesive layer is smaller than the opposing area or bonding area between the piezoelectric body and the plate-like member, the ultrasonic signal propagated from the piezoelectric body to the plate-like member is propagated to the plate-like member via the adhesive layer, so As the area of the layer decreases, the propagation efficiency decreases and the transmission sensitivity decreases. On the other hand, also in the reception sensitivity, the ultrasonic signal propagated to the acoustic matching layer and propagated to the plate member via the adhesive layer is propagated to the piezoelectric body via the adhesive layer. Therefore, when the adhesive layer is smaller than the piezoelectric body, the ultrasonic signal received by the piezoelectric body is lowered depending on the area reduction.
[0032]
According to the seventh aspect of the present invention, the ultrasonic vibration according to any one of the first to sixth aspects described above, in which the flow rate measurement unit through which the fluid to be measured flows and the ultrasonic wave provided in the flow rate measurement unit is transmitted and received. An ultrasonic flowmeter comprising: a measuring element for measuring a propagation time between the ultrasonic transducer; and a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit. The flow rate can be measured with high accuracy (for example, at least 3 liters / h or more with city gas).
[0033]
In the specification of the present application, the facing area refers to an area in which the piezoelectric body, the plate-like member, and the acoustic matching layer are directly or indirectly opposed and overlapped.
[0034]
Hereinafter, ultrasonic transducers and ultrasonic flowmeters using the ultrasonic transducers according to various embodiments of the present invention will be described with reference to FIGS.
[0035]
(First embodiment)
FIG. 1 is an external view of an ultrasonic transducer according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view of the ultrasonic transducer, and FIGS. 3 and 4 are cross-sectional views of the ultrasonic flowmeter according to the same embodiment.
[0036]
In FIG. 1, 1 is an ultrasonic transducer, 6 is a piezoelectric body as a driving source, 4 is an acoustic matching layer for transmitting ultrasonic waves to a transmission medium such as gas or liquid, and 3 is one side (outer wall surface). 3a is a plate-like member provided with an acoustic matching layer 4 and an opposite side (inner wall surface) 3b with a piezoelectric body 6. Specifically, the acoustic matching layer 4 is acoustically transmitted through an adhesive layer 30 and an adhesive layer (an example of a bonding layer) 31. A matching layer 4 and a piezoelectric body 6 are provided. The plate-like member 3 is a vibration propagation member that transmits the vibration of the piezoelectric body 6 to the acoustic matching layer 4, and acoustically connects the piezoelectric body 6 and the acoustic matching layer 4.
[0037]
Reference numeral 2 denotes a support for supporting the plate-like member 3. Specifically, the outer peripheral portion of the plate-like member 3 is engaged with and joined to the cylindrical inner peripheral portion. In the first embodiment, the plate-like member 3 and the support 2 constitute a bottomed case 32 having a top part 32a, a side wall part 32b, and an opening part 32c. Reference numeral 5 denotes a flange portion for joining the ultrasonic transducer 1 to a side wall portion that forms a mounting hole for the ultrasonic transducer 1 connected to the flow path of the ultrasonic flowmeter, as will be described later.
[0038]
In FIG. 2, 6 is a piezoelectric body disposed on the inner wall surface of the plate-like member 3, 7 is a terminal plate fixed to the flange portion 5, 8a and 8b are terminals provided on the terminal plate 7, and 9 is a terminal. An insulator for insulating 8a and 8b, and 10 is a conductive rubber for electrically connecting the piezoelectric body 6 and the terminal 8a. The piezoelectric body 6 is closed by a bottomed case 32 and a terminal plate 7 and sealed with an inert gas.
[0039]
FIG. 3 shows a cross-sectional view of an ultrasonic flow meter 100 provided with the ultrasonic transducer 1.
[0040]
A schematic configuration of the ultrasonic flowmeter 100 is shown. A flow rate measurement unit 11 that measures a flow rate of a fluid to be measured that flows in from an inlet passage 100a connected to a supply pipe to which a fluid to be measured such as a gas is supplied; An outlet path 100b that communicates with the unit 11 and guides the fluid to be measured to the outside, and a pair of ultrasonic transducers 17 and 18 that are provided in the flow rate measurement unit 11 to transmit and receive ultrasonic waves (each of which is connected to the ultrasonic transducer 1) And a measurement circuit 101 that measures the propagation time between the ultrasonic transducers 17 and 18, and a flow rate calculation means 102 that calculates a flow rate based on a signal from the measurement circuit 101. Therefore, an ultrasonic wave is transmitted from one ultrasonic transducer 17 to the other ultrasonic transducer 18, and an ultrasonic wave that has passed through a fluid to be measured such as a gas is received by the other ultrasonic transducer 18. Thus, the measurement circuit 101 measures the propagation time between the ultrasonic transducers 17 and 18. Then, conversely, the ultrasonic waves transmitted from the other ultrasonic transducer 17 toward the one ultrasonic transducer 18 and passed through the fluid to be measured such as gas are converted into the one ultrasonic transducer. 18, the measurement circuit 101 measures the propagation time between the ultrasonic transducers 17 and 18. In this way, the ultrasonic propagation time is measured between the pair of ultrasonic transducers 17 and 18 a predetermined number of times, and the flow rate of the fluid under measurement such as gas is calculated by the flow rate calculation means 102 based on the average value. Like to do. Therefore, the ultrasonic transducers 17 and 18 can transmit and receive. Here, the measurement circuit 101 and the flow rate calculation means 102 constitute a flow rate calculation system.
[0041]
As an example, the flow rate measurement unit 11 assumes a household gas meter that measures the flow rate of LP gas or natural gas as a material, and uses aluminum alloy die casting. Then, as shown in FIG. 4, the upper plate portion 15 is screwed to the end faces of the side wall portions 12 and 13 constituting the gas flow path via a sealing material 14 made of, for example, a cork material, so that the flow path cross section 16 is rectangular. Make up things. Further, as shown in FIG. 3, the ultrasonic transducers 17 and 18 are provided obliquely on the side wall portions 12 and 13 so that the transmission / reception surfaces for transmitting and receiving the ultrasonic waves face each other. Specifically, the ultrasonic vibrators 17 and 18 provided in the side walls 12 and 13 are fixed to the mounting holes 19 and 20 via seal materials 21 and 22 made of, for example, O-rings. This is an example, and the present invention is not limited to this.
[0042]
On the other hand, the plate-like member 3 is located between the acoustic matching layer 4 and the piezoelectric body 6, and plays a role of a joint portion or a fixing portion between the acoustic matching layer 4 and the piezoelectric body 6 from a physical viewpoint. From an acoustic point of view, this is a connector for propagating an ultrasonic signal (or sound pressure) from the acoustic matching layer 4 to the piezoelectric body 6 and from the piezoelectric body 6 to the acoustic matching layer 4. Fulfill. Therefore, the physical bonding area of the acoustic matching layer 4, the plate-like member 3, and the piezoelectric body 6 is very important.
[0043]
Next, the operation of the ultrasonic transducer 1 will be described and the propagation efficiency of transmission will be considered.
[0044]
The ultrasonic signal transmitted from the piezoelectric body 6 is propagated to the acoustic matching layer 4 through the adhesive layer 31, the plate-like member (vibration propagation member) 3, and the adhesive layer 30.
[0045]
(Consideration of propagation efficiency of transmission between piezoelectric body and plate member)
When an ultrasonic signal transmitted from the piezoelectric body 6 is propagated to the plate-like member 3, the propagation efficiency from the piezoelectric body 6 to the plate-like member 3 is such that the piezoelectric body 6 as a driving source is acoustically different from the plate-like member 3. Depends on the size of the bonded area to be bonded. This bonding area substantially coincides with the bonding area where the plate member 3, the piezoelectric body 6, and the adhesive layer 31 overlap when the piezoelectric body 6 is bonded to the plate member 3 using the adhesive layer 31. Therefore, in order to efficiently transmit an ultrasonic signal from the piezoelectric body 6 to the plate-like member 3, the plate-like member 3 has a larger area than the bonding area between the plate-like member 3 and the piezoelectric body 6 (the plate-like member 3 and the piezoelectric body). 6 or more) is desirable.
[0046]
Further, the ultrasonic signal propagated to the plate-like member 3 is propagated to the acoustic matching layer 4 via the adhesive layer 30 that joins the plate-like member 3 and the acoustic matching layer 4.
[0047]
(Consideration of propagation efficiency of transmission between plate member and acoustic matching layer)
The acoustic coupling area between the plate-like member 3 and the acoustic matching layer 4 coincides with the area where the plate-like member 3, the acoustic matching layer 4, and the adhesive layer 30 overlap. Therefore, in order to efficiently propagate an ultrasonic signal from the plate-like member 3 to the acoustic matching layer 4, the plate-like member 3 is equal to or larger than the bonding area between the plate-like member 3 and the acoustic matching layer 4 (the acoustic matching layer 4 is Desirably, it is equal to or larger than the facing area facing the plate member 3.
[0048]
From the above, the area where the acoustic coupling areas of the piezoelectric body 6, the plate-like member 3, and the acoustic matching layer 4 overlap is the effective coupling area, and substantially coincides with the bonding area where each is joined. Therefore, the acoustic matching layer 4 needs to be larger than the bonding area of the piezoelectric body 6 and the plate-like member 3 or the facing area where the piezoelectric body 6 faces the acoustic matching layer 4, and the area is smaller than the above condition. Since the ultrasonic signal generated by the piezoelectric body 6 is propagated only at the ratio of the coupling area, the propagation efficiency is lowered and the ultrasonic transmission sensitivity is also lowered. Therefore, the area where the coupling areas of the piezoelectric body 4, the plate-like member 3, and the acoustic matching layer 6 overlap is the acoustic effective coupling area and the physical effective bonding area.
[0049]
Next, consider the case of receiving an ultrasonic signal.
[0050]
In the case of reception, the propagation process is opposite to that in the case of transmission. That is, the ultrasonic signal received from the acoustic matching layer 4 is propagated to the piezoelectric body 6 through the adhesive layer 30, the plate-like member 3, and the adhesive layer 31.
[0051]
(Consideration of propagation efficiency of reception between plate member and acoustic matching layer)
Since the ultrasonic signal received by the acoustic matching layer 4 is propagated to the plate-like member 3 through the adhesive layer 30 that joins the acoustic matching layer 4 and the plate-like member 3, the plate-like member is the same as in the case of transmission. 3 and the acoustic matching layer 4 coincide with the area where the plate-like member 3, the acoustic matching layer 4, and the adhesive layer 30 overlap. Therefore, in order to efficiently transmit an ultrasonic signal from the acoustic matching layer 4 to the plate-like member 3, the plate-like member 3 is equal to or larger than the bonding area of the plate-like member 3 and the acoustic matching layer 4 (the acoustic matching layer 4 is plate-like. It is desirable that the area is equal to or greater than the facing area facing the member 3.
[0052]
Further, the ultrasonic signal propagated to the plate-like member 3 is propagated to the piezoelectric body 6 through an adhesive layer 31 that joins the plate-like member 3 and the piezoelectric body 6.
[0053]
(Consideration of propagation efficiency of reception between plate member and piezoelectric body)
The bonding area between the plate-like member 3 and the piezoelectric body 6 coincides with the area where the plate-like member 3, the piezoelectric body 6 and the adhesive layer 31 overlap. Therefore, in order to efficiently propagate an ultrasonic signal from the plate-like member 3 to the piezoelectric body 6, the plate-like member 3 is larger than the bonding area of the plate-like member 3 and the piezoelectric body 6 (the plate-like member 3 and the piezoelectric body 6. Is more than the facing area facing each other).
[0054]
As described above, the area where the bonding areas of the piezoelectric body 6, the plate-like member 3, and the acoustic matching layer 4 overlap is the acoustic effective coupling area or the physical effective bonding area as in the transmission.
[0055]
Accordingly, at the time of reception, the acoustic matching layer 4 needs to have an area larger than the bonding area between the piezoelectric body 6 and the plate-like member 3 or an opposed area where the piezoelectric body 6 faces the acoustic matching layer 4, as in the transmission. When the condition is smaller than the above condition, since the ultrasonic signal generated by the piezoelectric body 6 is propagated only by the ratio of the bonding area, the propagation efficiency is lowered and the ultrasonic reception sensitivity is also lowered.
[0056]
Next, the adhesive layer 31 will be considered.
[0057]
The adhesive layer 31 that joins the piezoelectric body 6 and the plate-like member 3 has a role of not only physically joining the piezoelectric body 6 and the plate-like member 3 but also acoustically coupling them. The adhesive 31 is, for example, an epoxy-based thermosetting adhesive, and is temporarily bonded to the piezoelectric body 6 and the plate-like member 3 in a viscous state, and cured by heat or the like. Then, after the adhesive layer 31 is cured for bonding, when the opposing area facing the piezoelectric body 6 and the plate-like member 3 is smaller than that of the piezoelectric body 6, an ultrasonic signal generated from the piezoelectric body 6 is applied to the plate-like member 3. When propagating, the bonding area between the piezoelectric body 6 and the plate-like member 3 is reduced, and the propagation efficiency is lowered. For this reason, the transmission sensitivity of ultrasonic waves is reduced.
[0058]
The adhesive for the adhesive layer 31 includes urethane, cyano, and silicone resin adhesives.
[0059]
On the other hand, in the reception in which the ultrasonic signal propagated from the acoustic matching layer 4 is propagated to the plate-like member 3 and propagated to the piezoelectric body 6 through the adhesive layer 31, the opposing area facing the plate-like member 3 is the piezoelectric body. If it is smaller than 6, when the ultrasonic signal propagated to the plate-like member 3 is propagated to the piezoelectric body 6, the bonding area between the piezoelectric body 6 and the plate-like member 3 becomes small, and the propagation efficiency is lowered. , The reception sensitivity of ultrasonic waves decreases.
[0060]
Therefore, the adhesive layer 31 that joins the plate-like member 3 and the piezoelectric body 6 has an area after curing of the adhesive layer 31 that is equal to or larger than the joint area between the piezoelectric body 6 and the plate-like member 3 (the piezoelectric body 6 faces the adhesive layer 31). Or more), a reduction in propagation efficiency can be minimized.
[0061]
In terms of physical bonding, that is, the adhesive strength, the area after the adhesive layer 31 is cured is required to be equal to or larger than the opposing area where the piezoelectric body 6 faces the plate-like member 3. When the area of the adhesive layer 31 after curing is smaller than the area of the piezoelectric body 6 facing the plate-like member 3, the adhesive layer 31 does not wrap around the piezoelectric body 6 so as to be wrapped outside. Since the area is reduced and the anchor effect can hardly be expected, the adhesive strength is lowered. Therefore, the area after curing of the adhesive layer 31 is required to be equal to or larger than the bonding area between the piezoelectric body 6 and the plate-like member 3 or the facing area where the piezoelectric body 6 is opposed to the adhesive layer 31 from physical bonding. Yes, it can improve the adhesive strength and ensure the improvement of reliability.
[0062]
The adhesive layer 30 that joins the acoustic matching layer 4 and the plate-like member 3 is also a thermosetting adhesive, and not only physically joins the acoustic matching layer 4 and the plate-like member 3 but also acoustically. Have the role of combining. Therefore, when the adhesive layer 30 after curing has a smaller facing area facing the acoustic matching layer 4 and the plate-like member 3 after curing, the ultrasonic signal generated from the piezoelectric body 6 is transmitted to the plate-like member. 3. When propagating from the plate-like member 3 to the acoustic matching layer 4, the joint area between the plate-like member 3 and the acoustic matching layer 4 is reduced, the propagation efficiency is lowered, and the ultrasonic transmission sensitivity is lowered.
[0063]
On the other hand, in the case where the ultrasonic signal is received by the acoustic matching layer 4 and then propagated from the acoustic matching layer 4 to the plate-like member 3, in the reception propagated to the plate-like member 3 through the adhesive layer 30, the adhesive layer 30. After curing, when the opposing area facing the plate-like member 3 and the acoustic matching layer 4 is smaller than that of the acoustic matching layer 4, the acoustic signal propagates to the plate-like member 3 when the ultrasonic signal propagated to the acoustic matching layer 4 is propagated. Since the joining area between the matching layer 4 and the plate-like member 3 is reduced and the propagation efficiency is lowered, the ultrasonic reception sensitivity is lowered.
[0064]
Therefore, the area after curing of the adhesive layer 30 that joins the acoustic matching layer 4 and the plate-like member 3 is equal to or larger than the bonding area of the acoustic matching layer 4 or the facing area where the acoustic matching layer 4 faces the adhesive layer 30. Thus, it is possible to minimize the decrease in propagation efficiency. In terms of physical bonding, that is, adhesive strength, the area after the adhesive layer 30 is cured is required to be equal to or greater than the opposing area where the acoustic matching layer 4 faces the plate-like member 3. When the area of the adhesive layer 30 after curing is smaller than the area of the acoustic matching layer 4 facing the plate-like member 3, the adhesive layer 30 does not wrap around the acoustic matching layer 4 so that it substantially does not wrap around. The bonding area is reduced, and the anchoring effect can hardly be expected. Therefore, also from physical bonding, the area after curing of the adhesive layer 30 needs to be equal to or larger than the bonding area of the acoustic matching layer 4 or the facing area where the acoustic matching layer 4 faces the adhesive layer 30. The adhesive strength can be improved and the improvement of reliability can be ensured.
[0065]
The relationship described in the first embodiment is always established regardless of the shape and size of the acoustic matching layer 4, the plate-like member 3, and the piezoelectric body 6.
[0066]
Moreover, as shown in FIG. 8, FIG. 9, the plate-shaped member 3 and the support body 2 are not comprised separately, but the plate-shaped member and the support body were integrally formed as shown in FIG. Similar effects can be obtained in the second embodiment using the bottomed case 33 or the third embodiment in which no adhesive layer exists as shown in FIG.
[0067]
【Example】
In the following, experimental consideration of the first embodiment will be made with specific examples.
[0068]
(Example 1)
In order to confirm the effective area of the acoustic matching layer 4 with respect to the piezoelectric body 6, how the sound pressure generated from the piezoelectric body 6 using the three-dimensional simulation by the finite element method (FEM) is applied to the acoustic matching layer 4. We investigated whether it had an effect.
[0069]
The structure is as shown in FIG. 2 and is piezoelectric body / adhesive / case / adhesive / acoustic matching layer. For the piezoelectric body, the piezoelectric constant d 31 = -185.9 × 10 -12 m / V, d 31 = 366.5 × 10 -12 m / V, d 15 = 578.5 × 10 -12 m / V, elastic constant s 11 = 15.8 × 10 -12 m 2 / N, s 33 = 17.6 × 10 -12 m 2 / N, s 12 , S 13 Is calculated from the frequency constant and the electromechanical coupling coefficient (frequency constant n 1 = 1960 Hz · m, n 2 = 1430 Hz · m, n 3 = 1410 Hz · m, n 4 = 1980 Hz · m, n 2 = 856Hz · m, electromechanical coupling coefficient k r = 0.65, k 31 = 0.38, k 33 = 0.71, k t = 0.50, k 15 = 0.70). Poisson's ratio: 0.3, dielectric constant: ε 33 = 1950 × 0.9, ε = 2130 × 0.9, density: 7.70 g / cm 3 , Machine Q: 70 (attenuation ratio 0.0007114), the plate-like member of the case composed of the support and the plate-like member has a Young's modulus: 0.178 (10 12 N / m 2 ), Poisson's ratio: 0.29, density 7.93 g / cm 3 The adhesive is Young's modulus: 0.003, Poisson's ratio: 0.3, density 1.4 g / cm 3 , Damping ratio: 0.01, acoustic matching layer Young's modulus: 0.001906 N / m 2 Poisson's ratio: 0.3718, transverse elastic modulus: G = 0.0006946 N / m 2 The calculation was performed with a transverse wave velocity (2 MHz): 1167 m / s (actual value), a longitudinal wave velocity: 2494 m / s (calculated from the actually measured value of the transverse wave), and a machine Q: 50 (attenuation ratio 0.001).
[0070]
The results are shown in FIGS. FIGS. 5A and 5B are obtained by actually measuring the frequency characteristics of impedance and phase, and by analyzing the simulation. The left is an actual value obtained by measuring the output impedance by supplying an AC voltage to the ultrasonic transducer and changing its frequency, and the right is an analysis value. It can be seen that the measured values and the analyzed values are very well matched. In particular, when the resonance frequencies A to D are compared, respective resonances are observed at substantially the same frequency. When the respective resonance modes are analyzed, A: main resonance (longitudinal wave) f = 475 KHz, B: main resonance (transverse wave) f = 190 KHz, C: secondary resonance 590 KHz, D: split resonance f = 430 KHz, E: Anti-resonance and f = 650 KHz. Among these, the resonance modes that greatly contribute to the generation of the ultrasonic signal are A: main resonance (longitudinal wave) and C: secondary resonance. An ultrasonic signal is generated in these two resonance modes. The mode analysis result in each resonance frequency is illustrated.
[0071]
FIG. 6A is a diagram showing the concentration distribution of each displacement of the piezoelectric body, the plate-like member, and the acoustic matching layer when A: main resonance (longitudinal wave) and f = 475 KHz. As for the displacement, it can be seen that there is a particularly large displacement at the joint surface between the piezoelectric body and the plate-like member or the joint surface of the piezoelectric body with respect to the plate-like member around the central portion of the acoustic matching layer.
[0072]
FIG. 6B is a diagram showing the concentration distribution of the displacement of each of the piezoelectric body, the plate-like member, and the acoustic matching layer when C: secondary resonance is 590 KHz. Displacement is particularly large around the outer periphery of the acoustic matching layer, particularly at the joint surface between the piezoelectric body and the plate-like member, or the joint face of the piezoelectric body with respect to the plate-like member, similar to the main resonance of A. I understand.
[0073]
The main resonance and the secondary resonance affect the vibration of the acoustic matching layer, and the combined component is a combination with FIGS. 6A and 6B. The displacement is particularly large at the joint surface with the plate member or the joint surface of the piezoelectric body with respect to the plate member.
[0074]
FIGS. 7A and 7B are views showing the displacements of FIGS. 6A and 6B from directly above the acoustic matching layer.
[0075]
FIG. 7A shows the concentration distribution of the displacement of each of the piezoelectric body, the plate-like member, and the acoustic matching layer when A: main resonance (longitudinal wave) and f = 475 KHz. FIG. 7B shows concentration distributions of displacements of the piezoelectric body, the plate-like member, and the acoustic matching layer at 590 KHz in C: secondary resonance. In this model, the surface of the piezoelectric element facing the plate member is processed into a slit shape and divided into four. The case is composed of a cylindrical support and a plate-like member (here, it is assumed that the plate-like member and the support are continuously connected with the same material), and the acoustic matching layer is slightly smaller than the plate-like member. The shape was a circle. In the main resonance, a large displacement is mainly seen around the center two divided into four. The displacement area is slightly larger than the bonding area where the piezoelectric body is bonded to the plate member.
[0076]
On the other hand, in the secondary resonance of FIG. 7B, a large displacement is seen near the two outer sides of the piezoelectric body and near the center, and the bonding area or coupling area between the piezoelectric body and the plate-like member is the main driving range. This is the range in which the main displacement can be detected. Since the plate-like member has a circular shape, it was assumed that the boundary with the cylindrical portion of the support was very high in rigidity. Accordingly, a displacement distribution is seen in the shape of the top surface portion (here, the plate-like member) mainly in the vibrating portion.
[0077]
From the above points, it is apparent that the acoustic matching layer needs to be larger than the bonding area between the piezoelectric body and the plate-like member, or more than the facing area where the piezoelectric body faces the acoustic matching layer.
[0078]
(Example 2)
In order to confirm the result of the three-dimensional simulation analysis of Example 1, the following examination was performed. The size of the piezoelectric body was a rectangular parallelepiped having a length, width, and height of 7.4 mm × 7.4 mm × 2.65 mm. Similar to the three-dimensional analysis, a slit structure is provided on the side facing the piezoelectric plate-like member. The acoustic matching layer mainly used two types of shapes. One is a circular shape similar to the three-dimensional analysis, and the other is a square shape that is close to the shape of the piezoelectric body in a plane. The circular shape has a minimum size that can enclose the piezoelectric body, that is, a circular shape having a diagonal length (10.46 mm) as a diameter, and the square shape has the same size (7.4 mm × 7.4 mm) as the piezoelectric body. As a reference, each acoustic matching layer was similarly reduced in area by 50% to 150% and the transmission / reception sensitivity of the ultrasonic transducer was measured for each shape. The results are shown in Table 1.
[0079]
The measurement was performed under the condition that the interval between the ultrasonic transducers was 70 mm, the measurement voltage was 30 V, and the measurement frequency was 500 KHz.
[0080]
[Table 1]
Figure 0003629481
[0081]
From the above results, the installation area (opposite area) of the acoustic matching layer is smaller than the junction area where the piezoelectric body is joined to the plate member (reduction ratio 100% or more) or the opposed area where the piezoelectric body is opposed to the plate member. In this case, the transmission sensitivity and the reception sensitivity are drastically decreased, and conversely, the bonding area where the piezoelectric body is bonded to the plate-like member (a reduction / enlargement ratio of 100% or more) or the opposite area where the piezoelectric body is opposed to the plate-like member is greater than Thus, there is almost no change in transmission sensitivity and reception sensitivity, and the difference in sensitivity change is small, so that a decrease in propagation efficiency can be suppressed, and a decrease in transmission / reception sensitivity can be prevented.
[0082]
(Example 3)
Next, the plate member and the piezoelectric body were examined. The size of the piezoelectric body was a rectangular parallelepiped having a length, width, and height of 7.4 mm × 7.4 mm × 2.65 mm. Similar to the three-dimensional analysis, a slit structure is provided on the side facing the piezoelectric plate-like member. The plate-like member was circular and square, and the area of the plate-like member was changed to produce an ultrasonic transducer. Based on the minimum size that can enclose the piezoelectric body, that is, the area of a circle whose diameter is a diagonal length (10.46 mm) and the bonding area of the piezoelectric body 7.4 mm × 7.4 mm, the area is similar 50%. What reduced and expanded to 150% was produced, and the transmission / reception sensitivity of the ultrasonic transducer | vibrator was measured with the shape of each plate-shaped member. Table 2 shows the results. The measurement conditions are the same as in Example 2.
[0083]
[Table 2]
Figure 0003629481
[0084]
From the results shown in Table 2, in both the circular and square plate-like members, when the plate-like member is reduced with respect to the piezoelectric body (the area ratio of the top is 100% or less), the transmission sensitivity and the reception sensitivity are When the plate-like member increases extremely with respect to the piezoelectric body, the transmission sensitivity and the reception sensitivity hardly change and the difference in sensitivity change is small.
[0085]
As described above, since the area where the piezoelectric body is acoustically coupled or physically joined to the acoustic matching layer via the plate-like member is reduced, the transmission / reception sensitivity is lowered. However, when the area of the plate-like member is larger than that of the piezoelectric body, the effective area for acoustic coupling hardly changes even if the plate-like member is enlarged, so that the transmission / reception sensitivity is hardly affected.
[0086]
From the above results, it is desirable that the plate-like member is equal to or larger than the bonding area between the plate-like member and the piezoelectric body, or larger than the facing area where the plate-like member and the piezoelectric body face each other.
[0087]
(Example 4)
Next, the plate member and the acoustic matching layer were examined. The size of the piezoelectric body was a rectangular parallelepiped having a length, width, and height of 7.4 mm × 7.4 mm × 2.65 mm. Similar to the three-dimensional analysis, a slit structure is provided on the joint surface side with the piezoelectric plate member. The plate-shaped member was formed into a circle and a square, and the area of the acoustic matching layer was changed to produce an ultrasonic transducer. From the minimum size that can enclose the piezoelectric body, that is, a circular shape having a diagonal line length (10.46 mm) as a diameter and the same area as the bonding area of the piezoelectric body, the respective areas are similarly reduced by 50% to 150 %, And the transmission / reception sensitivity of the ultrasonic transducer was measured for each shape. Table 3 shows the results. The measurement conditions are the same as in Example 2.
[0088]
[Table 3]
Figure 0003629481
[0089]
From the above results, when the area of the acoustic matching layer increases with respect to the area of the plate-like member, the area that is acoustically coupled does not change, but the area of bonding with the plate-like member does not increase, so The vibration area increases and a mode different from the main resonance and the secondary resonance is generated. For this reason, a phenomenon in which transmission / reception sensitivity is reduced was observed. The noise level also increased. On the other hand, when the area of the acoustic matching layer decreases, the area of the piezoelectric body has a greater influence than the area of the plate-like member, and the relationship between the piezoelectric body and the acoustic matching layer, that is, the results examined in Example 2 (Table 1). ) And the same tendency was observed. Therefore, the plate-shaped member needs to be larger than the bonding area of the plate-shaped member and the acoustic matching layer, or the acoustic matching layer is larger than the opposing area facing the plate-shaped member, and the acoustic matching layer is further bonded to the piezoelectric body and the plate-shaped member. More than the above, or the area over which the piezoelectric body faces the acoustic matching layer is required.
[0090]
(Example 5)
Next, the piezoelectric body and the adhesive layer 31 for joining the piezoelectric body and the plate-like member were examined. The size of the piezoelectric body was a rectangular parallelepiped having a length, width, and height of 7.4 mm × 7.4 mm × 2.65 mm. Similar to the three-dimensional analysis, a slit structure is provided on the joint surface side with the piezoelectric plate member. The acoustic matching layer has a minimum area (diameter: 10.46 mm) that can cover the piezoelectric body. The plate-like member was circular, and the area of the adhesive layer 31 was changed to produce an ultrasonic vibrator. Based on the maximum bonding area (7.4 mm × 7.4 mm) of the piezoelectric body, the adhesive layer 31 is similarly reduced from 50% to 150%, and the ultrasonic transducer is transmitted and received. Sensitivity was measured. Furthermore, Table 4 shows the result of the reliability test by the heat cycle of −40 ° C. to 80 ° C. The measurement conditions are the same as in Example 2.
[0091]
[Table 4]
Figure 0003629481
○: No change in sensitivity, △: Sensitivity decrease rate of 10% or less, ×: Sensitivity decrease rate of 50% or more
[0092]
From the results in Table 4, when the area of the adhesive layer 31 was decreased, the transmission / reception sensitivity was decreased. Also, from the result of the reliability test, when the area ratio is 70% or less, the sensitivity reduction rate is 50% or more, and the reliability as an ultrasonic transducer is lowered. Therefore, the area after curing of the adhesive layer 31 needs to be greater than or equal to the bonding area of the piezoelectric body, or more than the opposing area where the piezoelectric body faces the adhesive layer 31.
[0093]
(Example 6)
Next, the acoustic matching layer and the adhesive layer 30 that joins the acoustic matching layer and the plate-like member were examined. The size of the piezoelectric body was a rectangular parallelepiped having a length, width, and height of 7.4 mm × 7.4 mm × 2.65 mm. Similar to the three-dimensional analysis, a slit structure is provided on the joint surface side with the piezoelectric plate member. The acoustic matching layer has a minimum area (diameter: 10.46 mm) that can cover the piezoelectric body. The plate-like member is circular and the area is 128.84 mm. 2 As described above, an ultrasonic transducer was manufactured by changing the area of the adhesive layer 30. Maximum joint area of acoustic matching layer (85.89mm 2 ) Was used as a reference, and the adhesive layer 30 was similarly reduced in area by 50% to 150%, and the transmission / reception sensitivity of the ultrasonic transducer was measured. Furthermore, the result of the reliability test by the heat cycle of -40 degreeC-80 degreeC is shown in Table 5.
[0094]
[Table 5]
Figure 0003629481
○: No change in sensitivity, △: Sensitivity decrease rate of 10% or less, ×: Sensitivity decrease rate of 50% or more
[0095]
From the results in Table 5, when the area of the adhesive layer 30 was reduced, the transmission / reception sensitivity was reduced. This is due to the fact that the bonding area with the plate-like member decreases and the acoustic coupling area decreases, which causes a decrease in propagation efficiency, and the factor where the unbonded part generates vibrations in a mode different from the main resonance mode. Sensitivity decreases.
[0096]
Also, from the result of the reliability test, when the area ratio is 70% or less, the sensitivity reduction rate is 50% or more, and the reliability as an ultrasonic transducer is lowered. Therefore, the area after curing of the adhesive layer 30 needs to be greater than or equal to the bonding area of the acoustic matching layer, or the opposing area where the acoustic matching layer faces the adhesive layer 30.
[0097]
Each of the above embodiments has been described in relation to the plate-like member, but the same effect can be obtained even if the plate-like member is an integrated bottomed case shown in FIGS. However, since the experimental results for Examples 3 and 4 differ depending on the storage relationship between the piezoelectric body and the case, Examples 7 and 8 are the integrated bottomed types shown in FIGS. 8 and 9 below. The second and third embodiments related to the case will be described.
[0098]
(Example 7)
Cases and piezoelectric bodies were studied. The size of the piezoelectric body was a rectangular parallelepiped having a length, width, and height of 7.4 mm × 7.4 mm × 2.65 mm. Similar to the three-dimensional analysis, a slit structure is provided on the bonding surface side of the piezoelectric body with the case. The case has a bottomed cylindrical shape and a bottomed box shape, and an ultrasonic transducer was manufactured by changing the area of the top surface of the case. Based on a circular shape whose diameter is the minimum size that encloses the piezoelectric body, that is, the length of the diagonal line (10.46 mm), the respective areas are similarly reduced from 50% to 150%, The transmission / reception sensitivity of the ultrasonic transducer was measured for each shape. Table 6 shows the results.
[0099]
[Table 6]
Figure 0003629481
[0100]
From the results shown in Table 6, it is impossible to fabricate both the celestial cylindrical case and the box-shaped case as an ultrasonic vibrator because the piezoelectric body does not enter the case when the case is reduced. However, when the case is larger than the piezoelectric body, the sensitivity of the transmission / reception sensitivity is not reduced. On the other hand, when the case area facing the piezoelectric body is increased, the effective area for acoustic coupling hardly changes even when the case is increased, and thus the sensitivity is hardly affected. From the above results, it is desirable that the case be larger than the bonding area between the case and the piezoelectric body, or more than the facing area where the case and the piezoelectric body face each other.
[0101]
(Example 8)
The case and acoustic matching layer were studied. The size of the piezoelectric body was a rectangular parallelepiped having a length, width, and height of 7.4 mm × 7.4 mm × 2.65 mm. Similar to the three-dimensional analysis, the piezoelectric body has a slit structure on the side of the joint surface with the case. The case has a cylindrical shape with a ceiling surface and a bottomed box shape, and an ultrasonic transducer is manufactured by changing the area of the acoustic matching layer. Based on a circular shape whose diameter is the minimum size that encloses the piezoelectric body, that is, the length of the diagonal line (10.46 mm), the respective areas are similarly reduced from 50% to 150%, The ultrasonic transmission / reception sensitivity of the ultrasonic transducer was measured for each shape. Table 7 shows the results.
[0102]
[Table 7]
Figure 0003629481
[0103]
From the above results, when the area of the acoustic matching layer increases with respect to the area of the top surface of the case, the area that is acoustically coupled does not change, but the bonding area with the case does not increase. Area increases, and a mode different from the main resonance and the secondary resonance occurs. For this reason, a phenomenon in which the transmission / reception sensitivity of ultrasonic waves is reduced was observed. The noise level also increased. On the other hand, when the area of the acoustic matching layer decreases, the area of the piezoelectric body has a greater influence than the area of the case, and the relationship between the piezoelectric body and the acoustic matching layer, that is, the results examined in Example 2 (Table 1) A similar trend was seen. Therefore, the case needs to be larger than the bonding area between the case and the acoustic matching layer, or the acoustic matching layer should be larger than the opposing area facing the case. Further, the acoustic matching layer should be larger than the bonding area between the piezoelectric body and the case, or the piezoelectric body is acoustic. More than the facing area facing the matching layer is required.
[0104]
Next, the relationship between the case (plate member) 3 and the acoustic matching layer 4 in one ultrasonic transducer 1, 17, 18 will be described. Here, the case where the area ratio of the piezoelectric body and the acoustic matching layer is 100% will be described with reference to the piezoelectric body.
[0105]
The area ratio range between the case (plate member) 3 and the acoustic matching layer 4 is a range in which an abnormal resonance mode does not occur. The area of the acoustic matching layer 4 is 15% to the area of the case (plate member) 3. 150% is preferred. 150% of the area of the case (plate member) 3 means the same area as the top surface of the case. When the area of the acoustic matching layer 4 is larger than 150% of the area of the case (plate member) 3, an abnormal resonance mode is generated in the frequency characteristic of the impedance, so that the acoustic matching layer 4 cannot be used. Moreover, when the area of the acoustic matching layer 4 is less than 15%, the shape anisotropy in the thickness direction of the acoustic matching layer itself becomes strong, and different resonance modes are generated.
[0106]
On the other hand, from the graph of the area of the acoustic matching layer 4 and the sensitivity reduction rate (during transmission), in order to make the sensitivity reduction rate in the range of 25% or less, when the shape of the piezoelectric body 6 and the acoustic matching layer 4 is the same The area of the acoustic matching layer 4 is 35% to 150% of the area of the piezoelectric body 6, and when the shape of the piezoelectric body 6 and the acoustic matching layer 4 is different, the area of the acoustic matching layer 4 is 45% to 150% of the area of the piezoelectric body 6. % Is preferable (see FIGS. 10 and 11). The reason for this is that if the area of the acoustic matching layer 4 is less than (35% to 45%) of the area of the piezoelectric body 6, the measurement performance (accuracy) deteriorates because it approaches the detection limit in the flow rate calculation system. This is because if it exceeds 150%, abnormal resonance occurs. That is, according to FIG. 10, the area of the case (plate member) 3 is 128.84 mm when the sensitivity decrease rate during transmission is 25% or less. 2 The area of the square acoustic matching layer 4 is 30 mm. 2 As described above, the area of the circular acoustic matching layer 4 is 38 mm. 2 That is all. According to FIG. 11, the area of the case (plate member) 3 is 128.84 mm when the sensitivity decrease rate during transmission / reception is 25% or less. 2 The area of the square acoustic matching layer 4 is 38 mm. 2 As described above, the area of the circular acoustic matching layer 4 is 45 mm. 2 That is all. When the sensitivity reduction rate exceeds 25%, the measurement performance (accuracy) is lowered due to the above flow rate calculation system approaching the detection limit. Therefore, the sensitivity reduction rate is preferably in the range of 25% or less.
[0107]
Considering from the directivity and sensitivity of the ultrasonic transducer, the area of the acoustic matching layer 4 should be large. Therefore, the area of the acoustic matching layer 4 is 100% to 150% of the area of the case (plate member) 3. The range of is preferable. This is because the sensitivity reduction is allowed up to 20%, but the sensitivity reduction 25% is a limit value, so it is close to the unstable region on the flow rate calculation system and there is no margin of the guarantee range. On the other hand, if it exceeds 150%, abnormal resonance occurs, so it is set to 150% or less. In addition, if it is in the range of 100% to 150%, an extra signal is not detected by improving the directivity of the ultrasonic transducer, so that it is resistant to disturbance. Therefore, measurement accuracy can be improved. However, when the acoustic matching layer 4 is larger than the adhesive layer 30, the directivity becomes narrower. Conversely, when the acoustic matching layer 4 is smaller than the adhesive layer 30, the directivity becomes wider. Further, when the piezoelectric body 6 is larger than the adhesive layer 31, the sensitivity is high, and conversely, when the piezoelectric body 6 is smaller than the adhesive layer 31, the sensitivity is low.
[0108]
Judging from the above, the area of the acoustic matching layer 4 is desirably 100 to 150% of the area of the case (plate member) 3. However, in consideration of directivity, sensitivity, and abnormal resonance, it is desirable to appropriately select the area range within the range of 100 to 150% depending on which characteristic is important when using the ultrasonic transducer. . That is, if the area range is appropriately selected within the range of 100 to 150%, the directivity is improved, the sensitivity reduction rate can be made 25% or less, and the occurrence of the abnormal resonance mode is prevented. be able to.
[0109]
Example 9
Next, the piezoelectric body and the acoustic matching layer were examined. The size of the piezoelectric body was a rectangular parallelepiped having a length, width, and height of 7.4 mm × 7.4 mm × 2.65 mm. Similar to the three-dimensional analysis, a slit structure is provided on the bonding surface side of the piezoelectric body with the case. The case has a bottomed cylindrical shape and a bottomed box shape, and an ultrasonic transducer was manufactured by changing the area of the acoustic matching layer having the same shape as the bottom surface of the bottomed case. The top surface of the bottomed cylindrical case is φ11 mm, and the top surface of the bottomed box-shaped case is 8 mm × 8 mm. Using the minimum area that can cover the piezoelectric body as a reference, the sensitivity reduction rate was investigated by changing from a relatively 50% reduction to a case top surface area. The results are shown in Table 8.
[0110]
[Table 8]
Figure 0003629481
[0111]
As a result, it has been found that when the acoustic matching layer is made relatively small with respect to the area of the piezoelectric body, the sensitivity is lowered, and conversely, when the case top surface is maximized, the sensitivity is hardly changed. Therefore, the acoustic matching layer is required to be larger than the area of the piezoelectric body and smaller than the top surface of the case.
[0112]
Next, the directivity and sensitivity of the ultrasonic transducer will be considered.
[0113]
(I) For transmission:
The reason why directivity occurs in the ultrasonic transducer is as follows. That is, when the transmission direction of the ultrasonic wave is deviated from the central axis of the plate-like member 3 of the ultrasonic vibrator even at a long distance,
[0114]
[Expression 1]
Figure 0003629481
[0115]
In this integration, the phase difference becomes large, and the integrated velocity potential becomes smaller than the central axis direction of the plate member 3 of the ultrasonic transducer. Here, as shown in FIGS. 12A and 12B, when the plate member 3 of the ultrasonic transducer is a circular piston, the distance from the center is r in the direction γ from the central axis. 0 The distance from the plane including the point P that is and the ds to the P point at (x, y) on the vibration surface is as shown in FIG.
[0116]
[Expression 2]
r = r 0 -Ysinγ
Because
[0117]
[Equation 3]
Figure 0003629481
It becomes. However, r≈r in the denominator 0 The distance is ignored, but since this only affects the absolute value of Φ, r >> a is acceptable. The result of this integration is
[0118]
[Expression 4]
Figure 0003629481
It becomes. Here, a is the radius of the plate-like member 3.
Z is
Z = k × a × sin γ = (πd / λ) × sin γ = (πdf / c) × sin γ
It is. Where a is the radius of the plate-like member 3, c is the ultrasonic wave propagation velocity, k is the wavelength constant of the ultrasonic wave, d is the diameter of the plate-like member 3, J 1 (Z) is a Bessel function.
[0119]
As described above, in the ultrasonic vibrator, when the frequency is constant, the directivity becomes sharper as the diameter of the plate-like member 3 is larger. When the diameter of the plate-like member 3 is constant, the directivity becomes sharper as the frequency is higher.
[0120]
(II) When receiving:
As for the directivity gain of sound transmission, even if the same sound output is output, the directivity sound transmitter provides the intensity of the directivity gain double in the axial direction as compared with the non-directional sound transmitter. However, the directivity gain has a completely different meaning in reception. When receiving the plane wave coming from one direction, the direction of the directional receiver tends to be more sensitive than the omnidirectional receiver, but the degree is not directly related to the directional gain. If the frequency is constant, a directional receiver has a larger sound receiving area, so that a sensitive receiver can be made. Alternatively, if the efficiency of both sound receivers is equal, the input power is proportional to the sound receiving area, so that the electrical output can be increased accordingly. If a receiver of the same size is used at a high frequency, the directivity gain is larger than that at a low frequency, but when the sound pressure is constant, the electrical output may be larger at a high frequency than the directivity gain. I don't get it. Therefore, in the case of receiving sound, assuming that the target signal is a plane wave coming from one direction, and the disturbing noise comes uniformly from all solid angles, the signal-to-noise ratio is higher than when using an omnidirectional receiver. Only the directivity gain is improved.
[0121]
Judging from the above, it is desirable that the size of the acoustic matching layer 4 be as large as possible that of the case (diaphragm) 3.
[0122]
On the other hand, the characteristics when a pair of ultrasonic transducers 17 and 18 are used as an ultrasonic flow meter are as follows.
[0123]
First, the correlation coefficient of the pair of ultrasonic transducers 17 and 18 is 0.80 or more, preferably 0.960 or more when the impedance frequency is 200 KHz to 750 KHz (more preferably 350 KHz to 750 KHz). Is preferred. Here, the correlation coefficient is obtained by measuring the frequency characteristics (FIGS. 13 and 14) of the impedances of the ultrasonic transducers 17 and 18 and then determining how much the impedances for the respective frequencies match. It is. The frequency range is calculated at each measurement point of 200 KHz to 750 KHz in the operating frequency range.
[0124]
When the current type circuit is used, the impedances of the ultrasonic transducers 17 and 18 need to be as similar as possible. The reason is that in the case of an ideal current type circuit as shown in FIGS. 15 and 16, if the secondary side is short-circuited, the output current is received and transmitted regardless of the flow path and the impedance of the ultrasonic transducer. It is the same even if they are replaced. However, in order to measure the output current, it is impossible to completely short-circuit the secondary side, and a certain amount of resistance is required. At this time, since it is not an ideal current type circuit, impedances as similar as possible to the ultrasonic transducers 17 and 18 are required. If the value of the correlation coefficient of the ultrasonic transducers 17 and 18 is 0.80 or more, preferably 0.960 or more, the flow rate of the fluid to be measured can be accurately adjusted by correcting the correlation coefficient on the measurement circuit side. The ultrasonic vibrators 17 and 18 can be used as an ultrasonic flowmeter that can be measured well (for example, with city gas with an accuracy of at least 3 liter / h or more).
[0125]
In addition, when used as an ultrasonic flow meter, the pair of opposing ultrasonic transducers 17 and 18 have substantially the same shape, and it is preferable that their centers are aligned as much as possible. The parallelism between the opposing surfaces of the ultrasonic transducers 17 and 18 (the opposing surfaces of the opposing acoustic matching layers) is preferably matched as much as possible.
[0126]
It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.
[0127]
【The invention's effect】
According to the present invention, by optimizing the sizes of the acoustic matching layer, the plate-like member, the piezoelectric body, and the adhesive layer, an ultrasonic vibrator and an ultrasonic flowmeter that have both efficiency and reliability are realized.
[0128]
Further, when the area of the acoustic matching layer is 100 to 110% of the area of the plate-like member, the directivity is improved, the sensitivity reduction rate can be in the range of 25% or less, and the abnormal resonance mode Can be prevented.
[0129]
Further, in the ultrasonic flowmeter including a pair of ultrasonic transducers, the pair of ultrasonic transducers have substantially the same shape, and when the impedance frequency is 200 KHz to 750 KHz, the phase relationship between the pair of ultrasonic transducers. If the number is 0.80 or more, the flow rate of the fluid to be measured can be measured with high accuracy (for example, at least 3 liters / h or more with city gas).
[Brief description of the drawings]
FIG. 1 is an external view of an ultrasonic transducer according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the ultrasonic transducer in the first embodiment.
FIG. 3 is a cross-sectional view of the ultrasonic flowmeter in the first embodiment.
FIG. 4 is a cross-sectional view of the ultrasonic flowmeter in the first embodiment.
FIGS. 5A and 5B are diagrams showing measured values of impedance frequency characteristics in the ultrasonic transducer of the first embodiment. FIGS. 5B are analysis values of impedance frequency characteristics in the ultrasonic transducer of the first embodiment. FIG.
6A is a diagram showing an analysis result of main resonance of the ultrasonic transducer in the first embodiment, and FIG. 6B is a diagram showing an analysis result of secondary resonance of the ultrasonic transducer in the first embodiment. It is.
7A is a diagram showing an analysis result of main resonance of the ultrasonic transducer in the first embodiment, and FIG. 7B is a diagram showing an analysis result of secondary resonance of the ultrasonic transducer in the first embodiment. It is.
FIG. 8 is a cross-sectional view of an ultrasonic transducer in a second embodiment of the invention.
FIG. 9 is a cross-sectional view of an ultrasonic transducer in a third embodiment of the invention.
FIG. 10 is a graph showing the relationship between the area of the matching layer and the sensitivity reduction rate (transmission).
FIG. 11 is a graph showing the relationship between the area of the matching layer and the sensitivity reduction rate (transmission and reception).
FIGS. 12A and 12B are a front view and a cross-sectional side view of a schematic example of an ultrasonic transducer for explaining the directivity and sensitivity of the ultrasonic transducer when the plate-like member is a circular piston. FIGS. is there.
FIG. 13 is a graph showing a relationship between impedance and frequency of an ultrasonic transducer.
FIG. 14 is a graph showing the relationship between the phase and frequency of an ultrasonic transducer.
FIG. 15 is an explanatory diagram showing an ideal current type circuit;
FIG. 16 is an explanatory diagram showing an ideal current type circuit;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic vibrator, 2 ... Support body, 3 ... Plate-like member, 4 ... Acoustic matching layer, 5 ... Flange part, 6 ... Piezoelectric body, 7 ... Terminal board, 8a, 8b ... Terminal, 9 ... Insulator, DESCRIPTION OF SYMBOLS 10 ... Conductive rubber, 11 ... Flow measurement part, 12 ... Side wall part, 13 ... Side wall part, 14 ... Sealing material, 15 ... Upper plate part, 16 ... Channel cross-section, 17 ... Ultrasonic transducer, 18 ... Ultrasonic wave Vibrator, 19 ... Vibrator mounting hole, 20 ... Vibrator mounting hole, 21 ... Sealing material, 22 ... Sealing material, 30 ... Adhesive layer, 31 ... Adhesive layer, 32 ... Bottomed case, 100 ... Ultrasonic flow meter , 100a ... Inlet passage, 100b ... Outlet passage, 101 ... Measuring circuit, 102 ... Flow rate calculation means.

Claims (9)

被測定流体が流れる流量測定部と、この流量測定部に設けられて超音波を送受信する一対の超音波振動子と、前記一方の超音波振動子を主共振モードと2次共振モードによる駆動を行う手段と、上記超音波振動子間の伝搬時間を計測する計測回路と、上記計測回路からの信号に基づいて流量を算出する流量演算手段とを備えた超音波流量計であって、
前記超音波振動子は、板状部材(3)と、上記板状部材の一方の面に接着層(30)を介して設置した音響整合層(4)と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層(31)を介して設置した圧電体(6)とを備え、上記音響整合層の設置面積は、上記圧電体が上記板状部材と接合される接合面積以上、あるいは上記圧電体が上記板状部材を介して上記音響整合層に対向する面積以上である超音波流量計
A flow rate measurement unit through which the fluid to be measured flows, a pair of ultrasonic transducers provided in the flow rate measurement unit for transmitting and receiving ultrasonic waves, and driving the one ultrasonic transducer in a main resonance mode and a secondary resonance mode An ultrasonic flowmeter comprising means for performing, a measurement circuit for measuring a propagation time between the ultrasonic transducers, and a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit,
The ultrasonic transducer includes a plate-like member (3), an acoustic matching layer (4) installed on one surface of the plate-like member via an adhesive layer (30), and the acoustic matching of the plate-like member. A piezoelectric body (6) disposed on the surface opposite to the surface on which the layer is provided via a bonding layer (31), and the acoustic matching layer has an installation area in which the piezoelectric body is bonded to the plate-like member. An ultrasonic flowmeter having a bonding area equal to or greater than an area where the piezoelectric body faces the acoustic matching layer via the plate-like member.
被測定流体が流れる流量測定部と、この流量測定部に設けられて超音波を送受信する一対の超音波振動子と、前記一方の超音波振動子を主共振モードと2次共振モードによる駆動を行う手段と、上記超音波振動子間の伝搬時間を計測する計測回路と、上記計測回路からの信号に基づいて流量を算出する流量演算手段とを備えた超音波流量計であって、
前記超音波振動子は、板状部材(3)と、上記板状部材の一方の面に接着層(30)を介して設置した音響整合層(4)と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層(31)を介して設置した圧電体(6)とを備え、上記板状部材の上記音響整合層に対する対向面積は、上記板状部材と上記音響整合層とが上記接着層を介して接合される接合面積以上、あるいは上記音響整合層が上記板状部材に対向する対向面積以上である超音波流量計
A flow rate measurement unit through which the fluid to be measured flows, a pair of ultrasonic transducers provided in the flow rate measurement unit for transmitting and receiving ultrasonic waves, and driving the one ultrasonic transducer in a main resonance mode and a secondary resonance mode An ultrasonic flowmeter comprising means for performing, a measurement circuit for measuring a propagation time between the ultrasonic transducers, and a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit,
The ultrasonic transducer includes a plate-like member (3), an acoustic matching layer (4) installed on one surface of the plate-like member via an adhesive layer (30), and the acoustic matching of the plate-like member. A piezoelectric body (6) disposed on the surface opposite to the surface on which the layer is provided via a bonding layer (31), and the area of the plate member facing the acoustic matching layer is the same as that of the plate member An ultrasonic flowmeter wherein the acoustic matching layer is equal to or larger than a bonding area where the acoustic matching layer is bonded via the adhesive layer, or the acoustic matching layer is equal to or larger than an opposing area facing the plate-like member.
被測定流体が流れる流量測定部と、この流量測定部に設けられて超音波を送受信する一対の超音波振動子と、前記一方の超音波振動子を主共振モードと2次共振モードによる駆動を行う手段と、上記超音波振動子間の伝搬時間を計測する計測回路と、上記計測回路からの信号に基づいて流量を算出する流量演算手段とを備えた超音波流量計であって、
前記超音波振動子は、板状部材(3)と、上記板状部材の一方の面に接着層(30)を介して設置した音響整合層(4)と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層(31)を介して設置した圧電体(6)とを備え、上記板状部材の上記圧電体に対する対向面積は、上記接着層を介して上記板状部材と上記圧電体が接合される接合面積以上、あるいは上記板状部材と上記圧電体が対向する対向面積以上である超音波流量計
A flow rate measurement unit through which the fluid to be measured flows, a pair of ultrasonic transducers provided in the flow rate measurement unit for transmitting and receiving ultrasonic waves, and driving the one ultrasonic transducer in a main resonance mode and a secondary resonance mode An ultrasonic flowmeter comprising means for performing, a measurement circuit for measuring a propagation time between the ultrasonic transducers, and a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit,
The ultrasonic transducer includes a plate-like member (3), an acoustic matching layer (4) installed on one surface of the plate-like member via an adhesive layer (30), and the acoustic matching of the plate-like member. A piezoelectric body (6) installed on the surface opposite to the surface on which the layer is provided via a bonding layer (31), and the area of the plate member facing the piezoelectric body via the adhesive layer the plate-like member and the piezoelectric body is more junction area Ru are bonded, or the plate-like member and the ultrasonic flow meter is facing area over which the piezoelectric body is opposite.
被測定流体が流れる流量測定部と、この流量測定部に設けられて超音波を送受信する一対の超音波振動子と、前記一方の超音波振動子を主共振モードと2次共振モードによる駆動を行う手段と、上記超音波振動子間の伝搬時間を計測する計測回路と、上記計測回路からの信号に基づいて流量を算出する流量演算手段とを備えた超音波流量計であって、
前記超音波振動子は、板状部材(3)と、上記板状部材の一方の面に接着層(30)を介して設置した音響整合層(4)と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層(31)を介して設置した圧電体(6)とを備え、上記音響整合層の対向面積は上記圧電体が上記板状部材と接合される面の接合面積以上、あるいは上記圧電体が上記板状部材を介して上記音響整合層に対向する対向面積以上、かつ上記板状部材の対向面積は上記板状部材と上記音響整合層が上記接着層を介して接合される接合面積以上、あるいは上記音響整合層が上記板状部材に対向する対向面積以上である超音波流量計
A flow rate measurement unit through which the fluid to be measured flows, a pair of ultrasonic transducers provided in the flow rate measurement unit for transmitting and receiving ultrasonic waves, and driving the one ultrasonic transducer in a main resonance mode and a secondary resonance mode An ultrasonic flowmeter comprising means for performing, a measurement circuit for measuring a propagation time between the ultrasonic transducers, and a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit,
The ultrasonic transducer includes a plate-like member (3), an acoustic matching layer (4) installed on one surface of the plate-like member via an adhesive layer (30), and the acoustic matching of the plate-like member. And a piezoelectric body (6) disposed on a surface opposite to the surface on which the layer is provided via a bonding layer (31). The opposing area of the acoustic matching layer is such that the piezoelectric body is bonded to the plate-like member. Or more than the opposing area where the piezoelectric body faces the acoustic matching layer via the plate member, and the opposing area of the plate member is such that the plate member and the acoustic matching layer are An ultrasonic flowmeter having a bonding area which is bonded via an adhesive layer, or an area where the acoustic matching layer is opposed to the plate member.
被測定流体が流れる流量測定部と、この流量測定部に設けられて超音波を送受信する一対の超音波振動子と、前記一方の超音波振動子を主共振モードと2次共振モードによる駆動を行う手段と、上記超音波振動子間の伝搬時間を計測する計測回路と、上記計測回路からの信号に基づいて流量を算出する流量演算手段とを備えた超音波流量計であって、
前記超音波振動子は、板状部材(3)と、上記板状部材の一方の面に接着層(30)を介して設置した音響整合層(4)と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層(31)を介して設置した圧電体(6)とを備え、上記接着層の対向面積は上記圧電体が上記板状部材と接合される接合面の接合面積以上、あるいは上記圧電体が上記接着層に対向する対向面積以上である超音波流量計
A flow rate measurement unit through which the fluid to be measured flows, a pair of ultrasonic transducers provided in the flow rate measurement unit for transmitting and receiving ultrasonic waves, and driving the one ultrasonic transducer in a main resonance mode and a secondary resonance mode An ultrasonic flowmeter comprising means for performing, a measurement circuit for measuring a propagation time between the ultrasonic transducers, and a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit,
The ultrasonic transducer includes a plate-like member (3), an acoustic matching layer (4) installed on one surface of the plate-like member via an adhesive layer (30), and the acoustic matching of the plate-like member. A piezoelectric body (6) disposed on the surface opposite to the surface on which the layer is provided via a bonding layer (31), and the opposing area of the adhesive layer is such that the piezoelectric body is bonded to the plate-like member. An ultrasonic flowmeter having a bonding area greater than or equal to a bonding area of the bonding surface or an area where the piezoelectric body faces the adhesive layer.
被測定流体が流れる流量測定部と、この流量測定部に設けられて超音波を送受信する一対の超音波振動子と、前記一方の超音波振動子を主共振モードと2次共振モードによる駆動を行う手段と、上記超音波振動子間の伝搬時間を計測する計測回路と、上記計測回路からの信号に基づいて流量を算出する流量演算手段とを備えた超音波流量計であって、
前記超音波振動子は、板状部材(3)と、上記板状部材の一方の面に接着層(30)を介して設置した音響整合層(4)と、上記板状部材の上記音響整合層が設けられた面と反対側の面に接合層(31)を介して設置した圧電体(6)とを備え、上記接着層の対向面積は上記音響整合層が上記板状部材と接合する接合面積以上、あるいは上記音響整合層が上記接着層に対向する対向面積以上である超音波流量計
A flow rate measurement unit through which the fluid to be measured flows, a pair of ultrasonic transducers provided in the flow rate measurement unit for transmitting and receiving ultrasonic waves, and driving the one ultrasonic transducer in a main resonance mode and a secondary resonance mode An ultrasonic flowmeter comprising means for performing, a measurement circuit for measuring a propagation time between the ultrasonic transducers, and a flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit,
The ultrasonic transducer includes a plate-like member (3), an acoustic matching layer (4) installed on one surface of the plate-like member via an adhesive layer (30), and the acoustic matching of the plate-like member. A piezoelectric body (6) disposed on the surface opposite to the surface on which the layer is provided via a bonding layer (31), and the opposing area of the adhesive layer is such that the acoustic matching layer is bonded to the plate-like member. that junction area than, or ultrasonic flowmeter is facing area over which the acoustic matching layer opposite to the adhesive layer.
上記音響整合層の面積は、上記板状部材の面積の100〜110%である請求項1〜のいずれか1つに記載の超音波流量計The area of the acoustic matching layer, an ultrasonic flowmeter according to any one of claims 1 to 6 is 100 to 110% of the area of the plate-like member. 上記一対の超音波振動子(17,18)は大略同一形状であり、インピーダンスの周波数が200KHz〜750KHzの使用範囲である請求項1〜7のいずれか1つに記載の超音波流量計。The ultrasonic flowmeter according to any one of claims 1 to 7, wherein the pair of ultrasonic transducers (17, 18) have substantially the same shape, and an impedance frequency is in a use range of 200 KHz to 750 KHz. 上記一対の超音波振動子(17,18)は大略同一形状であり、インピーダンスの周波数が200KHz〜750KHzの使用範囲において、上記一対の超音波振動子のインピーダンスの周波数特性相関係数は0.80以上である請求項8に記載の超音波流量計。The pair of ultrasonic transducers (17, 18) have substantially the same shape, and the impedance frequency characteristic correlation coefficient of the pair of ultrasonic transducers is 0.80 in the use frequency range of 200 KHz to 750 KHz. It is the above, The ultrasonic flowmeter of Claim 8.
JP2002273136A 2002-03-19 2002-09-19 Ultrasonic vibrator and ultrasonic flow meter using the same Expired - Fee Related JP3629481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273136A JP3629481B2 (en) 2002-03-19 2002-09-19 Ultrasonic vibrator and ultrasonic flow meter using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-75779 2002-03-19
JP2002075779 2002-03-19
JP2002273136A JP3629481B2 (en) 2002-03-19 2002-09-19 Ultrasonic vibrator and ultrasonic flow meter using the same

Publications (3)

Publication Number Publication Date
JP2003348681A JP2003348681A (en) 2003-12-05
JP3629481B2 true JP3629481B2 (en) 2005-03-16
JP2003348681A5 JP2003348681A5 (en) 2005-06-16

Family

ID=29781847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273136A Expired - Fee Related JP3629481B2 (en) 2002-03-19 2002-09-19 Ultrasonic vibrator and ultrasonic flow meter using the same

Country Status (1)

Country Link
JP (1) JP3629481B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274387A (en) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd Apparatus for measuring flow of fluid
JP5240121B2 (en) * 2009-08-20 2013-07-17 パナソニック株式会社 Fluid flow measuring device
JP5653274B2 (en) * 2011-03-30 2015-01-14 アズビル株式会社 Diagnostic method and ultrasonic measurement device
JP6382707B2 (en) * 2014-12-18 2018-08-29 京セラ株式会社 Sound generator and speaker equipped with the same

Also Published As

Publication number Publication date
JP2003348681A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
US7162930B2 (en) Ultrasonic sensor
US7373840B2 (en) Ultrasonic flowmeter having a transmitting body fixed on the outer peripheral surface of the pipe
JP6172533B2 (en) Ultrasonic transducer and ultrasonic flow meter having the same
US9528867B2 (en) Ultrasonic flow meter and damper assembly for vibration reduction mounting
US7692367B2 (en) Ultrasonic transducer
WO2012164879A1 (en) Ultrasonic transducer and ultrasonic flow-meter
WO2012008151A1 (en) Ultrasonic flow measurement unit and ultrasonic flowmeter using same
US7963174B2 (en) Ultrasonic flowmeter having a rubber transmitting body
US9689846B2 (en) Device and method for determining properties of a medium
RU169297U1 (en) ELECTRO-ACOUSTIC OPTICAL TRANSMITTER TO ULTRASONIC FLOW METERS
WO2012011272A1 (en) Construction for mounting ultrasonic transducer and ultrasonic flow meter using same
JP3629481B2 (en) Ultrasonic vibrator and ultrasonic flow meter using the same
JP2007208381A (en) Ultrasonic vibrator and fluid flow measurement apparatus employing the same
JP6149250B2 (en) Ultrasonic flow meter
JP4178346B2 (en) Ultrasonic vortex flowmeter
JP3562261B2 (en) Ultrasonic transducer and ultrasonic flowmeter using the same
JP5533332B2 (en) Ultrasonic flow meter
JP2004072461A (en) Ultrasonic wave transmitter/receiver and ultrasonic flowmeter using same
WO2021024846A1 (en) Ultrasonic transceiver and ultrasonic flow meter
JP2007194896A (en) Ultrasonic transducer and flow measuring apparatus of fluid employing same
JP4765642B2 (en) Ultrasonic vibrator and fluid flow measuring device using the same
JP2003348681A5 (en)
JP4513490B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP2007194895A (en) Ultrasonic transducer and flow measuring apparatus of fluid employing same
JP2004045439A (en) Ultrasonic vibrator and ultrasonic flowmeter using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3629481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees