JP2012018030A - Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same - Google Patents

Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same Download PDF

Info

Publication number
JP2012018030A
JP2012018030A JP2010154572A JP2010154572A JP2012018030A JP 2012018030 A JP2012018030 A JP 2012018030A JP 2010154572 A JP2010154572 A JP 2010154572A JP 2010154572 A JP2010154572 A JP 2010154572A JP 2012018030 A JP2012018030 A JP 2012018030A
Authority
JP
Japan
Prior art keywords
ultrasonic sensor
ultrasonic
side wall
vibration
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010154572A
Other languages
Japanese (ja)
Inventor
Masahiko Ito
雅彦 伊藤
Yukinori Ozaki
行則 尾崎
Masato Sato
真人 佐藤
Shin Nakano
慎 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010154572A priority Critical patent/JP2012018030A/en
Publication of JP2012018030A publication Critical patent/JP2012018030A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic sensor attachment structure having short reverberations by absorbing unnecessary vibration of a casing of an ultrasonic sensor and preventing vibration propagation into a flow channel.SOLUTION: The ultrasonic sensor attachment structure includes: an ultrasonic sensor 18 having a topped cylindrical case 7 provided with a top part 8, a side wall part 9 and an opening 10, a piezoelectric body 12 fixed on the internal surface of the top part 8, a flange part 13 provided on the edge of the side wall part 9, and a terminal plate 14 that closes the flange part 13 and the opening 10; a vibration propagation suppressing body 19 installed on the side wall part 9; and a sealing body 20 that is closely contacted with the flange part 13. The ultrasonic sensor 18 is attached to an attaching part 6 for the ultrasonic sensor via the sealing body 20. In this way, propagation of vibration to the case side wall surface due to the vibration of the piezoelectric body is cut off by the vibration propagation suppressing body, and at the same time unnecessary vibration propagation to the attaching part is prevented, thereby transmission and reception of signals necessary for measuring are made possible without being affected by unnecessary signals.

Description

本発明は、超音波パスルの送受信を行う超音波送センサの取り付け構造およびこの超音波センサを用いて気体や液体の流量や流速の計測を行う超音波流量計測装置に関するものである。   The present invention relates to an attachment structure of an ultrasonic transmission sensor that transmits and receives ultrasonic pulses and an ultrasonic flow rate measuring apparatus that measures the flow rate and flow velocity of gas and liquid using the ultrasonic sensor.

従来、この種の超音波センサを超音波流量計測装置の流路へ取り付ける場合の取り付け構造は、例えば、有天筒状のケースの天部の内面に圧電体を配置した超音波センサにおいて、ケースの開口部の外周に設けたフランジと開口部を塞ぐ封止体を重ねて支持部を形成し、ケースの側壁部の外面に振動を低減する制振体を設置し、支持部と制振体の一部を保持する保持部を有する振動伝達抑止体を介して超音波センサが流路に設置されている(例えば、特許文献1参照)。   Conventionally, an attachment structure for attaching this type of ultrasonic sensor to the flow path of an ultrasonic flow measuring device is, for example, an ultrasonic sensor in which a piezoelectric body is arranged on the inner surface of the top of a celestial cylindrical case. A support provided is formed by overlapping a flange provided on the outer periphery of the opening and a sealing body that closes the opening, and a damping body that reduces vibration is installed on the outer surface of the side wall of the case. An ultrasonic sensor is installed in the flow path via a vibration transmission suppressing body having a holding part for holding a part of the filter (for example, see Patent Document 1).

図5は従来の超音波センサの取り付け構造の断面図を示すものであり、図に示すように超音波センサ1は、天部2aと側壁部2bと開口部2cと開口部の外周にフランジ2dが一体で形成されたケース2と、天部2aの内面に設置された圧電体3で構成されている。ケース2の側壁部2bには制振体4が巻装されており、開口部2cは封止体2eで封止され、封止体2eとフランジ2dとで超音波センサ1の支持部1aを形成しており、支持部1aは振動伝達抑止体5の保持部5aに保持され、振動伝達抑止体5は超音波流量計測装置の被取り付け部6に設置されている。   FIG. 5 shows a cross-sectional view of a conventional ultrasonic sensor mounting structure. As shown in FIG. 5, the ultrasonic sensor 1 has a top 2a, a side wall 2b, an opening 2c, and a flange 2d on the outer periphery of the opening. Are integrally formed, and a piezoelectric body 3 installed on the inner surface of the top portion 2a. A vibration damping body 4 is wound around the side wall 2b of the case 2, the opening 2c is sealed with a sealing body 2e, and the support 1a of the ultrasonic sensor 1 is supported by the sealing body 2e and the flange 2d. The support portion 1a is held by the holding portion 5a of the vibration transmission restraining body 5, and the vibration transmission restraining body 5 is installed in the attached portion 6 of the ultrasonic flow measuring device.

特許第3528726号公報Japanese Patent No. 3528726

しかしながら、前記従来の超音波センサ1の被取り付け部6への取り付け構成では、超音波センサ1のケース2の防振対策のために、制振体4と振動伝達抑止体5を設けているが、制振体4と振動伝達抑止体5が密着し、さらにその振動伝達抑止体5が保持部5aを有しているので、被取り付け部6に取り付ける際に、この振動伝達抑止体5が被取り付け部6に密着して取り付けられる。この構成では、発信側の超音波センサ1の圧電体3の振動がケース2の側壁部2bを伝わり制振体4に伝達されるが、そこで、密着されている振動伝達抑止体5にもその振動が伝わってしまい、振動伝達抑止体5でも振動が完全に払拭されなかった残響振動が密着している被取り付け部6の壁を通じて受信側に伝わり、この流路壁を伝搬した残響による振動が測定流体中を伝搬した信号に干渉してノイズとなり、流量の計測が悪化する可能性を有しているという課題があった。   However, in the conventional configuration for attaching the ultrasonic sensor 1 to the attached portion 6, the vibration damping body 4 and the vibration transmission suppressing body 5 are provided as a vibration-proof measure for the case 2 of the ultrasonic sensor 1. Since the vibration damping body 4 and the vibration transmission restraining body 5 are in close contact with each other and the vibration transmission restraining body 5 has a holding portion 5a, the vibration transmission restraining body 5 is It is attached in close contact with the attachment portion 6. In this configuration, the vibration of the piezoelectric body 3 of the ultrasonic sensor 1 on the transmission side is transmitted to the vibration damping body 4 through the side wall portion 2b of the case 2, and therefore, the vibration transmission suppressing body 5 that is in close contact therewith also transmits the vibration. The vibration is transmitted and the reverberation vibration that has not been completely wiped out by the vibration transmission suppressing body 5 is transmitted to the receiving side through the wall of the attached portion 6 in close contact, and the vibration due to the reverberation propagated through the flow path wall. There has been a problem that there is a possibility that the measurement of the flow rate is deteriorated by interference with the signal propagated through the measurement fluid to become noise.

また、従来の超音波センサの制振体4と振動伝達抑止体5はお互いに嵌合するように構成され且つ、振動伝達抑止体5が超音波センサ1の支持部1aを挟持するように備え付けるため超音波センサ1に組み込むことに時間を要する。さらに、振動伝達抑止体5は、センサ支持部1aを挟持させるために凹部を設けなければならないが、材質はゴムのような弾性体を用いることが多いので、弾性体である振動伝達抑止体5の保持部5aで支持部1aを確実に挟持できずに、はずれてしまう可能性があるという課題があった。   Further, the vibration damping body 4 and the vibration transmission restraining body 5 of the conventional ultrasonic sensor are configured to fit each other, and the vibration transmission restraining body 5 is provided so as to sandwich the support portion 1 a of the ultrasonic sensor 1. Therefore, it takes time to incorporate the ultrasonic sensor 1. Further, the vibration transmission deterring body 5 must be provided with a recess in order to sandwich the sensor support portion 1a. However, since the material is often an elastic body such as rubber, the vibration transmission deterring body 5 is an elastic body. There is a problem that the holding portion 5a cannot be securely clamped by the holding portion 5a and may come off.

前記従来の課題を解決するために、本発明の本発明の超音波センサの取り付け構造は、
天部と側壁部と開口部とを有する有天筒状のケースと天部の内壁面に固定された圧電体と側壁部の端部に設けたフランジ部とフランジ部と開口部を塞ぐ端子板とを有する超音波センサと、側壁部の少なくとも一部に設置され、側壁部の筐体振動を防止する振動伝達抑止体と、フランジ部の少なくとも一部に密接する封止体とを含み、超音波センサは封止体を介して当該超音波センサの被取り付け部に取り付けているものである。
In order to solve the above-described conventional problems, the ultrasonic sensor mounting structure of the present invention has the following structure:
A cylindrical case having a top, a side wall, and an opening, a piezoelectric body fixed to the inner wall surface of the top, a flange provided at the end of the side, a terminal plate that closes the flange and the opening An ultrasonic sensor having at least a part of the side wall, a vibration transmission deterrence body that prevents housing vibration of the side wall part, and a sealing body that is in close contact with at least a part of the flange part. The acoustic wave sensor is attached to the attachment portion of the ultrasonic sensor via a sealing body.

これにより、圧電体の振動によるケース側壁面への振動伝搬を振動伝達抑止体で遮断すると同時に、流路への不要振動伝搬を防止することで、送受信側の超音波センサが、不要信号の影響を受けずに計測に必要な信号を送受信することが可能となる。   As a result, the vibration transmission to the case side wall due to the vibration of the piezoelectric body is blocked by the vibration transmission suppressing body, and at the same time, the unnecessary vibration propagation to the flow path is prevented, so that the ultrasonic sensor on the transmission / reception side can It is possible to transmit and receive signals necessary for measurement without receiving the signal.

本発明の超音波センサの取り付け構造は、精度の高い計測が可能となる。   The ultrasonic sensor mounting structure of the present invention enables highly accurate measurement.

本発明の実施の形態1における超音波センサの取り付け構造の断面図Sectional drawing of the attachment structure of the ultrasonic sensor in Embodiment 1 of this invention 本発明の実施の形態2における超音波センサの取り付け構造の断面図Sectional drawing of the attachment structure of the ultrasonic sensor in Embodiment 2 of this invention 本発明の実施の形態2における超音波センサの側壁部の断面図Sectional drawing of the side wall part of the ultrasonic sensor in Embodiment 2 of this invention 本発明の実施の形態3における超音波流量計測装置の断面図Sectional drawing of the ultrasonic flow measuring device in Embodiment 3 of this invention 従来の超音波センサの取り付け構造の断面図Sectional view of conventional ultrasonic sensor mounting structure

第1の発明は、天部と側壁部と開口部とを有する有天筒状のケースと前記天部の内壁面に固定された圧電体と前記側壁部の端部に設けたフランジ部と前記フランジ部と前記開口部を塞ぐ端子板とを有する超音波センサと、前記側壁部の少なくとも一部に設置され、前記側壁部の筐体振動を防止する振動伝達抑止体と、前記フランジ部の少なくとも一部に密接する封止体とを含み、前記超音波センサは、前記封止体を介して当該超音波センサの被取り付け部に取り付けているものである。   According to a first aspect of the present invention, there is provided a cylindrical case having a top portion, a side wall portion, and an opening, a piezoelectric body fixed to an inner wall surface of the top portion, a flange portion provided at an end portion of the side wall portion, An ultrasonic sensor having a flange portion and a terminal plate that closes the opening; a vibration transmission restrainer that is installed on at least a part of the side wall portion to prevent housing vibration of the side wall portion; and at least the flange portion The ultrasonic sensor is attached to a portion to which the ultrasonic sensor is attached via the sealing body.

これにより、超音波センサのケース側壁面に振動伝達抑止体を被取り付け部に接触せずに設けているので、圧電体からの振動がケース側壁面を伝わって流路側に伝搬することを防止し、さらに封止体と振動伝達抑止体は非接触で構成されているので、残響の短い超音波パルスの信号を送受信することができので、精度の高い計測が可能となる。   As a result, since the vibration transmission suppressing body is provided on the case side wall surface of the ultrasonic sensor without contacting the attached portion, vibration from the piezoelectric body is prevented from propagating along the case side wall surface to the flow path side. In addition, since the sealing body and the vibration transmission suppressing body are configured in a non-contact manner, an ultrasonic pulse signal with a short reverberation can be transmitted and received, so that highly accurate measurement is possible.

第2の発明は、特に第1の発明において、前記側壁部の表面を覆う電気的絶縁材料で形成された成型層を備え、前記振動伝達抑止体は、前記成型層の表面に設置されているものである。   According to a second aspect of the invention, particularly in the first aspect of the invention, the molding layer is formed of an electrically insulating material that covers the surface of the side wall portion, and the vibration transmission suppressing body is installed on the surface of the molding layer. Is.

これにより、超音波センサと被取り付け部間で電気的な絶縁距離を確保することができ、耐電圧性を高めて雷サージ性が向上する。さらに、超音波センサの残響によるノイズの発生の防止ができ、S/N比が改善されて被測定流体の流量、流速の計測精度など、計測特性の向上が可能となる。   Thereby, an electrical insulation distance can be ensured between the ultrasonic sensor and the attached portion, voltage resistance is improved, and lightning surge is improved. Furthermore, the generation of noise due to the reverberation of the ultrasonic sensor can be prevented, and the S / N ratio can be improved to improve the measurement characteristics such as the measurement accuracy of the flow rate and flow velocity of the fluid to be measured.

第3の発明は、一対の前記超音波センサと、被測定流体が流れる計測流路と、前記計測流路に対向して配置された一対の前記被取り付け部と、前記超音波センサ間の超音波伝播時間を計測する計測回路部と、前記計測回路部からの信号に基づいて流量を算出する演算部とを含み、前記超音波センサは、第1または第2の取り付け構造により前記計測流路の被取り付け部に対向して取り付けられた超音波流量計測装置である。   According to a third aspect of the present invention, there is provided a pair of the ultrasonic sensors, a measurement channel through which a fluid to be measured flows, a pair of the attached portions disposed to face the measurement channel, and an ultrasonic wave between the ultrasonic sensors. A measurement circuit unit that measures a sound wave propagation time; and a calculation unit that calculates a flow rate based on a signal from the measurement circuit unit, and the ultrasonic sensor is configured to measure the measurement channel by a first or second mounting structure. It is the ultrasonic flow measuring device attached facing the to-be-attached part.

これにより、計測精度が高く、計測特性の優れた超音波流量計測装置を提供することができる。   Thereby, an ultrasonic flow measuring device with high measurement accuracy and excellent measurement characteristics can be provided.

以下、本発明の実施形態に係る超音波センサのシール構造およびそれを用いた超音波流量計測装置について、図面を参照して説明する。なお図面中で同一符号を付しているものは同一なものであり、詳細な説明は省略する。   Hereinafter, a seal structure of an ultrasonic sensor according to an embodiment of the present invention and an ultrasonic flow rate measuring apparatus using the same will be described with reference to the drawings. In addition, what attaches | subjects the same code | symbol in drawing is the same thing, and abbreviate | omits detailed description.

(実施の形態1)
図1は、本発明の実施の形態1における超音波センサの取り付け構造を示す断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing an ultrasonic sensor mounting structure according to Embodiment 1 of the present invention.

超音波センサのケース7は天部8と側壁部9と開口部10を有した有天筒状の形状である。ケース7の天部8の外壁面には整合層11が固定されており、天部8の内壁面には圧電体12が接着固定されている。圧電体12は、両端に銀電極(図示せず)を備えた例えばPZT(チタン酸ジルコン酸鉛)からなるもので、上方の電極が接合材料であるエポキシ接着剤(図示せず)を介して固定されている。   The case 7 of the ultrasonic sensor has a ceiling-like shape having a top 8, a side wall 9, and an opening 10. A matching layer 11 is fixed to the outer wall surface of the top portion 8 of the case 7, and a piezoelectric body 12 is bonded and fixed to the inner wall surface of the top portion 8. The piezoelectric body 12 is made of, for example, PZT (lead zirconate titanate) with silver electrodes (not shown) at both ends, and an epoxy adhesive (not shown) whose upper electrode is a bonding material. It is fixed.

側壁部9の外側にはフランジ部13が一体に設けられており、ケース7の開口部10側に環状に広がるフランジ部13と開口部10を溶接等により塞ぐ端子板14を備えている。端子板14には端子15a、15bが設けられており、端子15aと15bは絶縁部17で絶縁されている。端子15aは、表面に金メッキを施したニッケル球を含有した導電部16を介在して圧電体12の下方電極に接続されて、電気的に導通接続されている。   A flange portion 13 is integrally provided on the outside of the side wall portion 9, and includes a flange portion 13 that spreads in an annular shape on the opening 10 side of the case 7 and a terminal plate 14 that closes the opening portion 10 by welding or the like. The terminal plate 14 is provided with terminals 15 a and 15 b, and the terminals 15 a and 15 b are insulated by an insulating portion 17. The terminal 15a is electrically connected by being connected to the lower electrode of the piezoelectric body 12 via a conductive portion 16 containing nickel balls whose surface is gold-plated.

このように、超音波センサ18は、有天筒状のケース7の内部に圧電体12を設けて端子板14で封止するとともにケース7の外部に整合層11とフランジ部13を備えている。   As described above, the ultrasonic sensor 18 is provided with the piezoelectric body 12 inside the cased cylindrical case 7 and sealed with the terminal plate 14, and includes the matching layer 11 and the flange portion 13 outside the case 7. .

超音波センサ18は、計測するガス流体(LPガス、天然ガス)中で使用されるので、ケース7は、耐食性に優れたステンレスを用い、整合層11は、ガス流体中に圧電体12から発振した超音波を効率的に放射させるために音響インピーダンスと耐久性を考慮して、エポキシ樹脂と中空ガラス球の混合体からなる材料を選択する。ケース7のフランジ部13と端子板14は、電気抵抗溶接などにより固定し、封止と電気的導通を確保している。   Since the ultrasonic sensor 18 is used in a gas fluid (LP gas, natural gas) to be measured, the case 7 uses stainless steel having excellent corrosion resistance, and the matching layer 11 oscillates from the piezoelectric body 12 in the gas fluid. In order to efficiently emit the ultrasonic waves, a material made of a mixture of an epoxy resin and a hollow glass sphere is selected in consideration of acoustic impedance and durability. The flange portion 13 and the terminal plate 14 of the case 7 are fixed by electrical resistance welding or the like to ensure sealing and electrical continuity.

ケース7の側壁部9には制振性に優れた材質で形成された振動伝達抑止体19が密着して巻装されており、超音波センサ18が超音波を発するときの圧電体12からケース7の側壁部9に伝わる振動を防止する。   A vibration transmission suppressing body 19 made of a material having excellent vibration damping properties is tightly wound around the side wall 9 of the case 7 so that the ultrasonic sensor 18 emits ultrasonic waves from the piezoelectric body 12 to the case. 7 to prevent vibration transmitted to the side wall portion 9.

超音波センサ18はガスシール用封止体20を介して被取り付け部6に取り付け固定されている。封止体20は、フランジ部13上の全周囲に環状に設けられ、接触する被取り付け部6の壁面に沿うように変形して固定される。   The ultrasonic sensor 18 is attached and fixed to the attachment portion 6 via a gas seal sealing body 20. The sealing body 20 is provided in an annular shape around the entire circumference of the flange portion 13, and is deformed and fixed along the wall surface of the attached portion 6 to be contacted.

振動伝達抑止体19は、封止体20を介して被取り付け部6に固定される際、被取り付け部6と接触しないように、超音波センサ18を固定する。ケース7の側壁部で発生する不要な筐体振動が振動伝達抑止体19を介して被取り付け部6に伝搬することを防ぐためである。   The vibration transmission suppressing body 19 fixes the ultrasonic sensor 18 so as not to come into contact with the attached portion 6 when being fixed to the attached portion 6 via the sealing body 20. This is to prevent unnecessary housing vibration generated at the side wall portion of the case 7 from propagating to the attached portion 6 via the vibration transmission suppressing body 19.

振動伝達抑止体19は、ケース7の側壁部9の全壁面あるいは一部の周囲に環状に設けられるため一定の可撓性を有し、ケース7側壁面で固定が容易な一定な径を有する0リング状の弾性体やエラストマーが用いられる。   The vibration transmission restraining body 19 has a certain flexibility because it is provided in an annular shape around the entire wall surface or a part of the side wall portion 9 of the case 7 and has a certain diameter that can be easily fixed on the side wall surface of the case 7. A 0 ring-shaped elastic body or elastomer is used.

振動伝達抑止体19や、流体シール用の封止体20は、電気的絶縁材料から構成される
。具体的には、アクリロニトリルブタジエンゴム(NBR)を主成分にしたゴムや、フロロシリコンゴム、フッ素ゴム、シリコンゴムなどが挙げられる。封止体20は、ガスシールに優れ且つ超音波センサ18を被取り付け部6に取り付けた後の変形量が小さい0リング状の弾性体やエラストマー、例えば振動伝達抑止体19で用いた材質が挙げられる。それぞれの目的が達成されれば材質にこだわるものではなく、振動伝達抑止体19と封止体20が同じ材質でも、異なる材質であってもよい。
The vibration transmission suppressing body 19 and the sealing body 20 for fluid seal are made of an electrically insulating material. Specific examples include rubbers mainly composed of acrylonitrile butadiene rubber (NBR), fluorosilicone rubber, fluorine rubber, and silicon rubber. The sealing body 20 is made of a material used for a zero ring-shaped elastic body or elastomer, for example, a vibration transmission suppressing body 19, which is excellent in gas sealing and has a small deformation amount after the ultrasonic sensor 18 is mounted on the mounted portion 6. It is done. If each purpose is achieved, the material is not particular, and the vibration transmission suppressing body 19 and the sealing body 20 may be the same material or different materials.

本実施の形態の上記構成を採用することにより、振動伝達抑止体19は、圧電体12からの振動がケース7の側壁部9に筐体伝搬して、フランジ部13を介して被取り付け部6に伝搬し、被取り付け部6の壁面を通してもう一方の超音波センサ18に不要振動を伝搬することを防止する。   By adopting the above-described configuration of the present embodiment, the vibration transmission suppressing body 19 causes the vibration from the piezoelectric body 12 to propagate to the side wall portion 9 of the case 7 and the attached portion 6 via the flange portion 13. And unnecessary vibration is prevented from propagating to the other ultrasonic sensor 18 through the wall surface of the attached portion 6.

また、ケース7の側壁部9の筐体伝搬がフランジ部13を介して端子板14、端子15a、15bに振動して、超音波センサ18の超音波パルス信号と合成されることも防止する。   In addition, the case propagation of the side wall 9 of the case 7 is prevented from being combined with the ultrasonic pulse signal of the ultrasonic sensor 18 by vibrating to the terminal plate 14 and the terminals 15a and 15b via the flange 13.

また、封止体20は、Oリングのように超音波センサ18のフランジ部13上の全周状に簡易に取り付けることが出来るので、フランジ部13に沿って封止体20を凹部に成形した成形物を予め、超音波センサに嵌め込む作業が必要なく、超音波センサ18をそのまま封止体20を介して、被取り付け部6に短時間で取り付けることができる。また、封止体20の形状もフランジ部13に沿って封止体20を凹部に成形する必要がないので、低コストでガスシール用封止体を得ることができる。   Further, since the sealing body 20 can be easily attached to the entire circumference on the flange portion 13 of the ultrasonic sensor 18 like an O-ring, the sealing body 20 is formed into a recess along the flange portion 13. There is no need to previously fit the molded product into the ultrasonic sensor, and the ultrasonic sensor 18 can be attached to the attached portion 6 through the sealing body 20 in a short time. Moreover, since it is not necessary to shape the sealing body 20 into the recess along the flange portion 13, the sealing body for gas sealing can be obtained at low cost.

(実施の形態2)
図2は本発明の実施の形態2における超音波センサの取り付け構造を示す断面図である。
(Embodiment 2)
FIG. 2 is a cross-sectional view showing an ultrasonic sensor mounting structure according to Embodiment 2 of the present invention.

図2に示すように、超音波センサ18のケース7の側壁部9の表面に密着するように電気的絶縁材料で構成される成型層21が設けられている。振動伝達抑止体19は、成型層21表面上に接触して固定される。   As shown in FIG. 2, a molding layer 21 made of an electrically insulating material is provided so as to be in close contact with the surface of the side wall 9 of the case 7 of the ultrasonic sensor 18. The vibration transmission suppressing body 19 is fixed in contact with the surface of the molding layer 21.

成型層21を設けることで、落雷などにより被取り付け部6と超音波センサ18のケース7間に異常高電圧が発生した場合でもリークに至る耐電圧を高めることができ、リーク電流による超音波センサ18の損傷を防止することができる。   By providing the molding layer 21, even when an abnormally high voltage is generated between the attached portion 6 and the case 7 of the ultrasonic sensor 18 due to lightning or the like, it is possible to increase the withstand voltage leading to leakage, and the ultrasonic sensor based on the leakage current. 18 damage can be prevented.

成型層21は、ゴム材料のような弾性体や、ポリプロピレンのような樹脂成形物が挙げられ、形状としてはケース7の側壁部9の形状に沿う樹脂スリーブでもよい。また、成型層21がポリプロピレンのような樹脂の場合は、振動伝達抑止体19が成型層21からずれないように、図3に示すように成型層21の表面上全周の一部にガイド22を設けることもできる。   The molding layer 21 may be an elastic body such as a rubber material or a resin molding such as polypropylene, and may be a resin sleeve that conforms to the shape of the side wall 9 of the case 7. When the molding layer 21 is a resin such as polypropylene, the guide 22 is provided on a part of the entire circumference on the surface of the molding layer 21, as shown in FIG. Can also be provided.

このように、超音波センサ18のケース7の側壁部9の表面を絶縁体で遮蔽して被取り付け部6に取り付ける際に、超音波センサ18と被取り付け部6との電気的導通距離を大きくとることにより、落雷などの雷サージで、超音波センサと流路間に異常高電圧が発生した場合でもリークに至る耐電圧を高めて、リーク電流による超音波センサの損傷を防止することができる。   As described above, when the surface of the side wall portion 9 of the case 7 of the ultrasonic sensor 18 is shielded by the insulator and attached to the attached portion 6, the electrical conduction distance between the ultrasonic sensor 18 and the attached portion 6 is increased. By taking lightning surges such as lightning, even if an abnormally high voltage occurs between the ultrasonic sensor and the flow path, it is possible to increase the withstand voltage leading to leakage and prevent damage to the ultrasonic sensor due to leakage current .

(実施の形態3)
図4は、本発明の実施の形態3における超音波流量計測装置の構成を示す断面図である。
(Embodiment 3)
FIG. 4 is a cross-sectional view showing the configuration of the ultrasonic flow rate measuring apparatus according to Embodiment 3 of the present invention.

図に示すように、流路壁24に囲まれた幅Wの計測流路24であり、2個の超音波センサ25、26は互いに対向するように流路壁24の取り付け部6に振動伝達抑止体19と、封止体20を介して取り付けられている。上流側の超音波センサ25と下流側の超音波センサ26は距離Lを隔てるとともに速度Vの被計測流体の流れに対して角度θ傾けて設置されている。超音波センサ25、26に対して超音波の送受信をさせる計測回路部27が接続されており、計測回路部27には計測回路部27での信号を基に流速を計算し流量を算出する演算部28が接続されている。   As shown in the figure, a measurement channel 24 having a width W surrounded by the channel wall 24, and the two ultrasonic sensors 25 and 26 transmit vibration to the attachment portion 6 of the channel wall 24 so as to face each other. The restraining body 19 and the sealing body 20 are attached. The ultrasonic sensor 25 on the upstream side and the ultrasonic sensor 26 on the downstream side are separated from each other by a distance L and inclined at an angle θ with respect to the flow of the fluid to be measured at the velocity V. A measurement circuit unit 27 that transmits and receives ultrasonic waves is connected to the ultrasonic sensors 25 and 26. The measurement circuit unit 27 calculates a flow rate based on a signal from the measurement circuit unit 27 and calculates a flow rate. The unit 28 is connected.

被測定流体は、都市ガスやLPガスであり、超音波流量計測装置としては、例えば、家庭用ガスメータ等が考えられ、計測流路23を構成する材料はアルミダイキャストなどが挙げられる。   The fluid to be measured is city gas or LP gas. As the ultrasonic flow rate measuring device, for example, a household gas meter is conceivable, and the material constituting the measurement flow path 23 is aluminum die cast or the like.

以上のように構成された超音波流量計測装置について、以下その動作、作用を説明する。   The operation and action of the ultrasonic flow rate measuring apparatus configured as described above will be described below.

計測流路23を被計測流体が流れている時に、計測回路部27の作用により超音波センサ25、26間で計測流路23を横切るようにして超音波の送受が行われる。すなわち、上流側の超音波センサ25から発せられた超音波が下流側の超音波センサ26で受信されるまでの経過時間T1を計測する。また一方、下流側の超音波センサ26から発せられた超音波が上流側の超音波センサ25で受信されるまでの経過時間T2を計測する。   When the fluid to be measured flows through the measurement flow path 23, ultrasonic waves are transmitted and received across the measurement flow path 23 between the ultrasonic sensors 25 and 26 by the action of the measurement circuit unit 27. That is, the elapsed time T1 until the ultrasonic wave emitted from the upstream ultrasonic sensor 25 is received by the downstream ultrasonic sensor 26 is measured. On the other hand, the elapsed time T2 until the ultrasonic wave emitted from the downstream ultrasonic sensor 26 is received by the upstream ultrasonic sensor 25 is measured.

このようにして測定された経過時間T1およびT2を基に、以下の演算式により演算部28で流量が算出される。いま、被計測流体の流れと超音波伝播路とのなす角度をθとし、流量測定部である超音波センサ25、26間の距離をL、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。   Based on the elapsed times T1 and T2 measured in this way, the flow rate is calculated by the calculation unit 28 by the following calculation formula. Now, assuming that the angle between the flow of the fluid to be measured and the ultrasonic propagation path is θ, the distance between the ultrasonic sensors 25 and 26 as the flow rate measurement unit is L, and the sound velocity of the fluid to be measured is C, the flow velocity V is It is calculated by the following formula.

T1=L/(C+Vcosθ)
T2=L/(C−Vcosθ)
T1の逆数からT2の逆数を引き算する式より音速Cを消去して、
V=(L/2cosθ){(1/T1)−(1/T2)}
θおよびLは既知なのでT1およびT2の値より流速Vが算出できる。
ここで、計測流路23の流れ方向に直交する横断面積sより、流量Qは
Q=kVs
ここで、kは横断面積sにおける流速分布を考慮した換算係数である。
このようにして演算部28で流量を求めることができる。
T1 = L / (C + V cos θ)
T2 = L / (C−Vcos θ)
The speed of sound C is eliminated from the equation for subtracting the reciprocal of T2 from the reciprocal of T1,
V = (L / 2 cos θ) {(1 / T1) − (1 / T2)}
Since θ and L are known, the flow velocity V can be calculated from the values of T1 and T2.
Here, from the cross-sectional area s orthogonal to the flow direction of the measurement channel 23, the flow rate Q is Q = kVs.
Here, k is a conversion coefficient considering the flow velocity distribution in the cross-sectional area s.
In this way, the flow rate can be obtained by the calculation unit 28.

超音波による流量計測では、時間T1、T2を高精度に計測することが重要である。すなわち、送信側では圧電体からケースに伝搬する筐体振動による残響の少ない超音波振動を被計測流体中のみに発することが大切であり、受信側では流体通路壁を伝搬した超音波振動は排除し被計測流体中を伝搬した超音波振動のみを、残響を少なく受信することが重要である。   In ultrasonic flow rate measurement, it is important to measure the times T1 and T2 with high accuracy. In other words, it is important that the transmitter side emits ultrasonic vibrations with little reverberation due to the case vibration propagating from the piezoelectric body to the case only in the fluid to be measured, while the receiver side excludes ultrasonic vibrations that have propagated through the fluid passage walls. It is important to receive only the ultrasonic vibration that has propagated through the fluid to be measured with less reverberation.

本実施の形態の超音波流量計測装置では、超音波センサ18の側壁部9に設けた振動伝達抑止体19が、センサが超音波振動を発するときに圧電体12からケース7の側壁部9を伝搬する筐体振動を防止するので、残響の短い超音波パルスの信号を発振することができる。   In the ultrasonic flow measuring device of the present embodiment, the vibration transmission suppressing body 19 provided on the side wall 9 of the ultrasonic sensor 18 moves the side wall 9 of the case 7 from the piezoelectric body 12 when the sensor emits ultrasonic vibration. Since the propagating casing vibration is prevented, an ultrasonic pulse signal with short reverberation can be oscillated.

さらに、振動伝達抑止体19は、流路壁24の所定箇所に取り付けられる際に、流路壁24に接触しないように取り付けられるために、送信側の超音波センサから発振する際の
不要筐体振動を流路側に伝搬させることがない。
Furthermore, since the vibration transmission restraining body 19 is attached so as not to contact the flow path wall 24 when being attached to a predetermined location of the flow path wall 24, an unnecessary casing when oscillating from the ultrasonic sensor on the transmission side is used. Vibration is not propagated to the flow path side.

また、受信側の超音波センサでは、送信側から発振された超音波パルス信号を受信する際に整合層11を介して振動が圧電体12を振動させると同時に、側壁部9で筐体振動も生じるが、振動伝達抑止体19により不要振動がフランジ部13を介して端子板14に接続している15a、15bに伝搬させることがないので、残響の短い超音波パルスの信号を受信することができる。   Further, in the ultrasonic sensor on the reception side, when the ultrasonic pulse signal oscillated from the transmission side is received, the vibration vibrates the piezoelectric body 12 through the matching layer 11, and at the same time, the side wall 9 also vibrates the casing. However, since the unnecessary vibration is not propagated to the terminal board 14 via the flange portion 13 by the vibration transmission restraining body 19, the ultrasonic pulse signal with short reverberation can be received. it can.

このことから、超音波センサの振動の減衰特性のばらつきを低減して超音波センサの送受信特性の安定化と信頼性を向上することができる。   From this, it is possible to reduce the variation in the vibration attenuation characteristics of the ultrasonic sensor and to improve the stability and reliability of the transmission / reception characteristics of the ultrasonic sensor.

さらに送受信の超音波センサで、流路壁24に取り付けられる際には、超音波センサ18のフランジ部13上のガスシール用封止体20によって、フランジ部の変形を防止して長期間の気密性を確保することができる。フランジ部13の形状によらない単純な構成のガスシール用の封止体であるので、流路壁24に超音波センサ18を取り付ける際に、短時間で、容易にシール材を嵌めることができる。   Further, when the transmission / reception ultrasonic sensor is attached to the flow path wall 24, the gas seal sealing body 20 on the flange portion 13 of the ultrasonic sensor 18 prevents the flange portion from being deformed, and the airtightness for a long period of time. Sex can be secured. Since the sealing body for gas sealing has a simple configuration that does not depend on the shape of the flange portion 13, when the ultrasonic sensor 18 is attached to the flow path wall 24, the sealing material can be easily fitted in a short time. .

また、封止体20は、センサの側壁の筐体振動を防止する振動伝達抑止体19とは、お互いに独立して超音波センサに供されるため、流路壁24に取り付けたあと、一方の超音波センサ18の筐体振動が振動伝達抑止体19を介して、封止体20に振動を伝搬することはないので、封止体20が接触している流路壁24に振動を伝搬させて、計測用の流路を通って、もう一方の超音波センサへ不要振動を伝搬させることなく、ガスシール性を確保することができる。   Further, since the sealing body 20 is used for the ultrasonic sensor independently of the vibration transmission suppressing body 19 for preventing the housing vibration on the side wall of the sensor, Since the housing vibration of the ultrasonic sensor 18 does not propagate the vibration to the sealing body 20 via the vibration transmission suppressing body 19, the vibration is propagated to the flow path wall 24 with which the sealing body 20 is in contact. Thus, the gas sealing property can be ensured without causing unnecessary vibration to propagate through the measurement channel to the other ultrasonic sensor.

さらに、超音波センサ18の側壁部9に設ける成型層21を設ければ、アルミダイキャストのような金属でできている流路壁24と超音波センサ18を電気的な絶縁距離を確保することができ、耐電圧性を高めて雷サージ性が向上でき、信頼性の高い超音波流量計測装置を提供することができる。   Furthermore, if the molding layer 21 provided on the side wall portion 9 of the ultrasonic sensor 18 is provided, an electrical insulation distance between the flow path wall 24 made of metal such as aluminum die casting and the ultrasonic sensor 18 is ensured. Therefore, it is possible to provide a reliable ultrasonic flow rate measuring device that can improve the lightning surge by improving the voltage resistance.

本発明は、超音波振動子が発する振動の被取り付け部への伝搬を抑制することができるので、超音波振動子を使用した各種計測装置への用途にも適用できる。   Since the present invention can suppress the propagation of vibrations generated by the ultrasonic transducer to the attached portion, it can also be applied to various measuring apparatuses using the ultrasonic transducer.

6 被取り付け部
7 ケース
8 天部
9 側壁部
10 開口部
12 圧電体
13 フランジ部
14 端子板
18、25、26 超音波センサ
19 振動伝達抑止体
20 封止体
21 成型層
23 計測流路
27 計測回路部
28 演算部
6 Attached part 7 Case 8 Top part 9 Side wall part 10 Opening part 12 Piezoelectric body 13 Flange part 14 Terminal plate 18, 25, 26 Ultrasonic sensor 19 Vibration transmission inhibiting body 20 Sealing body 21 Molding layer 23 Measurement flow path 27 Measurement Circuit part 28 Calculation part

Claims (3)

天部と側壁部と開口部とを有する有天筒状のケースと、前記天部の内壁面に固定された圧電体と、前記側壁部の端部に設けたフランジ部と、前記フランジ部と前記開口部を塞ぐ端子板とを有する超音波センサと、
前記側壁部の少なくとも一部に設置され、前記側壁部の筐体振動を防止する振動伝達抑止体と、
前記フランジ部の少なくとも一部に密接する封止体と、を含み、
前記超音波センサは、前記封止体を介して当該超音波センサの被取り付け部に設置されている、
超音波センサの取り付け構造。
A case having a ceiling, a side wall, and an opening, a piezoelectric body fixed to an inner wall surface of the top, a flange provided at an end of the side wall, and the flange An ultrasonic sensor having a terminal plate for closing the opening;
A vibration transmission deterrent body installed on at least a part of the side wall portion to prevent housing vibration of the side wall portion;
A sealing body closely contacting at least a part of the flange portion,
The ultrasonic sensor is installed on a mounting portion of the ultrasonic sensor via the sealing body,
Ultrasonic sensor mounting structure.
前記側壁部の表面を覆う電気的絶縁材料で形成された成型層を備え、
前記振動伝達抑止体は、前記成型層の表面に設置されている、
請求項1に記載の超音波センサの取り付け構造。
Comprising a molding layer formed of an electrically insulating material covering the surface of the side wall,
The vibration transmission suppressing body is installed on the surface of the molding layer,
The ultrasonic sensor mounting structure according to claim 1.
一対の前記超音波センサと、
被測定流体が流れる計測流路と、
前記計測流路に対向して配置された一対の前記被取り付け部と、
前記超音波センサ間の超音波伝播時間を計測する計測回路部と、
前記計測回路部からの信号に基づいて流量を算出する演算部と、を含み、
前記超音波センサは、請求項1または2に記載の取り付け構造により前記計測流路の被取り付け部に対向して取り付けられた、
超音波流量計測装置。
A pair of said ultrasonic sensors;
A measurement channel through which the fluid to be measured flows;
A pair of attached parts disposed opposite to the measurement channel;
A measurement circuit unit for measuring an ultrasonic propagation time between the ultrasonic sensors;
A calculation unit that calculates a flow rate based on a signal from the measurement circuit unit,
The ultrasonic sensor is attached to face the attached portion of the measurement channel by the attachment structure according to claim 1 or 2.
Ultrasonic flow measuring device.
JP2010154572A 2010-07-07 2010-07-07 Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same Pending JP2012018030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010154572A JP2012018030A (en) 2010-07-07 2010-07-07 Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154572A JP2012018030A (en) 2010-07-07 2010-07-07 Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same

Publications (1)

Publication Number Publication Date
JP2012018030A true JP2012018030A (en) 2012-01-26

Family

ID=45603394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154572A Pending JP2012018030A (en) 2010-07-07 2010-07-07 Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same

Country Status (1)

Country Link
JP (1) JP2012018030A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170131265A (en) * 2016-05-19 2017-11-29 지크 엔지니어링 게엠베하 Measuring apparatus and method for determining the flow speed of a fluid flowing in a conduit
JP2018100913A (en) * 2016-12-21 2018-06-28 上田日本無線株式会社 Ultrasonic measurement device
CN113189679A (en) * 2021-04-20 2021-07-30 上海宏英智能科技股份有限公司 Piezoelectric rainfall measuring meter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170131265A (en) * 2016-05-19 2017-11-29 지크 엔지니어링 게엠베하 Measuring apparatus and method for determining the flow speed of a fluid flowing in a conduit
KR101919872B1 (en) 2016-05-19 2018-11-19 지크 엔지니어링 게엠베하 Measuring apparatus and method for determining the flow speed of a fluid flowing in a conduit
JP2018100913A (en) * 2016-12-21 2018-06-28 上田日本無線株式会社 Ultrasonic measurement device
CN113189679A (en) * 2021-04-20 2021-07-30 上海宏英智能科技股份有限公司 Piezoelectric rainfall measuring meter

Similar Documents

Publication Publication Date Title
JP5659956B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP6101922B2 (en) Ultrasonic flow measurement unit and manufacturing method thereof
US9528867B2 (en) Ultrasonic flow meter and damper assembly for vibration reduction mounting
JP6172533B2 (en) Ultrasonic transducer and ultrasonic flow meter having the same
JP5690993B2 (en) Ultrasonic flow meter
JP3528726B2 (en) Ultrasonic vibrator and ultrasonic fluid flow measurement device using the same
WO2012008151A1 (en) Ultrasonic flow measurement unit and ultrasonic flowmeter using same
WO2012011272A1 (en) Construction for mounting ultrasonic transducer and ultrasonic flow meter using same
US7963174B2 (en) Ultrasonic flowmeter having a rubber transmitting body
JP2012018030A (en) Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same
JP2007208381A (en) Ultrasonic vibrator and fluid flow measurement apparatus employing the same
JP4305543B2 (en) Ultrasonic transceiver and ultrasonic flow meter using the same
CN111664903A (en) Ultrasonic flowmeter
JP2012007975A (en) Attachment structure of ultrasonic transducer and ultrasonic flow measuring device therewith
JP2004037468A (en) Ultrasonic flowmeter
JP5533332B2 (en) Ultrasonic flow meter
JP4079075B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP2007194896A (en) Ultrasonic transducer and flow measuring apparatus of fluid employing same
JP2012249066A (en) Ultrasonic sensor and ultrasonic flowmeter using the same
JP6536896B2 (en) Liquid level detection device
JP4765642B2 (en) Ultrasonic vibrator and fluid flow measuring device using the same
JP2007194895A (en) Ultrasonic transducer and flow measuring apparatus of fluid employing same
JP2003270012A (en) Ultrasonic transducer and ultrasonic flowmeter
JP2011002269A (en) Device for measuring flow of fluid
JP2006292378A (en) Ultrasonic flowmeter