JP3522294B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP3522294B2
JP3522294B2 JP13191492A JP13191492A JP3522294B2 JP 3522294 B2 JP3522294 B2 JP 3522294B2 JP 13191492 A JP13191492 A JP 13191492A JP 13191492 A JP13191492 A JP 13191492A JP 3522294 B2 JP3522294 B2 JP 3522294B2
Authority
JP
Japan
Prior art keywords
polyaniline
impregnation
electrolytic capacitor
solid electrolytic
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13191492A
Other languages
Japanese (ja)
Other versions
JPH05304055A (en
Inventor
博嗣 山本
隆 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP13191492A priority Critical patent/JP3522294B2/en
Publication of JPH05304055A publication Critical patent/JPH05304055A/en
Application granted granted Critical
Publication of JP3522294B2 publication Critical patent/JP3522294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサ、と
りわけアルミニウム巻回素子を用いた固体電解コンデン
サの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor using an aluminum winding element.

【0002】[0002]

【従来の技術】一般に固体電解コンデンサはAl、Ta
などの金属電極表面上に酸化皮膜を生成させて誘電体を
形成し、これに固体電解質を付着させ、グラファイト、
銀などの陰極導電層を介して陰極を導出して構成されて
いる。この種のコンデンサは固体電解質として二酸化マ
ンガン、酸化鉛などの金属酸化物、有機半導体のTCN
Q錯体、導電性高分子のポリピロ−ルなどが用いられて
いる。このうち二酸化マンガンは、一般的にTa電解コ
ンデンサに用いられているがAl電解コンデンサに用い
るためにはかなりの困難がある。二酸化マンガンの含浸
は硝酸マンガン溶液に浸漬した後加熱分解処理を行い、
二酸化マンガンとして電極に付着される方法が用いられ
ている。この方法によると加熱分解処理の際にAlの場
合では誘電体である酸化アルミ皮膜を損傷し、大きな耐
圧低下を招いている。又有機半導体であるTCNQ錯体
の含浸方法としては、一般に融解含浸法が採られてい
る。これはTCNQ錯体を加熱融解し液化した時点で含
浸を行うものである。しかしながらTCNQ錯体は熱に
弱く、特に上記の融解含浸のできるTCNQ錯体は融解
点を有するものでなくてはならず、TCNQ錯体の分解
点が290℃付近であるから融解点は270℃以下が望
ましく、それで行うと半田耐熱に不十分なものとなって
しまう。
2. Description of the Related Art Generally, solid electrolytic capacitors are made of Al or Ta.
An oxide film is formed on the surface of a metal electrode such as to form a dielectric, and a solid electrolyte is attached to the dielectric, graphite,
The cathode is led out through a cathode conductive layer such as silver. This type of capacitor is used as a solid electrolyte such as manganese dioxide, metal oxides such as lead oxide, and organic semiconductor TCN.
Q complex, conductive polymer polypyrrole, etc. are used. Of these, manganese dioxide is generally used for Ta electrolytic capacitors, but it is quite difficult to use for Al electrolytic capacitors. Impregnation of manganese dioxide is carried out by immersing it in a manganese nitrate solution and then subjecting it to thermal decomposition.
A method is used in which it is attached to the electrode as manganese dioxide. According to this method, in the case of Al during the thermal decomposition treatment, the aluminum oxide film which is a dielectric is damaged, resulting in a large decrease in breakdown voltage. Further, as a method of impregnating the TCNQ complex which is an organic semiconductor, a melt impregnation method is generally adopted. In this, impregnation is performed when the TCNQ complex is melted by heating and liquefied. However, the TCNQ complex is weak to heat, and in particular, the TCNQ complex capable of being melt-impregnated must have a melting point. Since the decomposition point of the TCNQ complex is around 290 ° C, the melting point is preferably 270 ° C or lower. However, if this is done, the solder heat resistance will be insufficient.

【0003】一方近年耐熱性を有し、伝導度も良好な機
能性高分子のポリピロ−ルを用いるようになってきた。
このポリピロ−ルの含浸については上記二酸化マンガン
にみられるような大幅な誘電体酸化皮膜の耐圧低下も起
こらず、ドナ−材の改良によりTCNQ錯体より遥かに
熱に強いものが現れている。又伝導度も二酸化マンガ
ン、TCNQ錯体よりはるかに良好で、コンデンサのE
SR、高周波インピ−ダンスなど優れたものになる。し
かしながら上記ポリピロ−ルの含浸については電極の形
態としては平板構造でないと不十分であり、巻回素子へ
の適応については、各種方面からの検討を試みたがいず
れも不適であった。
On the other hand, in recent years, polypyrrole, which is a functional polymer having heat resistance and good conductivity, has come to be used.
With respect to the impregnation of this polypyrrole, a significant decrease in withstand voltage of the dielectric oxide film as seen in the above-mentioned manganese dioxide does not occur, and due to the improvement of the donor material, a much stronger heat resistance than the TCNQ complex has appeared. The conductivity is also much better than that of manganese dioxide and TCNQ complex.
It will be excellent in SR, high frequency impedance, etc. However, the impregnation of the above-mentioned polypyrrole is not sufficient unless the plate structure is used as the form of the electrode, and various attempts were made to apply it to the wound element, but none of them was suitable.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来より用
いられてきたアルミニウム電極箔を巻回した素子(以下
巻回素子という)に無理なく導電性高分子を固体電解質
として含浸しようとする検討のなかから見いだされたも
のである。即ち従来のポリピロ−ル等導電性高分子の含
浸方法は、絶縁体である誘電体酸化皮膜上に電解重合に
よって生成させるために、該皮膜にあらかじめ導電性高
分子膜やそれに変わる二酸化マンガンなどをプレコ−ト
させ、該プレコ−ト膜を介して給電を行い電解重合を行
うという方式であった。この方式は電極が平板だと良好
であるが、巻回素子になるとプレコ−トが均一に酸化皮
膜上に生成させることができなくなり、その後の電解重
合も極めて不均一なものとなり、製品特性、歩留まり等
満足のいくものが得られていない。
DISCLOSURE OF THE INVENTION The present invention is a study to impregnate a conventionally wound element (hereinafter referred to as a wound element) with an aluminum electrode foil with a conductive polymer as a solid electrolyte. It was found from inside. That is, in the conventional method of impregnating a conductive polymer such as polypyrrole, in order to generate it on the dielectric oxide film which is an insulator by electrolytic polymerization, a conductive polymer film or manganese dioxide which is changed to the conductive polymer film is previously formed in the film. In this system, pre-coating was performed and electric power was supplied through the pre-coating film to carry out electrolytic polymerization. This method is good when the electrode is a flat plate, but when it becomes a wound element, the precoat cannot be uniformly formed on the oxide film, and the subsequent electrolytic polymerization becomes extremely uneven, resulting in product characteristics, Satisfactory products such as yield have not been obtained.

【0005】プレコ−トの代表的な方法として、たとえ
ばピロ−ルの酸化重合がある。これはピロ−ルを酸化剤
により重合を行うものである。酸化重合はピロ−ル、酸
化剤を溶かした溶液中で行うが、ピロ−ル、酸化剤の濃
度分布のばらつきが重合度合に大きな影響を及ぼし、重
合が行われる表面付近はたえず一定条件に保たなければ
ならない。平板電極の場合は、充分なピロ−ル、酸化剤
の供給を与え、一定条件にコントロ−ルしやすいが、巻
回タイプでは酸化重合中の素子内部のピロ−ル、酸化剤
の供給が不十分であり、酸化重合されるピロ−ル重合に
大きなバラツキが生ずることになる。
A typical method of precoating is, for example, oxidative polymerization of pyrrole. This is to polymerize the pyrrole with an oxidizing agent. Oxidation polymerization is carried out in a solution in which the pyrrole and the oxidant are dissolved, but the dispersion of the concentration distribution of the pyrrole and the oxidant greatly affects the degree of polymerization, and the vicinity of the surface where the polymerization is carried out is constantly maintained under constant conditions. I have to hit. In the case of a flat plate electrode, it is easy to supply sufficient pyrrole and oxidant to control under certain conditions.However, in the wound type, it is not possible to supply the pill and oxidant inside the element during oxidative polymerization. This is sufficient, and a large variation occurs in the oxidatively polymerized pyrrole polymerization.

【0006】[0006]

【課題を解決するための手段】本発明の骨子は可溶性の
導電性高分子に着目し、導電性高分子溶液を巻回素子に
含浸させ、含浸後溶媒を飛ばすことによりプレコ−トを
行い、該処理により巻回素子内部まで均一にプレコ−ト
を施し、その後ピロ−ルなどの電解重合を行うことによ
り、巻回素子への含浸を可能にしたものである。種々の
検討を行い、その結果見いだされたのが可溶性ポリアニ
リン溶液である。可溶性ポリアニリンは、アルカリ処理
で脱ド−プされた状態ではかなり高い分子量のものでも
N−メチルピロリドン溶液に可溶である。従って該溶液
を巻回素子に含浸した後、N−メチルピロリドンを10
0℃から250℃の加熱により飛散させ、このままでは
導電性を有しないので、酸化処理、ド−ピング処理を行
って導電性ポリアニリンとする。その後電解重合を行え
ば従来まで得られなかった巻回素子での導電性高分子使
用の固体電解コンデンサが安定して得られるようになっ
た。
Means for Solving the Problems The skeleton of the present invention focuses on a soluble conductive polymer, impregnates a wound element with a conductive polymer solution, and after impregnation, precoating is performed by removing the solvent, By this treatment, the inside of the wound element is uniformly pre-coated, and then electrolytic polymerization of pyrrole or the like is performed so that the wound element can be impregnated. Various investigations have been carried out, and as a result, a soluble polyaniline solution has been found. Soluble polyaniline is soluble in N-methylpyrrolidone solution even if it has a considerably high molecular weight when it is dedoped by alkali treatment. Therefore, after impregnating the wound element with the solution, N-methylpyrrolidone
It is scattered by heating from 0 ° C. to 250 ° C. Since it has no conductivity as it is, it is oxidized to give a conductive polyaniline by doping. If electrolytic polymerization is carried out thereafter, it has become possible to stably obtain a solid electrolytic capacitor using a conductive polymer in a wound element, which has heretofore been unavailable.

【0007】尚N−メチルピロリドンを気化させて飛散
させる温度としては素子の大きさ、時間などによっても
異なるが、最低でも100℃以上は必要で250℃より
高い温度になるとポリアニリンが劣化を起こし不適であ
る。又ポリアニリン含浸時について、可溶性ポリアニリ
ン溶液を充分含浸させるためには減圧注入を行い、減圧
雰囲気で含浸した後、加圧処理を行えばどのような素子
にも含浸できた。減圧条件、加圧条件は用いる素子サイ
ズや一回に含浸される素子数によって特定できないが、
概して減圧、加圧は大きいものほど良好である。
The temperature at which N-methylpyrrolidone is vaporized and scattered varies depending on the size and the time of the element, but at least 100 ° C. or higher is necessary, and polyaniline deteriorates at a temperature higher than 250 ° C., which is not suitable. Is. In addition, when impregnating polyaniline, in order to sufficiently impregnate the soluble polyaniline solution, reduced pressure injection was performed, and after impregnation in a reduced pressure atmosphere, any element could be impregnated by performing pressure treatment. The depressurization condition and pressurization condition cannot be specified depending on the element size used and the number of elements impregnated at one time,
Generally, the larger the pressure reduction and the pressure increase, the better.

【0008】上記のようにポリアニリンを含浸した後、
ポリピロ−ル、ポリアニリン、ポリチオフェンなどの電
解重合を行うが、電解重合を行う際、給電を電極箔その
ものから行うと誘電体皮膜を劣化されることになりコン
デンサの漏れ電流特性に多大な影響を及ぼす。従って給
電は先に含浸したポリアニリンを通して行うことにな
る。そのため、給電部としては巻回された陽極箔のリ−
ド部までポリアニリンを付着させ、そこから給電する方
法となる。なお、陽極リ−ドに付着させる適切な範囲を
検討した結果、図1のようにCP線などからなるリ−ド
端子1の根元より0.5mmから3mmまでの深さAを
含めて上記ポリアニリンに浸漬させ、含浸を行うのが良
好であった。0.5mm以下だと給電が極めてしにくく
なり、3mmを越えると製品組立時に含浸されたポリア
ニリンが製品外部まではみ出してしまうものがでてく
る。図1において、2は電極箔と加締、溶接などにより
接続されたアルミニウムタブ、3はアルミニウムタブ2
とリード端子1との溶接部、4はポリアニリン浸漬位
置、5はコンデンサ素子である。
After impregnation with polyaniline as described above,
Electrolytic polymerization of polypyrrole, polyaniline, polythiophene, etc. is performed, but when performing electrolytic polymerization, if the power is supplied from the electrode foil itself, the dielectric film will be deteriorated and the leakage current characteristics of the capacitor will be greatly affected. . Therefore, power is supplied through the previously impregnated polyaniline. Therefore, the winding of the wound anode foil is used as the power supply unit.
It is a method of attaching polyaniline to the battery part and supplying power from there. As a result of studying an appropriate range to be attached to the anode lead, the polyaniline including the depth A of 0.5 mm to 3 mm from the root of the lead terminal 1 made of CP wire as shown in FIG. It was good to immerse in and to impregnate. If it is less than 0.5 mm, it is extremely difficult to supply power, and if it exceeds 3 mm, polyaniline impregnated during product assembly may protrude to the outside of the product. In FIG. 1, 2 is an aluminum tab connected to the electrode foil by crimping, welding, etc., 3 is an aluminum tab 2
And a lead terminal 1 are welded, 4 is a polyaniline immersion position, and 5 is a capacitor element.

【0009】[0009]

【実施例】以下本発明の具体的実施例について述べる。
14Vで化成したアルミニウムエッチング箔と陰極箔を
50μmのマニラ紙をセパレ−タ−として巻回素子を作
製した。該素子を用い以下の含浸を行った。 (実施例1)可溶性ポリアニリン5wt%N−メチルピ
ロリドン溶液中に上記素子をリ−ド端子1mmまで含め
て浸漬させた。1mm/分のスピ−ドで引き上げ150
℃で15分間乾燥させた。次いで酸化剤である過硫酸ア
ンモニウム3%溶液に5分間浸漬させ、さらにド−パン
ト剤であるパラトルエンスルホン酸5%溶液に3分間浸
漬させド−ピング処理を行った。以上のようにしてポリ
アニリン含浸を行った後、ピロ−ル0.05mol、パ
ラトルエンスルホン酸0.025mol、トリ−n−ブ
チルアミンをアセトニトリルに溶解させた溶液中で2m
A/cm2 で1時間電解重合を行った。次いで洗浄乾燥
を経て、アルミケ−スに挿入しエポキシ樹脂で封止を行
い固体電解コンデンサを作製した。
EXAMPLES Specific examples of the present invention will be described below.
A wound element was produced by using an aluminum etching foil formed at 14 V and a cathode foil as a separator of 50 μm Manila paper. The following impregnation was performed using this element. (Example 1) The above device was immersed in a solution of soluble polyaniline 5 wt% N-methylpyrrolidone up to a lead terminal of 1 mm. 150mm at a speed of 1mm / min
It was dried at ℃ for 15 minutes. Then, it was dipped in a 3% solution of ammonium persulfate as an oxidant for 5 minutes, and further dipped in a 5% solution of paratoluenesulfonic acid as a dopant for 3 minutes to perform a doping treatment. After impregnation with polyaniline as described above, 2 m in a solution prepared by dissolving pyrol 0.05 mol, paratoluenesulfonic acid 0.025 mol, and tri-n-butylamine in acetonitrile.
Electrolytic polymerization was performed at A / cm 2 for 1 hour. Then, after washing and drying, it was inserted into an aluminum case and sealed with an epoxy resin to prepare a solid electrolytic capacitor.

【0010】(実施例2)実施例1と同一の薬品を使用
した。操作としてはポリアニリン含浸時が異なり以下の
方法で行った。素子を所定の位置にセットし、含浸容器
内を1/10気圧に減圧させる。次いでポリアニリン溶
液を減圧注入し、10分間減圧状態を維持した。その後
空気を注入し、5気圧まで加圧し60分間維持した。以
上のようにポリアニリン含浸を終了し、電解重合以降は
実施例1と同様に行い固体電解コンデンサを作製した。
Example 2 The same chemicals as in Example 1 were used. The operation was different from that at the time of impregnation with polyaniline, and was performed by the following method. The element is set at a predetermined position, and the pressure in the impregnation container is reduced to 1/10 atmospheric pressure. Then, the polyaniline solution was injected under reduced pressure, and the reduced pressure was maintained for 10 minutes. After that, air was injected, the pressure was increased to 5 atm, and the pressure was maintained for 60 minutes. The polyaniline impregnation was completed as described above, and after the electrolytic polymerization, the same procedure as in Example 1 was carried out to produce a solid electrolytic capacitor.

【0011】(比較例)上記と同様の素子を用い、ピロ
−ル溶液と過硫酸アンモニウム溶液をそれぞれ用意し、
該素子をピロ−ル溶液と過硫酸溶液に交互に浸漬させ、
ポリピロ−ルのプレコ−ト層を形成させた。その後電解
重合以降は実施例1及び実施例2と同様に行い固体電解
コンデンサを作製した。実施例1、2及び比較例につい
てそれぞれ特性評価を行った結果を表1に示す。尚、定
格は6.3V−33μF品を目標とした。
Comparative Example Using the same element as above, a pyrrole solution and an ammonium persulfate solution were prepared,
Alternately dipping the device in a pyrrole solution and a persulfuric acid solution,
A polypropylene precoat layer was formed. Thereafter, after electrolytic polymerization, the solid electrolytic capacitor was manufactured in the same manner as in Example 1 and Example 2. Table 1 shows the results of the characteristic evaluations of Examples 1 and 2 and Comparative Example. The rating was targeted at 6.3V-33μF product.

【0012】[0012]

【発明の効果】表1に示した通り本発明によると従来よ
り用いられてきた巻回素子に対し導電性高分子を固体電
解質として無理なく含浸でき、従来からの比較例と比べ
含浸率の向上はもとより、tanδ、ESR及び漏れ電
流特性なども大幅に改善されている。またポリアニリン
の含浸時に減圧、加圧処理を行うとさらに特性改善がで
きる。また、従来法に比べ製造方法も簡潔になりそれに
伴い製品の信頼性、歩留まりも向上し、併せて製造コス
トも低減できその実用的価値は大なるものである。
As shown in Table 1, according to the present invention, it is possible to reasonably impregnate a conventionally used wound element with a conductive polymer as a solid electrolyte, and to improve the impregnation rate as compared with a conventional comparative example. Of course, tan δ, ESR, leakage current characteristics, etc. are also greatly improved. Further, the characteristics can be further improved by performing pressure reduction and pressure treatment during impregnation with polyaniline. In addition, the manufacturing method is simpler than that of the conventional method, the product reliability and yield are improved accordingly, and the manufacturing cost is also reduced, which is of great practical value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る巻回素子の斜視図である。FIG. 1 is a perspective view of a winding element according to the present invention.

【符号の説明】[Explanation of symbols]

1 リード端子 2 アルミニウムタブ 3 溶接部 4 浸漬位置 5 コンデンサ素子 1 lead terminal 2 Aluminum tab 3 welds 4 Immersion position 5 Capacitor element

【表1】 [Table 1]

フロントページの続き (56)参考文献 特開 平4−48710(JP,A) 特開 平3−35516(JP,A) 特開 平2−303017(JP,A)Continued front page       (56) References JP-A-4-48710 (JP, A)                 JP-A-3-35516 (JP, A)                 JP-A-2-303017 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セパレーターを介し陽極箔と陰極箔とが
巻回されているアルミニウム電解コンデンサ用素子を、
陽極箔に接続されたリード端子の根元より0.5〜3m
mまで第一含浸として可溶性ポリアニリンに浸漬させ、
次いで100℃から250℃の範囲で加熱処理を行いポ
リアニリン含浸を行った後酸化処理、ドーピング処理を
行い、次いで第二含浸として上記リード部に形成したポ
リアニリンから給電してピロール、チオフェン、アニリ
ンのいずれかの電解重合を行うことを特徴とする固体電
解コンデンサの製造方法。
1. An element for an aluminum electrolytic capacitor, in which an anode foil and a cathode foil are wound with a separator interposed therebetween,
0.5 to 3m from the root of the lead terminal connected to the anode foil
Soaked in soluble polyaniline as the first impregnation up to m,
Next, heat treatment is performed in the range of 100 ° C. to 250 ° C. to impregnate polyaniline, and thereafter, oxidation treatment and doping treatment are performed. Then, as the second impregnation, power is supplied from the polyaniline formed on the lead portion, and any of pyrrole, thiophene, and aniline is supplied. A method for producing a solid electrolytic capacitor, characterized in that the electrolytic polymerization is performed.
【請求項2】 第一含浸時の可溶性ポリアニリンへの浸
漬の際、減圧処理を行なった後加圧処理を行うことを特
徴とする、請求項1の固体電解コンデンサの製造方法。
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the dipping in the soluble polyaniline at the time of the first impregnation is carried out by applying a pressure reduction treatment and then a pressure treatment.
JP13191492A 1992-04-25 1992-04-25 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3522294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13191492A JP3522294B2 (en) 1992-04-25 1992-04-25 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13191492A JP3522294B2 (en) 1992-04-25 1992-04-25 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH05304055A JPH05304055A (en) 1993-11-16
JP3522294B2 true JP3522294B2 (en) 2004-04-26

Family

ID=15069140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13191492A Expired - Fee Related JP3522294B2 (en) 1992-04-25 1992-04-25 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3522294B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157748B2 (en) * 1997-07-30 2001-04-16 富山日本電気株式会社 Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
JP2000340462A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2001110681A (en) * 1999-10-12 2001-04-20 Fujitsu Media Device Kk Solid electrolytic capacitor and method for manufacturing the same
KR100330726B1 (en) * 2000-05-22 2002-04-03 서갑수 Method of producing a solid electrolytic capacitor by using a functional polymer electrolytic composition
KR100434216B1 (en) * 2001-12-27 2004-06-04 파츠닉(주) Making method of capacitor by using solid electrolyte
CN104637687B (en) * 2015-02-06 2017-07-14 肇庆绿宝石电子科技股份有限公司 A kind of manufacture method of high pressure solid electrolyte aluminium electrolutic capacitor

Also Published As

Publication number Publication date
JPH05304055A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
US5914852A (en) Solid electrolyte capacitor and its manufacture
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JP3522294B2 (en) Method for manufacturing solid electrolytic capacitor
JP3319501B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US5965062A (en) Electrically-conductive polymer and production method thereof, and solid-electrolytic capacitor
JP3399515B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP2570600B2 (en) Method for manufacturing solid electrolytic capacitor
JP4269351B2 (en) Manufacturing method of solid electrolytic capacitor
JP3978544B2 (en) Solid electrolytic capacitor
JP3911785B2 (en) Manufacturing method of solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP7394728B2 (en) Manufacturing method of electrolytic capacitor and electrolytic capacitor
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
KR100753612B1 (en) Solid Electrolyte Capacitor and Method for Producing the Same
JP7458258B2 (en) Manufacturing method of electrolytic capacitor
JP4484084B2 (en) Manufacturing method of solid electrolytic capacitor
JP4678094B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001237145A (en) Manufacturing method of solid-state electrolytic capacitor
JP4642257B2 (en) Solid electrolytic capacitor
JP2000150314A (en) Solid-state electrolytic capacitor and its manufacture
JPH06252002A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees