JP2012007975A - Attachment structure of ultrasonic transducer and ultrasonic flow measuring device therewith - Google Patents

Attachment structure of ultrasonic transducer and ultrasonic flow measuring device therewith Download PDF

Info

Publication number
JP2012007975A
JP2012007975A JP2010143474A JP2010143474A JP2012007975A JP 2012007975 A JP2012007975 A JP 2012007975A JP 2010143474 A JP2010143474 A JP 2010143474A JP 2010143474 A JP2010143474 A JP 2010143474A JP 2012007975 A JP2012007975 A JP 2012007975A
Authority
JP
Japan
Prior art keywords
ultrasonic
insulator
ultrasonic transducer
attached
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010143474A
Other languages
Japanese (ja)
Inventor
Kenji Yasuda
憲司 安田
Hirosumi Nakamura
廣純 中村
Masato Sato
真人 佐藤
Hiroshi Nakai
弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010143474A priority Critical patent/JP2012007975A/en
Publication of JP2012007975A publication Critical patent/JP2012007975A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reliable ultrasonic measuring device, with a simplified process for attaching a ultrasonic transducer to a flow channel to be measured, which reduces chances of errors at site.SOLUTION: An attachment structure comprises an ultrasonic transducer 14 having a bottomed cylindrical case 1, acoustic matching layer 5, and a piezoelectric body 6, an insulator 15 made of electrical insulating material, an airtight seal material 18, and a to-be-attached part 16. The ultrasonic transducer 14 is attached to the to-be-attached part 16 through the insulator 15. The seal material 18 is inserted between the ultrasonic transducer 14 and the insulator 15, and between the insulator 15 and the to-be-attached part 16, so that vibration propagation between the ultrasonic transducer and a flow channel to be measured is reduced with secured insulation and sealability. In a process for attaching the ultrasonic transducer to the flow channel to be measured, the ultrasonic transducer is easily attached by mounting the insulator and the seal material on the flow channel to be measured in advance.

Description

本発明は、超音波流量計測装置における超音波振動子の取り付け構造に関するものである。   The present invention relates to an attachment structure of an ultrasonic transducer in an ultrasonic flow measurement device.

従来、この種の超音波流量計測装置に用いる超音波振動子の取り付け構造は、超音波振動子を制振体と振動伝達抑止体を介して超音波流量計測装置の被計測流路に取り付けられている(例えば、特許文献1参照)。   Conventionally, the ultrasonic vibrator mounting structure used in this type of ultrasonic flow measuring device is attached to the measured flow path of the ultrasonic flow measuring device via the vibration damping body and the vibration transmission suppressing body. (For example, refer to Patent Document 1).

図5は、特許文献1に記載された従来の取り付け構造を示すものである。図に示すように、超音波振動子30の側壁部31の外周面には側壁部の振動を低減する制振体32を巻装し、超音波振動子30の支持部33を保持する保持部34を有する振動伝達抑止体35を介して超音波流量計測装置の被計測流路38に取り付け、固定体37で固定している。これによって、圧電体36の振動が取り付け側に伝搬することを低減して残響の短い超音波パルスの送受信ができる。   FIG. 5 shows a conventional mounting structure described in Patent Document 1. In FIG. As shown in the drawing, a damping body 32 that reduces vibration of the side wall portion is wound around the outer peripheral surface of the side wall portion 31 of the ultrasonic transducer 30, and a holding portion that holds the support portion 33 of the ultrasonic transducer 30. It is attached to a measured flow path 38 of the ultrasonic flow rate measuring device via a vibration transmission suppressing body 35 having 34 and fixed by a fixed body 37. As a result, it is possible to reduce the propagation of the vibration of the piezoelectric body 36 to the attachment side, and to transmit / receive ultrasonic pulses with short reverberation.

特開平11−344472号公報JP-A-11-344472

しかしながら、前記従来の構成では、超音波振動子30を被計測流路38へ組み込む際に制振体32と振動伝達抑止体35を事前に超音波振動子に取り付ける必要があり、且つ制振体32と振動伝達抑止体35は構成上複雑な形状となるため作業性が悪く、組立て信頼性も低下してしまう。また、固定体37は保持部34を覆うように構成されているため被計測流路38に制振体32と振動伝達抑止体35を取り付けた超音波振動子30を装着後に固定体37をビス等により被計測流路38に固定していた。そのため、被計測流路38に超音波振動子30を取り付ける工程だけで相当な時間と工程が必要となる課題を有していた。   However, in the conventional configuration, it is necessary to attach the vibration damping body 32 and the vibration transmission suppressing body 35 to the ultrasonic vibrator in advance when the ultrasonic vibrator 30 is incorporated into the measured flow path 38, and the vibration damping body. Since 32 and the vibration transmission restraining body 35 have complicated shapes, workability is poor and assembly reliability is also lowered. Further, since the fixed body 37 is configured to cover the holding portion 34, the fixed body 37 is screwed after the ultrasonic transducer 30 having the vibration damping body 32 and the vibration transmission suppressing body 35 attached to the measurement channel 38. For example, it is fixed to the measured flow path 38. For this reason, only the process of attaching the ultrasonic transducer 30 to the measured flow path 38 has a problem that a considerable time and process are required.

本発明は上記課題を解決するもので、超音波流量計測装置としての信頼性を維持しつつ、超音波振動子を被計測流路に組み付ける工程が単純化され、作業ミスが低減されることによる作業信頼性の高い超音波振動子の取り付け構造を提供することを目的とする。   The present invention solves the above-mentioned problem, and the process of assembling the ultrasonic transducer to the measurement channel is simplified while maintaining the reliability as the ultrasonic flow measuring device, thereby reducing work errors. An object of the present invention is to provide an ultrasonic vibrator mounting structure with high work reliability.

前記従来の課題を解決するために、本発明の超音波振動子の取り付け構造は、有底筒状のケースと音響整合層と圧電体とを備えた超音波振動子と、電気的絶縁性の材料で形成した絶縁体と、気密シール性のシール材と、被取り付け部とを含み、超音波振動子を絶縁体を介して被取り付け部に取り付ける取り付け構造において、超音波振動子と絶縁体との間および絶縁体と被取り付け部との間に、シール材を介装したものである。   In order to solve the above-described conventional problems, an ultrasonic vibrator mounting structure according to the present invention includes an ultrasonic vibrator including a bottomed cylindrical case, an acoustic matching layer, and a piezoelectric body, and an electrically insulating property. In an attachment structure including an insulator formed of a material, a hermetic sealing material, and an attachment portion, and attaching the ultrasonic vibrator to the attachment portion via the insulator, the ultrasonic vibrator and the insulator And a sealing material between the insulator and the attached portion.

これによって、超音波振動子と被計測流路の振動伝搬を低減でき、かつ絶縁性、シール性を確保でき、超音波振動子を被計測流路に組み付ける工程は、被計測流路に絶縁体とシール材を先に組み込むことにより簡単に超音波振動子を取り付けることができる。   As a result, vibration propagation between the ultrasonic transducer and the measurement channel can be reduced, and insulation and sealing properties can be secured. And an ultrasonic vibrator can be easily attached by incorporating a sealing material first.

また、本発明の超音波振動子の取り付け構造は、超音波振動子の一部を絶縁体の係止手
段にて固定する取り付け構造としたものである。
The ultrasonic vibrator mounting structure of the present invention is a mounting structure in which a part of the ultrasonic vibrator is fixed by an insulator locking means.

これによって、超音波振動子を被計測流路に取り付ける工程は、被計測流路に絶縁体とシール材を組み込んだあと超音波振動子を係止手段のリブ部に嵌め込むだけで装着できる。   As a result, the step of attaching the ultrasonic transducer to the channel to be measured can be mounted simply by fitting the ultrasonic transducer into the rib portion of the locking means after incorporating the insulator and the seal material into the channel to be measured.

超音波流量計測装置としての信頼性を維持しつつ、超音波振動子を被計測流路に組み付ける工程が単純化され、作業ミスが低減されることによって作業信頼性が向上できる。   While maintaining the reliability as the ultrasonic flow rate measuring device, the process of assembling the ultrasonic transducer to the measurement channel is simplified, and the operational reliability can be improved by reducing operational errors.

本発明の実施の形態1における超音波振動子の取り付け構造を示す断面図Sectional drawing which shows the attachment structure of the ultrasonic transducer | vibrator in Embodiment 1 of this invention 本発明の実施の形態2における超音波振動子の取り付け構造を示す断面図Sectional drawing which shows the attachment structure of the ultrasonic transducer | vibrator in Embodiment 2 of this invention 本発明の実施の形態3の超音波振動子の取り付け構造を示す断面図Sectional drawing which shows the attachment structure of the ultrasonic transducer | vibrator of Embodiment 3 of this invention 本発明の実施の形態4の超音波流量計測装置の構成図Configuration diagram of ultrasonic flow rate measuring apparatus according to embodiment 4 of the present invention 従来の超音波振動子の取り付け構造を示す断面図Sectional view showing the mounting structure of a conventional ultrasonic transducer

第1の発明は、有底筒状のケースと音響整合層と圧電体とを備えた超音波振動子と、電気的絶縁性の材料で形成した絶縁体と、気密シール性のシール材と、被取り付け部とを含み、前記超音波振動子を前記絶縁体を介して前記被取り付け部に取り付ける取り付け構造において、前記超音波振動子と前記絶縁体との間および前記絶縁体と前記被取り付け部との間に、前記シール材を介装したことを特徴とする、超音波振動子の取り付け構造。   According to a first aspect of the present invention, there is provided an ultrasonic vibrator including a bottomed cylindrical case, an acoustic matching layer, and a piezoelectric body, an insulator formed of an electrically insulating material, an airtight sealing material, In the mounting structure including the attached portion and attaching the ultrasonic transducer to the attached portion via the insulator, the insulator and the attached portion are disposed between the ultrasonic transducer and the insulator. The ultrasonic vibrator mounting structure, wherein the sealing material is interposed between the two.

これにより、圧電体の振動が被計測流路へ伝搬するのを低減し残響の短い超音波パルスの送受信を行い計測精度を確保することができる。   Thereby, it is possible to reduce the propagation of the vibration of the piezoelectric body to the measurement channel, and to transmit and receive an ultrasonic pulse with short reverberation, thereby ensuring measurement accuracy.

またケースを絶縁体で遮蔽してコンパクトな取り付け構造で被取り付け部と超音波振動子との導電距離を大きくすることで、落雷などにより被取り付け部と超音波振動子間に異常高電圧が発生した場合でもリークに至る耐電圧を高め、リーク電流による超音波振動子の破損を防いで信頼性を確保することができる。   In addition, by shielding the case with an insulator and increasing the conductive distance between the mounted part and the ultrasonic transducer with a compact mounting structure, abnormally high voltage is generated between the mounted part and the ultrasonic transducer due to lightning strikes, etc. Even in this case, it is possible to increase the withstand voltage leading to the leakage and prevent the ultrasonic vibrator from being damaged by the leakage current, thereby ensuring the reliability.

また超音波振動子が取り付けられる被取り付け部と絶縁体との間およびケースと絶縁体との間にシール材を設けることにより被計測流体側とシール材を介して対側との気密シール性を確保することができる。   In addition, by providing a sealing material between the attachment part to which the ultrasonic transducer is attached and the insulator and between the case and the insulator, a hermetic seal between the fluid to be measured and the opposite side through the sealing material is achieved. Can be secured.

また被取り付け部へ事前にシール材と絶縁体を取り付けることができ、超音波振動子の取り付け性が向上できるとともにシンプルな構成と工程の単純かにより作業ミスが低減でき作業信頼性を向上することができる。   In addition, sealing materials and insulators can be attached to the parts to be attached in advance, so that the attachment of the ultrasonic transducer can be improved, and work mistakes can be reduced due to the simple structure and simple process, improving work reliability. Can do.

第2の発明は、特に、第1の発明において、絶縁体は係止手段を備え、前記係止手段で前記超音波振動子を前記絶縁体に係止するものである。   In particular, according to a second invention, in the first invention, the insulator includes a locking means, and the ultrasonic vibrator is locked to the insulator by the locking means.

それにより、被取り付け部に事前にシール材と絶縁体を取り付けて、その後、超音波振動子を係止手段で係止するだけで絶縁体に取り付けることが可能となり、さらに超音波振動子の取り付けに必要な部品点数が削減され、取り付け工程を単純化することができる。   As a result, it is possible to attach the sealing material and the insulator to the attached portion in advance, and then attach the ultrasonic vibrator to the insulator simply by locking with the locking means. The number of parts required for the installation can be reduced, and the mounting process can be simplified.

第3の発明は、特に、第1または第2の発明において、前記絶縁体と、前記超音波振動子との間に振動伝搬防止帯を備えものである。   In a third aspect of the invention, in particular, in the first or second aspect of the invention, a vibration propagation prevention band is provided between the insulator and the ultrasonic transducer.

これにより、圧電体の振動がケースに伝搬した場合であっても、振動伝搬防止帯により絶縁体への振動伝搬が大幅に低減でき、絶縁体から被取り付け部への振動伝搬が低減され、残響によるノイズの発生の低減や残響の短い超音波パルスの送受信が可能で、S/Nが改善されて被計測流体の流量、流速の計測精度、計測範囲の拡大など計測特性が向上できる。   As a result, even when the vibration of the piezoelectric material propagates to the case, the vibration propagation to the insulator can be greatly reduced by the vibration propagation prevention band, the vibration propagation from the insulator to the mounted part is reduced, and the reverberation It is possible to reduce the generation of noise and transmit / receive ultrasonic pulses with short reverberation, and the S / N can be improved to improve the measurement characteristics such as the flow rate of the fluid to be measured, the measurement accuracy of the flow velocity, and the measurement range expansion.

第4の発明は、 少なくとも一対の前記超音波振動子と、被計測流体が流れる計測流路と、前記計測流路に対向して配置された複数の前記被取り付け部と、前記超音波振動子間の超音波伝搬時間を計測する計測制御部と、前記計測制御部からの信号に基づいて流量を算出する演算部とを含み、前記超音波振動子は、第1〜第3のいずれか1つの発明の超音波振動子の取り付け構造により前記計測流路の被取り付け部に取り付けたものである。   According to a fourth aspect of the present invention, there is provided at least a pair of the ultrasonic transducers, a measurement flow channel through which a fluid to be measured flows, a plurality of attached portions disposed to face the measurement flow channel, and the ultrasonic transducers A measurement control unit that measures an ultrasonic propagation time between the measurement control unit and a calculation unit that calculates a flow rate based on a signal from the measurement control unit, and the ultrasonic transducer is any one of the first to third units. The ultrasonic transducer is attached to the attachment portion of the measurement flow path by the attachment structure of the ultrasonic transducer of one invention.

これにより、計測精度を高め計測範囲を拡大し長期間にわたり計測特性を維持できる流量計測装置を提供することができる。   Accordingly, it is possible to provide a flow rate measuring device that can increase measurement accuracy, expand a measurement range, and maintain measurement characteristics over a long period of time.

しかも、超音波計測装置として必要信頼性を堅持しながらも、シンプルな構成と工程の単純化が可能となり、作業ミスが低減でき作業信頼性を向上することができる。   In addition, while maintaining the required reliability as an ultrasonic measurement device, it is possible to simplify the structure and process, reduce work errors, and improve work reliability.

以下、本発明の実施の形態における超音波振動子の取り付け構造について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, an ultrasonic vibrator mounting structure according to an embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における超音波振動子の取り付け構造の断面図を示すものである。
(Embodiment 1)
FIG. 1 shows a cross-sectional view of an ultrasonic transducer mounting structure according to Embodiment 1 of the present invention.

図1に示すように、ケース1は底部2と、側壁部3、開口部4を有する有底筒状である。底部2の外壁面には音響整合層5固定されており、底部2の内壁面には音響整合層5の反対側に圧電体6が固定されている。ケース1の開口部4の外周に環状に広がるフランジ8と開口部4を塞ぐ封止体9とを重ねて厚みを増加させて剛性を持たせた固定部7が形成されている。封止体9には端子10a、10bが設けられており、端子10aと端子10bは絶縁部11を介して絶縁されている。圧電体6と端子10aとはリード線12で電気的に接続されている。圧電体6には溝13が設けられている。   As shown in FIG. 1, the case 1 has a bottomed cylindrical shape having a bottom 2, a side wall 3, and an opening 4. The acoustic matching layer 5 is fixed to the outer wall surface of the bottom 2, and the piezoelectric body 6 is fixed to the inner wall surface of the bottom 2 on the opposite side of the acoustic matching layer 5. A fixed portion 7 is formed on the outer periphery of the opening 4 of the case 1 by laminating an annular flange 8 and a sealing body 9 that closes the opening 4 to increase the thickness and thereby provide rigidity. The sealing body 9 is provided with terminals 10 a and 10 b, and the terminals 10 a and 10 b are insulated via an insulating portion 11. The piezoelectric body 6 and the terminal 10a are electrically connected by a lead wire 12. A groove 13 is provided in the piezoelectric body 6.

このように超音波振動子14は有底筒状のケース1の内部に圧電体6を設けて封止体9で封止するとともにケース1の外部に音響整合層5と固定部7を備えている。   As described above, the ultrasonic transducer 14 includes the piezoelectric body 6 provided inside the bottomed cylindrical case 1 and sealed with the sealing body 9, and includes the acoustic matching layer 5 and the fixing portion 7 outside the case 1. Yes.

また、ケース1を囲うように電気的絶縁材料で成型された絶縁体15が巻装されており、ケース1と絶縁体15や計測流路の強度、耐食性、耐久性を確保するためアルミ合金ダイキャストなどの金属材料で成型された被取り付け部16と絶縁体15の間は組立て性を考慮し適度なクリアランス17が設けられている。   An insulator 15 molded of an electrically insulating material is wound around the case 1, and an aluminum alloy die is used to ensure the strength, corrosion resistance, and durability of the case 1, the insulator 15, and the measurement channel. An appropriate clearance 17 is provided between the attachment portion 16 and the insulator 15 formed of a metal material such as cast in consideration of assembly.

固定部7と絶縁体15の間や被取り付け部16と絶縁体15の間には気密シール性の材質で成型されたシール材18が密着するように設けられている。シール材18は例えばゴム製Oリングやシリコン製樹脂などを使用する。絶縁体15と固定部7は固定体19とビス(図示せず)を介して被取り付け部16に固定されている。   A sealing material 18 formed of an airtight sealing material is provided between the fixed portion 7 and the insulator 15 and between the attached portion 16 and the insulator 15 so as to be in close contact therewith. For example, a rubber O-ring or a silicon resin is used as the sealing material 18. The insulator 15 and the fixing portion 7 are fixed to the attachment portion 16 via a fixing member 19 and a screw (not shown).

以上のように構成された超音波振動子14の作製方法の一例について以下に説明する。超音波振動子14はLPガスや天然ガス中で使用することを想定して、有底筒状のケース1にはステンレス、音響整合層5にはエポキシ樹脂と中空ガラス球の混合体からなる材料を選択する。ケース1の加工方法には量産性を考え、切削加工ではなく絞り加工のような
成形加工を選択する。また、ケース1のステンレスの厚みは、超音波振動子14の感度、構造的強度、成形加工性の観点から0.1から0.5mm程度を選択する。
An example of a method for producing the ultrasonic transducer 14 configured as described above will be described below. Assuming that the ultrasonic transducer 14 is used in LP gas or natural gas, the bottomed cylindrical case 1 is made of stainless steel, and the acoustic matching layer 5 is made of a mixture of epoxy resin and hollow glass spheres. Select. In consideration of mass productivity, the processing method of the case 1 is not a cutting process but a forming process such as a drawing process is selected. Further, the thickness of the stainless steel of the case 1 is selected to be about 0.1 to 0.5 mm from the viewpoints of the sensitivity, structural strength, and moldability of the ultrasonic transducer 14.

このように薄い材料でケース1を成形するため固定部7はケース1の絞り加工により形成されるフランジ8の板厚T1に対して封止体9の板厚T2を大きくし(T1<T2)、封止体9を溶接などで接合して構造的強度を高めている。   In order to form the case 1 with such a thin material, the fixing portion 7 increases the plate thickness T2 of the sealing body 9 with respect to the plate thickness T1 of the flange 8 formed by drawing the case 1 (T1 <T2). The sealing body 9 is joined by welding or the like to increase the structural strength.

また、圧電体6はステンレスからなる底部2に接着固定されるため、広がり方向の振動が阻害される。超音波振動子14の高感度化を図るには広がり振動よりも厚み縦振動を主モードに利用する方が有利である。しかし、圧電体6は形状により振動の主モードが決定されてしまい、圧電体6の形状と使用周波数に対する許容範囲が狭い。そこで、圧電体6に溝13を設けた構造として、実用可能な小型の寸法で厚み振動を主モードとすることが可能となる。   Further, since the piezoelectric body 6 is bonded and fixed to the bottom 2 made of stainless steel, vibration in the spreading direction is hindered. In order to increase the sensitivity of the ultrasonic vibrator 14, it is advantageous to use the thickness longitudinal vibration for the main mode rather than the spread vibration. However, the main mode of vibration of the piezoelectric body 6 is determined by the shape, and the allowable range for the shape and operating frequency of the piezoelectric body 6 is narrow. Therefore, as a structure in which the groove 13 is provided in the piezoelectric body 6, thickness vibration can be set as a main mode with a practically small size.

このような材料、形状として具体的な作製手順として、まず厚み0.2mmのステンレス鋼板から円形状の底部2を有する有底筒状のケース1を成形加工する。次に、底部2の外壁面に円板状の音響整合層5、内壁面には圧電体6をエポキシ系接着剤にて接着固定する。このとき溝13により分割された電極(図示せず)と底部2を10μm以下の薄い接着層を介して接着固定することにより、分割された電極(図示せず)と底部2の電気的導通も取ることができる。   As a specific manufacturing procedure for such a material and shape, a bottomed cylindrical case 1 having a circular bottom 2 is first formed from a stainless steel plate having a thickness of 0.2 mm. Next, the disc-like acoustic matching layer 5 is bonded to the outer wall surface of the bottom 2 and the piezoelectric body 6 is bonded and fixed to the inner wall surface with an epoxy adhesive. At this time, the electrode (not shown) divided by the groove 13 and the bottom 2 are bonded and fixed via a thin adhesive layer of 10 μm or less, so that the electric conduction between the divided electrode (not shown) and the bottom 2 is also achieved. Can be taken.

リード線12は圧電体6の電極(図示せず)と端子10aにそれぞれ半田付けをする。最後に、1mm程度のステンレス板からなる封止体9を開口部4の外周側に設けたフランジ8に電気抵抗溶接などにより固定し、封止と電気的導通を同時に行う。   The lead wire 12 is soldered to an electrode (not shown) of the piezoelectric body 6 and the terminal 10a. Finally, a sealing body 9 made of a stainless steel plate of about 1 mm is fixed to the flange 8 provided on the outer peripheral side of the opening 4 by electric resistance welding or the like, and sealing and electrical conduction are performed simultaneously.

圧電体6はケース1をグランドとして共用し、さらにケース1および封止体9で覆われるためノイズの影響を低減できる。また、封止するときケース1の内部に乾燥した窒素や不活性ガスを置換封入すると、圧電体6の電極、圧電体6とケース1の接着層などの長期間使用による劣化防止が可能である。   Since the piezoelectric body 6 shares the case 1 as the ground and is further covered with the case 1 and the sealing body 9, the influence of noise can be reduced. Moreover, when nitrogen or an inert gas is substituted and sealed in the case 1 during sealing, deterioration of the electrodes of the piezoelectric body 6 and the adhesive layer between the piezoelectric body 6 and the case 1 due to long-term use can be prevented. .

以上のように構成された超音波振動子の取り付け構造について、以下その動作、作用を説明する。   The operation and action of the ultrasonic vibrator mounting structure configured as described above will be described below.

まず、有底筒状のケース1を囲うように電気的絶縁材料で成型された絶縁体15について、もし仮に本実施の形態で示した絶縁体15が無く超音波振動子14は被取り付け部16と電気絶縁距離の小さい状態で配置された場合について説明する。この場合、落雷などにより被取り付け部16と超音波振動子14の間に異常な高電圧が発生すると、被取り付け部16と超音波振動子14の間に大きな電流が流れて超音波振動子14の圧電体6などに損傷が生じることになる。   First, regarding the insulator 15 molded with an electrically insulating material so as to surround the bottomed cylindrical case 1, if there is no insulator 15 shown in the present embodiment, the ultrasonic transducer 14 is attached to the attached portion 16. And a case where the electric insulation distance is small. In this case, when an abnormal high voltage is generated between the attached portion 16 and the ultrasonic transducer 14 due to a lightning strike or the like, a large current flows between the attached portion 16 and the ultrasonic transducer 14 and the ultrasonic transducer 14. This causes damage to the piezoelectric body 6 and the like.

この損傷を防止するには異常な高電圧に対してリークに至る耐電圧を高めるため電気絶縁距離を大きくすることが必要になる。しかし、ケース1と取り付け壁25との距離を大きくするには、取り付け穴を大きくすると共にフランジ8などで形成した固定部7の外形を大きくせねばならず、小型化に逆行する。   In order to prevent this damage, it is necessary to increase the electrical insulation distance in order to increase the withstand voltage leading to leakage against an abnormal high voltage. However, in order to increase the distance between the case 1 and the mounting wall 25, the mounting hole must be enlarged and the outer shape of the fixing portion 7 formed by the flange 8 or the like must be increased, which goes against miniaturization.

しかし、本実施の形態のように電気絶縁材料で成型した絶縁体15を設置すると、小型のままで超音波振動子14と被取り付け部16とが電気的絶縁物によって遮蔽され絶縁距離が大きくなり、落雷などにより被取り付け部側と超音波振動子間に異常高電圧が発生した場合でもリークに至る耐電圧を高めることができ、リーク電流による超音波振動子の破損を防いで信頼性を向上できる。   However, when the insulator 15 formed of an electrically insulating material is installed as in the present embodiment, the ultrasonic transducer 14 and the attached portion 16 are shielded by an electrical insulator while being small, and the insulation distance is increased. Even if an abnormally high voltage occurs between the attached part side and the ultrasonic transducer due to lightning strikes, etc., the withstand voltage leading to leakage can be increased, and the ultrasonic transducer is prevented from being damaged by leakage current, improving reliability it can.

また、被取り付け部16への絶縁体15の取り付け時や、絶縁体15への超音波振動子14の取り付け時にスムーズに挿入できるよう適度なクリアランス17を設けているため、被計測流体であるガスや液体が被取り付け部16から漏れ出す恐れがある。そのために、シール材18によって絶縁体15と被取り付け部16との気密シール性を確保することができる。   In addition, since an appropriate clearance 17 is provided so that the insulator 15 can be smoothly inserted when the insulator 15 is attached to the attachment portion 16 or when the ultrasonic vibrator 14 is attached to the insulator 15, gas that is a fluid to be measured is provided. In addition, there is a risk that the liquid leaks from the attached portion 16. Therefore, the sealing material 18 can ensure the hermetic sealing property between the insulator 15 and the attached portion 16.

次に本実施の形態における最大の効果をもたらす、被取り付け部16への超音波振動子14の取り付け方法について説明する。被取り付け部16にまず絶縁体15の下側に配置されているシール材18を取り付ける。なお、シール材18は例えばOリングを使用する場合、被取り付け部16の壁面に窪みを設けていればOリングの装着が容易にでき、取り付け場所も規定される。次に絶縁体15を被取り付け部16に挿入し、絶縁体15の上側に配置されているシール材18を取り付ける。なお、シール材18は例えばOリングを使用する場合、被取り付け部16の壁面に窪みを設けていればOリングの装着が容易にでき、取り付け場所も規定される。   Next, a method of attaching the ultrasonic transducer 14 to the attached portion 16 that brings about the maximum effect in the present embodiment will be described. First, the sealing member 18 disposed below the insulator 15 is attached to the attachment portion 16. For example, when an O-ring is used as the sealing material 18, the O-ring can be easily mounted if the recess is provided in the wall surface of the mounted portion 16, and the mounting location is also defined. Next, the insulator 15 is inserted into the attachment portion 16, and the sealing material 18 disposed on the upper side of the insulator 15 is attached. For example, when an O-ring is used as the sealing material 18, the O-ring can be easily mounted if the recess is provided in the wall surface of the mounted portion 16, and the mounting location is also defined.

次に超音波振動子14を絶縁体15とシール材18を装着した被取り付け部16に挿入する。最後に固定体19にて固定部7と絶縁体15の上部を押さえるように取り付けることにより、シール材18の密着性が増し、超音波振動子を固定することができる。   Next, the ultrasonic transducer | vibrator 14 is inserted in the to-be-attached part 16 with which the insulator 15 and the sealing material 18 were mounted | worn. Finally, the fixing member 19 is attached so as to press the upper portion of the fixing portion 7 and the insulator 15, whereby the adhesion of the sealing material 18 is increased and the ultrasonic vibrator can be fixed.

以上のように、部品ひとつひとつを被取り付け部16に装着していくことにより前工程での準備作業が不要となるほか、装着状態を目視確認しながら確実に作業を進めることができる。特にシール材18については、少しでもずれて装着したり、折れ曲がって装着したりすると被取り付け部16からのガス漏れや水もれに繋がることになるので、本実施の形態のようにシール材18を線接触で密着させることによって、特にOリングを使用することによって構造上も作業性上も信頼性を向上することができる。   As described above, by attaching each part to the attachment portion 16, preparation work in the previous process is not necessary, and the work can be reliably performed while visually confirming the mounting state. In particular, as for the sealing material 18, if it is mounted with a slight displacement or bent, it will lead to gas leakage or leakage from the mounted portion 16, and therefore the sealing material 18 as in the present embodiment. By using the O-ring, it is possible to improve the reliability in terms of structure and workability.

このように超音波計測装置として必要な信頼性を堅持しながらも、計測流路の被取り付け部16へ事前にシール材18と絶縁体15を取り付けることができ、超音波振動子14の取り付け性が向上できる。また、それぞれの部品の形状の簡易化と、シンプルな構成と工程の単純化をすることで作業ミスが低減でき作業信頼性を向上することができ、漏洩がなく安全で計測精度が高く計測範囲の大きい流量計測装置が実現できる。   Thus, while maintaining the reliability required as an ultrasonic measurement device, the sealing material 18 and the insulator 15 can be attached in advance to the attachment portion 16 of the measurement flow path, and the attachment properties of the ultrasonic transducer 14 are improved. Can be improved. In addition, by simplifying the shape of each part and simplifying the structure and process, work errors can be reduced and work reliability can be improved. Can be realized.

(実施の形態2)
図2は、本発明の実施の形態2における超音波振動子の取り付け構造の断面図を示すものである。
(Embodiment 2)
FIG. 2 shows a cross-sectional view of an ultrasonic transducer mounting structure according to Embodiment 2 of the present invention.

本実施の形態において実施の形態と同一部材および同一機能を有するものは同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。   In the present embodiment, members having the same members and functions as those of the embodiments are denoted by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

絶縁体15の端部には内リブ20が設けられており、内リブ20は超音波振動子14の固定部7を環状に囲っている絶縁体15の内向き側に環状の対称位置に少なくとも2箇所設けられ、ある程度の可動性を備え固定部7を押えるような形状の係止手段である。なお、内リブ20は環状の位置に多数個設けてもよい。   An inner rib 20 is provided at an end portion of the insulator 15, and the inner rib 20 is at least in an annular symmetrical position on the inward side of the insulator 15 that annularly surrounds the fixing portion 7 of the ultrasonic transducer 14. The locking means is provided at two locations and has a shape with a certain degree of mobility so as to press the fixing portion 7. A large number of inner ribs 20 may be provided at annular positions.

また、絶縁体15の外周部には外リブが設けられており、外リブ21は固定部7を環状に囲っている絶縁体15の外向き側に環状の対称位置に少なくとも2箇所設けられ、形状は絶縁体15を被取り付け部16に挿入し易いよう図2の垂直下方向にはなだらかに成型され、垂直上方向は絶縁体15を被取り付け部16に取り付けた後容易に抜けないよう返し構造を備えたものである。なお、外リブ21はある程度の可動性を備えてもよい。   In addition, outer ribs are provided on the outer peripheral portion of the insulator 15, and the outer ribs 21 are provided at least two annularly symmetrical positions on the outward side of the insulator 15 surrounding the fixing portion 7 in an annular shape, The shape is gently formed in the vertical downward direction of FIG. 2 so that the insulator 15 can be easily inserted into the attachment portion 16, and the vertical upward direction is turned back so as not to easily come out after the insulator 15 is attached to the attachment portion 16. It has a structure. The outer rib 21 may have a certain degree of mobility.

一方、被取り付け部16の外リブ21に対応する位置には、嵌め込み穴22が設けられており、嵌め込み穴22は外リブ21と同じような形状であり、絶縁体15が挿入された状態で外リブ21が入り込むような位置に設けられている。なお、外リブ21と嵌め込み穴22は環状の位置に多数個設けてもよく、形状は半円状や半円球状としてもよい。   On the other hand, a fitting hole 22 is provided at a position corresponding to the outer rib 21 of the mounted portion 16. The fitting hole 22 has the same shape as the outer rib 21 and the insulator 15 is inserted. It is provided at a position where the outer rib 21 enters. A large number of outer ribs 21 and fitting holes 22 may be provided in an annular position, and the shape may be semicircular or semispherical.

以上のように構成された本実施の形態における超音波振動子の取り付け構造について、以下その動作、作用を説明する。   The operation and action of the ultrasonic transducer mounting structure according to the present embodiment configured as described above will be described below.

まず、被取り付け部16に絶縁体15の下側に配置されているシール材18を取り付ける。なお、シール材18は例えばOリングを使用する場合、被取り付け部16の壁面に窪みを設けていればOリングの装着が容易にでき、取り付け場所も規定される。   First, the sealing material 18 disposed on the lower side of the insulator 15 is attached to the attached portion 16. For example, when an O-ring is used as the sealing material 18, the O-ring can be easily mounted if the recess is provided in the wall surface of the mounted portion 16, and the mounting location is also defined.

次に絶縁体15を被取り付け部16に挿入し、絶縁体15の上側に配置されているシール材18を取り付ける。なお、シール材18は例えばOリングを使用する場合、被取り付け部16の壁面に窪みを設けていればOリングの装着が容易にでき、取り付け場所も規定される。   Next, the insulator 15 is inserted into the attachment portion 16, and the sealing material 18 disposed on the upper side of the insulator 15 is attached. For example, when an O-ring is used as the sealing material 18, the O-ring can be easily mounted if the recess is provided in the wall surface of the mounted portion 16, and the mounting location is also defined.

次に超音波振動子14を絶縁体15とシール材18を装着した被取り付け部16に挿入する。挿入途中に固定部7が内リブ20を外側に広げるように作用し、固定部7がシール材18まで到達すると固定部7に広げられていた内リブ20が元に戻り、固定部7を押さえ込むような係止手段となる。このような係止手段とすることで固定部7を押える固定体が不要であり、部品削減が可能となる。また固定部7を抑える固定体を被取り付け部16に装着していたビス締め等が不要となり、取り付け工程も簡素化できる。   Next, the ultrasonic transducer | vibrator 14 is inserted in the to-be-attached part 16 with which the insulator 15 and the sealing material 18 were mounted | worn. During the insertion, the fixing portion 7 acts to spread the inner rib 20 outward, and when the fixing portion 7 reaches the sealing material 18, the inner rib 20 that has been spread to the fixing portion 7 returns to its original state and presses the fixing portion 7. Such a locking means. By using such a locking means, there is no need for a fixing body that presses the fixing portion 7, and the number of parts can be reduced. Further, it is not necessary to tighten a screw or the like in which a fixing body for holding the fixing portion 7 is attached to the attached portion 16, and the attaching process can be simplified.

このように超音波計測装置として必要信頼性を堅持しながらも、より一層、部品の形状の簡易化、シンプルな構成と工程の単純をすることで作業ミスが低減でき作業信頼性を向上することができ、漏洩がなく安全で計測精度が高く計測範囲の大きい流量計測装置が実現できる。   In this way, while maintaining the required reliability as an ultrasonic measurement device, it is possible to further reduce work mistakes and improve work reliability by further simplifying the shape of parts and simplifying the structure and process. Therefore, it is possible to realize a flow rate measuring device that is safe without leaking, has high measurement accuracy, and has a large measurement range.

また、被取り付け部16と絶縁体15の取り付けを、嵌め込み穴22に外リブ21を嵌め込むような係止手段とすることにより、特に、シンプルな構成と工程の単純化をすることで作業ミスが低減でき作業信頼性を向上することができ、漏洩がなく安全で計測精度が高く計測範囲の大きい流量計測装置が実現できる。   In addition, the mounting portion 16 and the insulator 15 are attached by using a locking means that fits the outer rib 21 into the fitting hole 22. Therefore, it is possible to improve the work reliability, and it is possible to realize a flow rate measuring device that is safe without leakage, has high measurement accuracy, and has a large measurement range.

(実施の形態3)
図3は、本発明の実施の形態3における超音波振動子の取り付け構造の断面図を示すものである。
(Embodiment 3)
FIG. 3 shows a sectional view of an ultrasonic transducer mounting structure according to Embodiment 3 of the present invention.

本実施の形態において実施の形態1と同一部材および同一機能を有するものは同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。   In the present embodiment, members having the same members and functions as those of the first embodiment are denoted by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.

超音波振動子14の有底筒状のケース1の側壁側と絶縁体15との間には振動伝搬防止帯23が設けられており、ケース1の側壁3と絶縁体15が接触しないよう、1mm〜2mm程度の隙間を設けている。   A vibration propagation preventing band 23 is provided between the side wall side of the bottomed cylindrical case 1 of the ultrasonic vibrator 14 and the insulator 15 so that the side wall 3 of the case 1 and the insulator 15 do not come into contact with each other. A gap of about 1 mm to 2 mm is provided.

以上のように構成される超音波振動子の取り付け構造について、以下その動作、作用を説明する。   The operation and action of the ultrasonic vibrator mounting structure configured as described above will be described below.

超音波計測装置は、送信側の超音波振動子14と受信側の超音波振動子14がお互いに
超音波の送信、受信を行うことにより動作している。送受信の超音波振動子14の駆動時には、超音波振動子14に駆動電気入力を印可されて圧電体6が振動し、この振動が音響整合層5を介して被計測流体に超音波パルスとして放射されるだけでなく、ケース1を振動させようとする。また、受信側では受信した超音波パルスは圧電体6で電気信号に変換されると同時にケース1も振動させようとする。
The ultrasonic measurement apparatus operates by transmitting and receiving ultrasonic waves to and from the ultrasonic transducer 14 on the transmission side and the ultrasonic transducer 14 on the reception side. When driving the transmission / reception ultrasonic vibrator 14, the drive electric input is applied to the ultrasonic vibrator 14 and the piezoelectric body 6 vibrates. In addition, the case 1 tries to vibrate. On the receiving side, the received ultrasonic pulse is converted into an electric signal by the piezoelectric body 6 and at the same time, the case 1 tries to vibrate.

ケース1が振動すると、ケース1の振動が被取り付け部16を介して受信側の超音波振動子14に伝わり、受信側では被取り付け部16を介した振動と受信した超音波パルスと合成されるため振幅、位相に影響して計測に誤差を与える要因となる。   When the case 1 vibrates, the vibration of the case 1 is transmitted to the receiving-side ultrasonic transducer 14 via the attached portion 16, and is combined with the vibration via the attached portion 16 and the received ultrasonic pulse on the receiving side. Therefore, it affects the amplitude and phase, and causes a measurement error.

このような超音波振動子14自身の振動をできるだけ被取り付け部16に伝搬しないようにするため、ケース1の側壁3側と絶縁体15との間に振動伝搬防止帯23を設けて物理的接触を避けて振動伝搬を防止している。なお、固定部7が封止体9との固着により剛性が高くなり、固定部7の振動が抑えられているため、固定部7と絶縁体15の一部が接触していても計測に影響がある振動伝搬には至らない。   In order to prevent such vibration of the ultrasonic transducer 14 itself from propagating to the attached portion 16 as much as possible, a vibration propagation prevention band 23 is provided between the side wall 3 side of the case 1 and the insulator 15 to provide physical contact. To avoid vibration propagation. Note that the rigidity of the fixing portion 7 is increased due to the fixation with the sealing body 9, and the vibration of the fixing portion 7 is suppressed. Therefore, even if the fixing portion 7 and a part of the insulator 15 are in contact with each other, the measurement is affected. There is no vibration propagation.

以上のようにすることで、残響の短い超音波パルスの送受信が可能で、取り付け側への振動伝搬の低減が可能な超音波振動子を得ることができ、残響によるノイズの発生の低減と被取り付け部側への振動伝搬の低減ができ、S/Nが改善されて被測定流体の流量、流速の計測精度、計測範囲の拡大など計測特性が向上できる。   As described above, an ultrasonic transducer capable of transmitting and receiving ultrasonic pulses with short reverberation and capable of reducing vibration propagation to the mounting side can be obtained. Vibration propagation to the attachment side can be reduced, and S / N can be improved to improve measurement characteristics such as flow rate of fluid to be measured, measurement accuracy of flow velocity, and expansion of measurement range.

(実施の形態4)
図4は、本発明の実施の形態4を示す超音波流量計測装置の構成図を示すものである。
(Embodiment 4)
FIG. 4 shows a block diagram of an ultrasonic flow rate measuring apparatus showing Embodiment 4 of the present invention.

本実施の形態において実施の形態1〜3と同一部材及び同一機能を有するものは同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。   In the present embodiment, members having the same members and functions as those of the first to third embodiments are denoted by the same reference numerals, detailed description thereof is omitted, and different points will be mainly described.

超音波流量計測装置における被計測流体が流れる流路にあって、被計測流体の流速の測定位置である計測流路24は流路壁25に囲まれた幅Wの流路である。2個の超音波振動子26、27は互いに対向するように流路壁25の被取り付け部16に実施の形態2に記載した取り付け構造により取り付けられており、上流側の超音波振動子26と下流側の超音波振動子27は距離Lを隔てるとともに速度Vの被計測流体の流れに対して角度θ傾けて設置されている。超音波振動子26、27に対して超音波の送受信をさせる計測制御部28が接続されており、計測制御部28は超音波振動子26、27の信号を基に流速を計算し流量を算出する演算部29を備えている。   In the ultrasonic flow rate measuring apparatus, the measurement flow channel 24, which is a measurement position of the flow velocity of the measurement fluid, is a flow channel having a width W surrounded by the flow channel wall 25. The two ultrasonic transducers 26 and 27 are attached to the attachment portion 16 of the flow path wall 25 by the mounting structure described in the second embodiment so as to face each other. The ultrasonic transducer 27 on the downstream side is disposed at a distance L and inclined at an angle θ with respect to the flow of the fluid to be measured at the velocity V. A measurement control unit 28 for transmitting and receiving ultrasonic waves is connected to the ultrasonic transducers 26 and 27, and the measurement control unit 28 calculates a flow rate based on signals from the ultrasonic transducers 26 and 27 to calculate a flow rate. An arithmetic unit 29 is provided.

以上のように構成された超音波流量計測装置について、以下その動作、作用を説明する。   The operation and action of the ultrasonic flow rate measuring apparatus configured as described above will be described below.

計測流路24を被計測流体が流れている時に、計測制御部28の作用により超音波振動子26、27間で計測流路24を横切るようにして超音波の送受信が行われる。すなわち、上流側の超音波振動子26から発せられた超音波が下流側の超音波振動子27で受信されるまでの経過時間T1を計測する。また一方、下流側の超音波振動子27から発せられた超音波が上流側の超音波振動子26で受信されるまでの経過時間T2を計測する。このようにして測定された経過時間T1およびT2を基に、以下の演算式により演算部29で流量が算出される。   When the fluid to be measured flows through the measurement channel 24, ultrasonic waves are transmitted and received between the ultrasonic transducers 26 and 27 by the operation of the measurement control unit 28 so as to cross the measurement channel 24. That is, the elapsed time T1 until the ultrasonic wave emitted from the upstream ultrasonic transducer 26 is received by the downstream ultrasonic transducer 27 is measured. On the other hand, an elapsed time T2 until the ultrasonic wave emitted from the downstream ultrasonic transducer 27 is received by the upstream ultrasonic transducer 26 is measured. Based on the elapsed times T1 and T2 measured in this way, the flow rate is calculated by the calculation unit 29 by the following calculation formula.

いま、被計測流体の流れと超音波伝播路とのなす角度をθとし、流量測定部である超音波振動子26、27間の距離をL、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。   Now, assuming that the angle between the flow of the fluid to be measured and the ultrasonic propagation path is θ, the distance between the ultrasonic transducers 26 and 27 as the flow rate measurement unit is L, and the sound velocity of the fluid to be measured is C, the flow velocity V Is calculated by the following equation.

T1=L/(C+Vcosθ)
T2=L/(C−Vcosθ)
T1の逆数からT2の逆数を引き算する式より音速Cを消去して
V=(L/2cosθ){(1/T1)−(1/T2)}
θおよびLは既知なのでT1およびT2の値より流速Vが算出できる。
T1 = L / (C + V cos θ)
T2 = L / (C−Vcos θ)
The speed of sound C is eliminated from the equation for subtracting the reciprocal of T2 from the reciprocal of T1, and V = (L / 2 cos θ) {(1 / T1) − (1 / T2)}
Since θ and L are known, the flow velocity V can be calculated from the values of T1 and T2.

いま、空気の流量を計ることを考え、角度θ=27度、距離L=70mm、音速C=340m/秒、流速V=8m/秒を想定すると、T1=2.0/10000秒、T2=2.1/10000秒であり、瞬時計測ができる。   Assuming that the flow rate of air is measured, assuming that an angle θ = 27 degrees, a distance L = 70 mm, a sound velocity C = 340 m / sec, and a flow velocity V = 8 m / sec, T1 = 2.0 / 10000 sec, T2 = 2.1 / 10000 seconds and instantaneous measurement is possible.

ここで、計測流路24の流れ方向に直交する横断面積sより、流量QはQ=kVsここで、kは横断面積sにおける流速分布を考慮した換算係数である。このようにして演算部29で流量を求めることができる。   Here, from the cross-sectional area s orthogonal to the flow direction of the measurement flow path 24, the flow rate Q is Q = kVs, where k is a conversion factor considering the flow velocity distribution in the cross-sectional area s. In this way, the flow rate can be obtained by the calculation unit 29.

超音波による流量計測では、時間T1、T2を高精度に計測することが重要である。すなわち、送信側では残響の少ない超音波振動を被計測流体中のみに発することが大切であり、受信側では流体通路壁を伝搬した超音波振動は排除し被計測流体中を伝搬した超音波振動のみを残響を少なく受信することが大切である。   In ultrasonic flow rate measurement, it is important to measure the times T1 and T2 with high accuracy. In other words, it is important for the transmitting side to emit ultrasonic vibrations with little reverberation only in the fluid to be measured. It is important to receive only less reverberation.

本実施の形態の超音波流量計測装置では、超音波振動子14を絶縁体15で囲うことでコンパクトなスペースのままで流路壁25から電気的な絶縁距離を大きく確保でき、耐電圧性を高めて雷サージ性が向上でき、信頼性の高い計測装置が実現できる。絶縁体15とシール材18とにより、計測精度、計測範囲、雷サージ性に優れ信頼性、実用性に優れた計測装置が実現できる。   In the ultrasonic flow measuring device of the present embodiment, by enclosing the ultrasonic transducer 14 with the insulator 15, it is possible to ensure a large electrical insulation distance from the flow path wall 25 while maintaining a compact space, and withstand voltage resistance. It can be improved to improve lightning surge, and a highly reliable measuring device can be realized. With the insulator 15 and the sealing material 18, it is possible to realize a measuring device with excellent measurement accuracy, measurement range, lightning surge, and reliability and practicality.

このように超音波計測装置として必要な信頼性を堅持しながらも、被取り付け部16へ事前にシール材18と絶縁体15を取り付けることができ、超音波振動子14の取り付け性が向上できる。   Thus, while maintaining the reliability required for the ultrasonic measurement device, the seal material 18 and the insulator 15 can be attached to the attached portion 16 in advance, and the attachment of the ultrasonic transducer 14 can be improved.

また、絶縁体15の一部に内リブ20と外リブ21の係止手段を備えることにより、より一層それぞれの部品の形状の簡易化、シンプルな構成と工程の単純をすることができ、作業ミスが低減でき作業信頼性を向上することができる。   Further, by providing a locking means for the inner rib 20 and the outer rib 21 in a part of the insulator 15, the shape of each component can be further simplified, the simple configuration and the process can be simplified. Errors can be reduced and work reliability can be improved.

なお、本実施の形態おいては、実施の形態2に記載して取り付け構造により超音波振動子を被取り付け部に取り付けたが、これに限るものではなく、実施の形態1または3に記載の取り付け構造を採用した場合も同様の効果を得ることができる。   In the present embodiment, the ultrasonic vibrator is attached to the attachment portion by the attachment structure as described in the second embodiment, but the present invention is not limited to this, and is described in the first or third embodiment. Similar effects can be obtained when the mounting structure is employed.

以上のように、本発明にかかる超音波振動子の取り付け構造は、超音波計測装置としての信頼性を備え、超音波振動子を被計測流路に組み付ける工程が単純化され、作業ミスを低減することが可能となるので、ガスメーターや水道メーターなどの高信頼性が要求される流体計測装置等の用途にも適用できる。   As described above, the ultrasonic vibrator mounting structure according to the present invention has reliability as an ultrasonic measurement device, simplifies the process of assembling the ultrasonic vibrator into the measurement channel, and reduces work errors. Therefore, the present invention can also be applied to applications such as a fluid measuring device such as a gas meter or a water meter that require high reliability.

1 ケース
5 音響整合層
6 圧電体
14、26、27 超音波振動子
15 絶縁体
16 被取り付け部
18 シール材
20 内リブ(係止手段)
23 振動伝搬防止帯
24 計測流路
28 計測制御部
29 演算部
DESCRIPTION OF SYMBOLS 1 Case 5 Acoustic matching layer 6 Piezoelectric body 14, 26, 27 Ultrasonic vibrator 15 Insulator 16 Mounted part 18 Sealing material 20 Inner rib (locking means)
23 Vibration Propagation Prevention Zone 24 Measurement Channel 28 Measurement Control Unit 29 Calculation Unit

Claims (4)

有底筒状のケースと音響整合層と圧電体とを備えた超音波振動子と、
電気的絶縁性の材料で形成した絶縁体と、
気密シール性のシール材と、
被取り付け部と、を含み、
前記超音波振動子を前記絶縁体を介して前記被取り付け部に取り付ける取り付け構造において、
前記超音波振動子と前記絶縁体との間および前記絶縁体と前記被取り付け部との間に、前記シール材を介装したことを特徴とする、
超音波振動子の取り付け構造。
An ultrasonic transducer including a bottomed cylindrical case, an acoustic matching layer, and a piezoelectric body;
An insulator formed of an electrically insulating material;
An airtight sealing material;
A mounted portion, and
In the attachment structure for attaching the ultrasonic transducer to the attachment portion via the insulator,
The sealing material is interposed between the ultrasonic transducer and the insulator and between the insulator and the attached portion,
Ultrasonic transducer mounting structure.
前記絶縁体は係止手段を備え、
前記係止手段で前記超音波振動子を前記絶縁体に係止する、
請求項1に記載の超音波振動子の取り付け構造。
The insulator comprises locking means;
Locking the ultrasonic transducer to the insulator with the locking means;
The ultrasonic vibrator mounting structure according to claim 1.
前記絶縁体と、前記超音波振動子との間に振動伝搬防止帯を備えた、
請求項1または2に記載の超音波振動子の取り付け構造。
A vibration propagation prevention band is provided between the insulator and the ultrasonic transducer,
The ultrasonic vibrator mounting structure according to claim 1 or 2.
少なくとも一対の前記超音波振動子と、
被計測流体が流れる計測流路と、
前記計測流路に対向して配置された複数の前記被取り付け部と、
前記超音波振動子間の超音波伝搬時間を計測する計測制御部と、
前記計測制御部からの信号に基づいて流量を算出する演算部と、を含み、
前記超音波振動子は、請求項1〜3のいずれか1項に記載の超音波振動子の取り付け構造により前記計測流路の被取り付け部に取り付けられた、
超音波流量計測装置。
At least a pair of the ultrasonic transducers;
A measurement channel through which the fluid to be measured flows;
A plurality of the attached portions arranged to face the measurement flow path;
A measurement control unit for measuring an ultrasonic propagation time between the ultrasonic transducers;
A calculation unit that calculates a flow rate based on a signal from the measurement control unit,
The ultrasonic transducer is attached to the attachment portion of the measurement flow path by the ultrasonic transducer attachment structure according to any one of claims 1 to 3.
Ultrasonic flow measuring device.
JP2010143474A 2010-06-24 2010-06-24 Attachment structure of ultrasonic transducer and ultrasonic flow measuring device therewith Pending JP2012007975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143474A JP2012007975A (en) 2010-06-24 2010-06-24 Attachment structure of ultrasonic transducer and ultrasonic flow measuring device therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143474A JP2012007975A (en) 2010-06-24 2010-06-24 Attachment structure of ultrasonic transducer and ultrasonic flow measuring device therewith

Publications (1)

Publication Number Publication Date
JP2012007975A true JP2012007975A (en) 2012-01-12

Family

ID=45538697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143474A Pending JP2012007975A (en) 2010-06-24 2010-06-24 Attachment structure of ultrasonic transducer and ultrasonic flow measuring device therewith

Country Status (1)

Country Link
JP (1) JP2012007975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183283A1 (en) * 2012-06-05 2013-12-12 パナソニック株式会社 Ultrasound flow quantity measurement unit and method for manufacturing same
EP2759810A1 (en) * 2013-01-28 2014-07-30 Krohne AG Assembly of an ultrasonic transducer and a transducer holder
JP2022535806A (en) * 2019-06-04 2022-08-10 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト Ultrasonic transducer and method for manufacturing ultrasonic transducer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183283A1 (en) * 2012-06-05 2013-12-12 パナソニック株式会社 Ultrasound flow quantity measurement unit and method for manufacturing same
JP2013253791A (en) * 2012-06-05 2013-12-19 Panasonic Corp Ultrasonic flow measurement unit and manufacturing method therefor
US9541431B2 (en) 2012-06-05 2017-01-10 Panasonic Intellectual Property Management Co., Ltd. Ultrasonic flow meter unit with an insulating damping member covering the ultrasonic transducers, a measuring circuit and lead wires
EP2759810A1 (en) * 2013-01-28 2014-07-30 Krohne AG Assembly of an ultrasonic transducer and a transducer holder
CN103968911A (en) * 2013-01-28 2014-08-06 克洛纳有限公司 Structural unit consisting of an ultrasonic transducer and a transducer holder
JP2014145768A (en) * 2013-01-28 2014-08-14 Krohne A.G. Configuration unit comprising ultrasonic transducer and transducer holder
US9429465B2 (en) 2013-01-28 2016-08-30 Krohne Ag Unit consisting of an ultrasonic transducer and a transducer holder
DE102013020497B4 (en) 2013-01-28 2018-10-11 Krohne Ag Assembly of an ultrasonic transducer and a transducer holder
JP2022535806A (en) * 2019-06-04 2022-08-10 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト Ultrasonic transducer and method for manufacturing ultrasonic transducer
US20220260712A1 (en) * 2019-06-04 2022-08-18 Tdk Electronics Ag Ultrasonic Transducer and Method for Producing an Ultrasonic Transducer
JP7268206B2 (en) 2019-06-04 2023-05-02 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト Ultrasonic transducer and method for manufacturing ultrasonic transducer

Similar Documents

Publication Publication Date Title
JP5659956B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP3528726B2 (en) Ultrasonic vibrator and ultrasonic fluid flow measurement device using the same
JP5690993B2 (en) Ultrasonic flow meter
EP2858378B1 (en) Ultrasonic echo sounder transducer and ultrasonic flow meter equipped with same
WO2014073181A1 (en) Ultrasonic flow meter
WO2012164890A1 (en) Ultrasonic transmitter/receiver, method for manufacturing same, and ultrasonic flowmeter
WO2012011272A1 (en) Construction for mounting ultrasonic transducer and ultrasonic flow meter using same
JP2012007975A (en) Attachment structure of ultrasonic transducer and ultrasonic flow measuring device therewith
JP2007208381A (en) Ultrasonic vibrator and fluid flow measurement apparatus employing the same
JP3533941B2 (en) Ultrasonic flow meter
JP2012018030A (en) Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same
JP3518268B2 (en) Ultrasonic flow meter
JP4079075B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP5533332B2 (en) Ultrasonic flow meter
JPH11118550A (en) Ultrasonic vibrator and ultrasonic flowmeter using the same
JP5608064B2 (en) Ultrasonic transducer fitting and ultrasonic fluid measuring device
JP2013246065A (en) Ultrasonic flowmeter
JP2011002269A (en) Device for measuring flow of fluid
JP2003270012A (en) Ultrasonic transducer and ultrasonic flowmeter
JP4765642B2 (en) Ultrasonic vibrator and fluid flow measuring device using the same
JP2007194896A (en) Ultrasonic transducer and flow measuring apparatus of fluid employing same
JP2004045439A (en) Ultrasonic vibrator and ultrasonic flowmeter using the same
JP2012249066A (en) Ultrasonic sensor and ultrasonic flowmeter using the same
JP2004125805A (en) Ultrasonic vibrator and ultrasonic flowmeter
JP2007194895A (en) Ultrasonic transducer and flow measuring apparatus of fluid employing same