JP7394728B2 - Manufacturing method of electrolytic capacitor and electrolytic capacitor - Google Patents

Manufacturing method of electrolytic capacitor and electrolytic capacitor Download PDF

Info

Publication number
JP7394728B2
JP7394728B2 JP2020156087A JP2020156087A JP7394728B2 JP 7394728 B2 JP7394728 B2 JP 7394728B2 JP 2020156087 A JP2020156087 A JP 2020156087A JP 2020156087 A JP2020156087 A JP 2020156087A JP 7394728 B2 JP7394728 B2 JP 7394728B2
Authority
JP
Japan
Prior art keywords
conductive polymer
electrolytic capacitor
solution
wound element
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020156087A
Other languages
Japanese (ja)
Other versions
JP2022049839A (en
Inventor
康弘 陳場
悟 勝又
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2020156087A priority Critical patent/JP7394728B2/en
Publication of JP2022049839A publication Critical patent/JP2022049839A/en
Application granted granted Critical
Publication of JP7394728B2 publication Critical patent/JP7394728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、電解コンデンサの製造方法および電解コンデンサ、特に導電性高分子と電解液を併用するハイブリッドアルミニウム電解コンデンサの製造方法およびハイブリッドアルミニウム電解コンデンサに関する。 The present invention relates to a method for manufacturing an electrolytic capacitor and an electrolytic capacitor, particularly a method for manufacturing a hybrid aluminum electrolytic capacitor using a conductive polymer and an electrolyte in combination, and a hybrid aluminum electrolytic capacitor.

従来、電解コンデンサは、アルミニウム、タンタル、ニオブ等の弁作用金属からなる、エッチングピットや微細孔を持つ陽極電極の表面上に誘電体となる酸化皮膜層を形成した後、この酸化皮膜層上に電解質層を形成し、電極を引き出して構成される。
このように形成した電解質層が真の陰極であり、電解コンデンサの電気特性に大きな影響を及ぼすことから、従来から種々の方法により電解質層を形成することが提案されている。
Conventionally, electrolytic capacitors are manufactured by forming an oxide film layer as a dielectric material on the surface of an anode electrode that is made of a valve metal such as aluminum, tantalum, or niobium and has etched pits or micropores. It is constructed by forming an electrolyte layer and drawing out the electrodes.
Since the electrolyte layer formed in this manner is a true cathode and has a great influence on the electrical characteristics of an electrolytic capacitor, various methods have been proposed to form the electrolyte layer.

中でも、固体電解コンデンサは、高周波領域でインピーダンス特性を改善するために、イオン伝導性である液状の電解質に替えて、電子伝導性である固体の電解質を用いるものである。例えば、かかる固体電解質として7,7,8,8-テトラシアノキノジメタン(TCNQ)錯体を用い、このTCNQ錯体を熱溶融して陽極電極に浸漬、塗布し、固体電解質層を形成したものや、ポリエチレンジオキシチオフェン(PEDOT)等の導電性高分子を固体電解質として用いたものが公知である。導電性高分子の形成方法としては、モノマーとドーパントを用いて陽極電極上で化学重合や電解重合により導電性高分子を形成する方法と、導電性高分子を溶媒に分散させた分散液または導電性高分子を溶解させた導電性高分子溶液を陽極電極に浸漬、塗布し、溶媒を除去して形成する方法が知られている。 Among these, solid electrolytic capacitors use an electronically conductive solid electrolyte instead of an ionically conductive liquid electrolyte in order to improve impedance characteristics in a high frequency range. For example, a solid electrolyte layer may be formed by using a 7,7,8,8-tetracyanoquinodimethane (TCNQ) complex as the solid electrolyte, melting the TCNQ complex with heat, and dipping and coating the anode electrode. , those using conductive polymers such as polyethylene dioxythiophene (PEDOT) as solid electrolytes are known. There are two methods for forming conductive polymers: one is to form a conductive polymer by chemical polymerization or electrolytic polymerization on an anode electrode using a monomer and a dopant, and the other is to form a conductive polymer by chemical polymerization or electrolytic polymerization on an anode electrode, or to form a conductive polymer using a dispersion or conductive polymer dispersed in a solvent. A known method is to immerse and apply a conductive polymer solution in which a conductive polymer is dissolved to an anode electrode, and then remove the solvent.

ところで、かかる固体電解コンデンサにおいては、その漏れ電流(Leakage Current, LC)を低くするために、所定の条件下で、当該電解コンデンサの両電極間に所定の電圧を適切な時間だけ印加することによるエージング処理がなされるのが一般的であり、例えば、下記の特許文献1には、エージング後の常温放置中に漏れ電流が増大する固体電解コンデンサを予め排除するために、エージング工程の後に100~150℃で1~5分放置し、その後に漏れ電流を測定して、その値が規定値以上のものを不良品として排除することを特徴とする固体電解コンデンサの製造方法が開示されている。 By the way, in order to reduce the leakage current (LC) of such a solid electrolytic capacitor, it is possible to reduce the leakage current (LC) by applying a predetermined voltage between both electrodes of the electrolytic capacitor for an appropriate time under predetermined conditions. Generally, an aging process is performed, and for example, in Patent Document 1 below, in order to eliminate in advance solid electrolytic capacitors whose leakage current increases when left at room temperature after aging, A method for manufacturing a solid electrolytic capacitor is disclosed, which is characterized in that the capacitor is left at 150° C. for 1 to 5 minutes, then the leakage current is measured, and those whose leakage current exceeds a specified value are rejected as defective products.

また、近年では自動車等の分野において、電解質に導電性高分子および電解液を用いたハイブリッド型のコンデンサ(以下「ハイブリッドコンデンサ」という)が使用されているが、ハイブリッドコンデンサの陰極層である導電性高分子層を形成する際にも、導電性高分子を水に分散させた分散液または導電性高分子溶液が用いられている。
しかしながら、封口ゴムが装着されていない素子に分散液や導電性高分子溶液を含浸する場合、導電性高分子が上方側に這い上がりリード端子の丸棒部に付着することがある。これは、分散液や導電性高分子溶液に対する素子の浸漬深さを浅くしても導電性高分子の浸透が起こるからであり、丸棒部への導電性高分子の付着を完全に抑制することはできない。そして、分散液や導電性高分子溶液を含浸させた後に高温で乾燥を行って導電性高分子を固化させるが、固化した導電性高分子を丸棒部から除去することは難しく、漏れ電流の低減が困難であるという問題があった。
In addition, in recent years, hybrid capacitors (hereinafter referred to as "hybrid capacitors") that use conductive polymers and electrolytes as electrolytes have been used in fields such as automobiles. Also when forming a polymer layer, a dispersion liquid or a conductive polymer solution in which a conductive polymer is dispersed in water is used.
However, when a dispersion liquid or a conductive polymer solution is impregnated into an element to which a sealing rubber is not attached, the conductive polymer may creep upward and adhere to the round bar portion of the lead terminal. This is because the conductive polymer will penetrate even if the depth of immersion of the element in the dispersion liquid or conductive polymer solution is made shallow, and the adhesion of the conductive polymer to the round bar part can be completely suppressed. It is not possible. After being impregnated with a dispersion liquid or a conductive polymer solution, the conductive polymer is dried at high temperature to solidify the conductive polymer, but it is difficult to remove the solidified conductive polymer from the round bar, and it is difficult to remove leakage current. There was a problem in that it was difficult to reduce.

特許第4720074号公報Patent No. 4720074

本発明は、従来技術における上記の問題点を解決し、リフロー前後の漏れ電流(LC)の変動が小さい電解コンデンサ、特にハイブリッドアルミニウム電解コンデンサを提供すること、およびその製造方法を提供することを課題とする。
本発明者等は種々検討を行った結果、導電性高分子を完全固化させる前の巻回素子を、ポリグリセリン溶液中に、当該素子の上面(巻回によって形成されるコンデンサ素子のリード端子側の円平面、図2の符号5を参照)よりも上方の部分、すなわちリード端子の丸棒部まで浸漬させることにより、漏れ電流を改善することができることを見出して、本発明を完成した。
An object of the present invention is to solve the above-mentioned problems in the prior art and provide an electrolytic capacitor, particularly a hybrid aluminum electrolytic capacitor, with small fluctuations in leakage current (LC) before and after reflow, and a method for manufacturing the same. shall be.
As a result of various studies, the inventors of the present invention found that the upper surface of the wound element (the lead terminal side of the capacitor element formed by winding) was placed in a polyglycerin solution before the conductive polymer was completely solidified. The present invention was completed based on the discovery that leakage current can be improved by immersing the lead terminal above the circular plane (see reference numeral 5 in FIG. 2), that is, up to the round bar portion of the lead terminal.

上記の問題点を解決可能な本発明の電解コンデンサの製造方法は、外部引出電極用のリード端子を接続した陽極箔と陰極箔とをセパレータを介して巻回することにより巻回素子を作製する巻回素子作製工程と、
当該巻回素子の、前記陽極箔の切断された断面および前記リード端子との取り付け部を化成処理する化成処理工程と、
化成処理後の巻回素子を、導電性高分子が水に分散した分散液または導電性高分子溶液に浸漬して、前記導電性高分子からなる導電性高分子層を形成させてコンデンサ素子を作製する導電性高分子形成工程と、
当該コンデンサ素子と電解液を有底筒状の金属ケース内に収納し、当該金属ケースの開口部を封止する封止工程と、
エージング処理工程と
を有する電解コンデンサの製造方法において、
前記導電性高分子形成工程は、前記分散液または導電性高分子溶液に浸漬した後の巻回素子を乾燥した後、当該巻回素子をポリグリセリン溶液中に、当該巻回素子の上面よりも上方の前記リード端子まで浸漬させた後、前記ポリグリセリン溶液から取り出して乾燥させ、前記導電性高分子層を形成させることを特徴とする。
The method for manufacturing an electrolytic capacitor of the present invention that can solve the above problems involves manufacturing a wound element by winding an anode foil and a cathode foil connected to lead terminals for external extraction electrodes via a separator. Winding element manufacturing process,
a chemical conversion treatment step of chemically treating the cut cross section of the anode foil and the attachment portion to the lead terminal of the wound element;
The wound element after the chemical conversion treatment is immersed in a dispersion of a conductive polymer dispersed in water or a conductive polymer solution to form a conductive polymer layer made of the conductive polymer to form a capacitor element. A conductive polymer formation process to produce;
a sealing step of storing the capacitor element and the electrolyte in a bottomed cylindrical metal case and sealing the opening of the metal case;
In a method for manufacturing an electrolytic capacitor, the method includes an aging treatment step,
In the conductive polymer forming step, after drying the wound element after being immersed in the dispersion liquid or the conductive polymer solution, the wound element is placed in a polyglycerin solution with the upper surface of the wound element being lower than the upper surface of the wound element. The method is characterized in that after being immersed up to the upper lead terminal, it is taken out from the polyglycerin solution and dried to form the conductive polymer layer.

また、本発明は、上記の特徴を有した電解コンデンサの製造方法において、前記ポリグリセリン溶液は、エタノール、エチレングリコール、ジエチレングリコールおよびこれらの混合物を溶媒とすることを特徴とするものである。 Further, the present invention is a method for manufacturing an electrolytic capacitor having the above characteristics, wherein the polyglycerin solution uses ethanol, ethylene glycol, diethylene glycol, or a mixture thereof as a solvent.

また、本発明は、上記の特徴を有した電解コンデンサの製造方法において、前記ポリグリセリン溶液は、エチレングリコールを溶媒とし、ポリグリセリン濃度が1~30重量%であることを特徴とするものである。 Further, the present invention provides a method for manufacturing an electrolytic capacitor having the above characteristics, wherein the polyglycerin solution uses ethylene glycol as a solvent and has a polyglycerin concentration of 1 to 30% by weight. .

さらに、本発明は、外部引出電極用リード端子が丸棒部の一方を加工した扁平部と丸棒部の他方に溶接されたリード線からなり、前記リード端子の扁平部を接続した陽極箔と陰極箔とをセパレータを介して巻回した巻回素子と、前記セパレータに保持された導電性高分子と電解液とを備えた電解コンデンサにおいて、前記リード端子の丸棒部が、ポリグリセリン被膜を有することを特徴とするものである。 Further, in the present invention, the lead terminal for an externally drawn electrode comprises a flat part obtained by processing one of the round bar parts and a lead wire welded to the other of the round bar parts, and an anode foil and an anode foil connected to the flat part of the lead terminal. In an electrolytic capacitor comprising a wound element in which a cathode foil is wound through a separator, and a conductive polymer and an electrolyte held in the separator, the round bar portion of the lead terminal is coated with a polyglycerin coating. It is characterized by having.

また、本発明は、上記の特徴を有した電解コンデンサにおいて、前記巻回素子の外周は、前記巻回素子の前記リード端子引出方向を上方としたとき、前記巻回素子の下方端より上方側に前記巻回素子高さの1/3~2/3まで前記導電性高分子で覆われていることを特徴とするものである。 Further, in the electrolytic capacitor having the above-mentioned characteristics, the present invention provides that the outer periphery of the wound element is located above the lower end of the wound element when the lead terminal extraction direction of the wound element is set upward. The winding element is characterized in that 1/3 to 2/3 of the height of the wound element is covered with the conductive polymer.

本発明によれば、リフロー前後のLC変動の少ない電解コンデンサ、特にハイブリッドアルミニウム電解コンデンサが製造できる。 According to the present invention, an electrolytic capacitor, particularly a hybrid aluminum electrolytic capacitor, with less LC fluctuation before and after reflow can be manufactured.

本発明の実施形態に係る電解コンデンサの要部透視図である。FIG. 1 is a perspective view of main parts of an electrolytic capacitor according to an embodiment of the present invention. 図1に示すコンデンサ素子の分解斜視図である。FIG. 2 is an exploded perspective view of the capacitor element shown in FIG. 1. FIG. 本発明の実施例に係るコンデンサ素子の外観図である。1 is an external view of a capacitor element according to an example of the present invention.

以下、本発明の製造方法により製造される電解コンデンサ(ハイブリッドコンデンサ)の好ましい実施形態を、図面を参照しつつ説明する。
図1に例示したハイブリッドコンデンサ1は、金属ケース2と、金属ケース2に収容されたコンデンサ素子3と、金属ケース2の開口を封止した封口部材4とを備えており、符号5が、コンデンサ素子3の上面である。
Hereinafter, preferred embodiments of an electrolytic capacitor (hybrid capacitor) manufactured by the manufacturing method of the present invention will be described with reference to the drawings.
The hybrid capacitor 1 illustrated in FIG. 1 includes a metal case 2, a capacitor element 3 housed in the metal case 2, and a sealing member 4 that seals the opening of the metal case 2. This is the top surface of element 3.

コンデンサ素子3は、図2に示すように、陽極箔(陽極)11と陰極箔(陰極)12とをセパレータ13を介して円筒形に巻回して形成され、外周面に貼り付けられた樹脂製のテープ14により巻止めされている。 As shown in FIG. 2, the capacitor element 3 is formed by winding an anode foil (anode) 11 and a cathode foil (cathode) 12 into a cylindrical shape with a separator 13 in between, and is made of resin attached to the outer peripheral surface. The tape 14 is used to secure the winding.

陽極箔11は、表面に誘導体酸化皮膜が形成されたアルミニウム等の弁作用金属の箔である。誘導体酸化皮膜は、エッチング処理にて表面を粗面化した弁作用金属箔に化成処理を施すことによって形成されている。 The anode foil 11 is a foil made of a valve metal such as aluminum and has a dielectric oxide film formed on its surface. The derivative oxide film is formed by subjecting a valve metal foil whose surface has been roughened by etching to a chemical conversion treatment.

陰極箔12もアルミニウム等の弁作用金属箔を用いて形成され、エッチング処理により表面が粗面化されたもの(粗面化箔)が使用される。陰極箔12として、他にエッチング処理を施さないプレーン箔も使用でき、また、前記粗面化箔もしくはプレーン箔の表面に、チタンやニッケルやその炭化物、窒化物、炭窒化物またはこれらの混合物からなる金属薄膜や、カーボン薄膜を形成したコーティング箔、誘電体酸化皮膜を形成した化成箔も使用することができる。 The cathode foil 12 is also formed using a valve metal foil such as aluminum, and the surface thereof is roughened by etching treatment (roughened foil). As the cathode foil 12, a plain foil without any other etching treatment can be used, and the surface of the roughened foil or plain foil may be coated with titanium, nickel, their carbides, nitrides, carbonitrides, or mixtures thereof. A thin metal film, a coated foil with a thin carbon film formed thereon, and a chemically formed foil with a dielectric oxide film formed thereon can also be used.

陽極箔11および陰極箔12にはそれぞれ図示しないリード端子の扁平部が接続されている。陽極箔11および陰極箔12は、それぞれリード端子の扁平部を介して、リード端子21およびリード端子22と接続されている。リード端子21およびリード端子22は、図1に示すように、封口部材4に形成された孔31および孔32を通って外部に引き出されている。
図2に示すセパレータ13は、導電性高分子および電解液を保持している。
Flat parts of lead terminals (not shown) are connected to the anode foil 11 and the cathode foil 12, respectively. The anode foil 11 and the cathode foil 12 are connected to a lead terminal 21 and a lead terminal 22, respectively, via the flat portions of the lead terminals. As shown in FIG. 1, the lead terminals 21 and 22 are drawn out through holes 31 and 32 formed in the sealing member 4.
The separator 13 shown in FIG. 2 holds a conductive polymer and an electrolyte.

次に、上述の構造を有する電解コンデンサを製造するための本発明の製造方法について説明する。
最初に、所定の幅に切断された陽極箔および陰極箔を準備し、この陽極箔および陰極箔に外部引出電極用のリード端子を接続し、陽極箔と陰極箔とをセパレータを介して巻回することにより巻回素子を作製する(巻回素子作製工程)。
この際に使用される陽極箔は、表面上に誘電体酸化皮膜が形成された弁金属からなり、陽極箔に用いられる弁金属としてはアルミニウムやタンタル、ニオブ等が挙げられる。また、陽極箔の表面上の誘電体酸化皮膜は、弁金属の表面にエッチング処理および化成酸化処理を施すことにより形成される。一方、陰極箔は、表面に炭化物粒子またはチタン粒子が保持されたアルミニウム箔または、箔表面をエッチング処理したアルミニウム箔からなるものが一般的であるが、これに限定されるものではない。また、巻回素子を作製する際に使用されるセパレータは、セルロース繊維を主体としたものが一般的であるが、化学繊維が混紗された混合繊維セパレータおよび合成繊維セパレータでも良い。化学繊維としては、例えばポリエステル繊維、ポリアミド繊維、アクリル繊維、ポリイミド繊維、アラミド繊維、ナイロン繊維等の合成繊維が挙げられる。
Next, a manufacturing method of the present invention for manufacturing an electrolytic capacitor having the above-described structure will be explained.
First, prepare an anode foil and a cathode foil cut to a predetermined width, connect lead terminals for external extraction electrodes to the anode foil and cathode foil, and wind the anode foil and cathode foil through a separator. By doing so, a wound element is manufactured (winding element manufacturing process).
The anode foil used in this case is made of a valve metal on which a dielectric oxide film is formed, and examples of the valve metal used for the anode foil include aluminum, tantalum, niobium, and the like. Further, the dielectric oxide film on the surface of the anode foil is formed by subjecting the surface of the valve metal to etching treatment and chemical oxidation treatment. On the other hand, the cathode foil is generally made of an aluminum foil on which carbide particles or titanium particles are held, or an aluminum foil whose surface has been etched, but is not limited thereto. Further, the separator used when producing the wound element is generally made mainly of cellulose fibers, but it may also be a mixed fiber separator mixed with chemical fibers or a synthetic fiber separator. Examples of the chemical fibers include synthetic fibers such as polyester fibers, polyamide fibers, acrylic fibers, polyimide fibers, aramid fibers, and nylon fibers.

そして、次に、巻回素子における陽極箔の切り口や、リード端子取り付け時に欠損した、誘電体酸化皮膜の修復、いわゆる、化成処理を行う(化成工程)。この化成処理に用いる化成液には、カルボン酸基を有する有機酸塩類、リン酸等の無機酸塩類の溶質を有機溶媒または無機溶媒に溶解した化成液が使用できる。この際、アジピン酸アンモニウムを主体とした溶質を水溶媒に溶解させ、濃度を0.1~2.0重量%に調整した化成液(例えば、リン酸化成液やホウ酸化成液)を用いることが好ましく、誘電体酸化皮膜の化成電圧値に似した電圧を印加して第一化成処理を行う。
その後、熱処理を加え、リン酸を主体とした溶質を水溶媒に溶解させ濃度を0.1~0.5重量%に調整した化成液を用いて最終化成を実施する。本発明では、この化成~熱処理工程を繰り返すことにより、強靭な誘電体酸化皮膜が形成され、ここで行う熱処理は300℃以下の温度範囲で数分~数十分程度行うのが一般的である。
Next, a so-called chemical conversion treatment is performed to repair the cut end of the anode foil in the wound element or the dielectric oxide film that was damaged during the attachment of the lead terminal (chemical conversion process). As the chemical conversion liquid used for this chemical conversion treatment, a chemical conversion liquid in which a solute of an organic acid salt having a carboxylic acid group or an inorganic acid salt such as phosphoric acid is dissolved in an organic solvent or an inorganic solvent can be used. At this time, use a chemical solution (e.g., phosphoric acid chemical solution or boric acid chemical solution) in which a solute mainly composed of ammonium adipate is dissolved in an aqueous solvent and the concentration is adjusted to 0.1 to 2.0% by weight. is preferable, and the first chemical conversion treatment is performed by applying a voltage similar to the chemical conversion voltage value of the dielectric oxide film.
Thereafter, heat treatment is applied, and a final chemical conversion is performed using a chemical conversion liquid in which a solute mainly composed of phosphoric acid is dissolved in an aqueous solvent and the concentration is adjusted to 0.1 to 0.5% by weight. In the present invention, a tough dielectric oxide film is formed by repeating this chemical formation and heat treatment process, and the heat treatment performed here is generally performed at a temperature range of 300°C or less for several minutes to several tens of minutes. .

次に、上記の化成処理を行った後の巻回素子に、ハイブリッドコンデンサの陰極層である導電性高分子層を形成してコンデンサ素子を作製するが、導電性高分子層の形成方法は限定されるものではなく、例えば、導電性高分子を水に分散させた分散液に化成処理後の巻回素子を浸漬させる、または、導電性高分子を溶媒に溶解させた導電性高分子溶液に化成処理後の巻回素子を浸漬させた後、巻回素子を引き上げ、溶媒を除去し、素子内に導電性高分子層を形成させる(導電性高分子形成工程)。この際、上記の巻回素子を分散液または導電性高分子溶液に含浸させる際の浸漬深さは、巻回素子の軸方向の高さ(以下、単に「巻回素子高さ」という)の1/3~2/3とすることが好ましい。すなわち、巻回素子のリード端子引出方向を上方としたとき、巻回素子の下方端より上方側に巻回素子高さの1/3~2/3までテープの外周が導電性高分子で覆われるように含浸させる。巻回素子から溶媒を除去するための乾燥には、常温程度での長時間の乾燥や減圧乾燥を用いてもよい。
なお、分散液または導電性高分子溶液への巻回素子の浸漬深さが、巻回素子高さの1/3未満では巻回素子内部への導電性高分子の形成が不十分となり、2/3を超えるとリード端子への導電性高分子の付着量が増えるため、後述するポリグリセリン溶液への浸漬とポリグリセリン被膜による効果が十分に得られなくなる。また、巻回素子の外周はテープとなるが、テープ表面に対する分散液または導電性高分子溶液への巻回素子の浸漬位置まで導電性高分子が巻回素子外周に形成される。
本発明において、導電性高分子層を形成する際に使用される導電性高分子としては、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸ポリマー(PEDOT-PSS)や、自己ドープ型ポリエチレンジオキシチオフェン、ポリピロール、ポリアニリンなどが挙げられるが、これに限定されるものではない。
Next, a conductive polymer layer, which is the cathode layer of a hybrid capacitor, is formed on the wound element that has been subjected to the above chemical conversion treatment to produce a capacitor element, but the method for forming the conductive polymer layer is limited. For example, the wound element after chemical conversion treatment is immersed in a dispersion of a conductive polymer in water, or a conductive polymer solution in which a conductive polymer is dissolved in a solvent is used. After the wound element after the chemical conversion treatment is immersed, the wound element is pulled up, the solvent is removed, and a conductive polymer layer is formed within the element (conductive polymer formation step). At this time, the immersion depth when impregnating the above-mentioned wound element in the dispersion liquid or conductive polymer solution is equal to the height of the wound element in the axial direction (hereinafter simply referred to as "wound element height"). It is preferable to set it to 1/3 to 2/3. That is, when the direction in which the lead terminals of the wound element are pulled out is set upward, the outer periphery of the tape is covered with conductive polymer from the lower end of the wound element to 1/3 to 2/3 of the height of the wound element. Impregnate it so that it is soaked. For drying to remove the solvent from the wound element, drying for a long time at about room temperature or drying under reduced pressure may be used.
Note that if the depth of immersion of the wound element in the dispersion liquid or conductive polymer solution is less than 1/3 of the height of the wound element, the formation of the conductive polymer inside the wound element will be insufficient. If it exceeds /3, the amount of conductive polymer adhering to the lead terminal increases, so that the effects of immersion in a polyglycerin solution and polyglycerin coating, which will be described later, cannot be sufficiently obtained. Further, the outer periphery of the wound element is a tape, and a conductive polymer is formed on the outer periphery of the wound element up to the position where the wound element is immersed in the dispersion liquid or the conductive polymer solution with respect to the tape surface.
In the present invention, the conductive polymer used when forming the conductive polymer layer includes polyethylenedioxythiophene/polystyrene sulfonic acid polymer (PEDOT-PSS), self-doped polyethylenedioxythiophene, polypyrrole, Examples include, but are not limited to, polyaniline.

本発明の製造方法では、上記のようにして、化成処理後の巻回素子に導電性高分子を含浸させた後、加熱を行う前に、導電性高分子が付着した巻回素子を、ポリグリセリン溶液中に、当該巻回素子の上面よりも上方の位置まで浸漬させ、リード端子の丸棒部に当該溶液を付着させる。この際、巻回素子の上面から丸棒部の少なくとも1/3、好ましくは丸棒部全域をポリグリセリン溶液に浸漬させる。リード端子の丸棒部の浸漬位置が1/3未満では漏れ電流の低減効果が少なく、丸棒部を超えてリード線まで浸漬すると製造設備を汚染することがある。 In the manufacturing method of the present invention, after impregnating the wound element after chemical conversion treatment with a conductive polymer and before heating, the wound element to which the conductive polymer has adhered is impregnated with the conductive polymer. The wound element is immersed in the glycerin solution to a position above the upper surface thereof, and the round bar portion of the lead terminal is coated with the solution. At this time, at least ⅓ of the round bar portion from the top surface of the wound element, preferably the entire round bar portion, is immersed in the polyglycerin solution. If the immersion position of the round bar portion of the lead terminal is less than 1/3, the effect of reducing leakage current is small, and if the lead wire is immersed beyond the round bar portion, manufacturing equipment may be contaminated.

その後、コンデンサ素子をポリグリセリン溶液から取り出して150~210℃の温度で加熱を行い、導電性高分子を完全に固化させて導電性高分子層と丸棒部にポリグリセリン被膜を形成させる。ポリグリセリン溶液に用いるポリグリセリンとしては、重量平均分子量が100~1000であるものが好ましく、200~400の範囲にあるポリグリセリンを用いることがより好ましい。
ポリグリセリン溶液に用いる溶媒としては、エタノール、エチレングリコール(EG)、ジエチレングリコール等が挙げられるが、導電性高分子の配向性を整えることができるエチレングリコールを用いることが望ましい。ポリグリセリン溶液には、導電性高分子への悪影響を与えない溶媒(例えば、ポリアルキレングリコール等)を添加してもよい。ポリグリセリン溶液の濃度は1~30重量%が好ましく、3~20重量%がより好ましく、5~15重量%が特に好ましい。
本発明では、ポリグリセリン溶液に、コンデンサ素子の上面よりも上方のリード端子の丸棒部まで浸漬させる工程を設けることによって、リード端子の丸棒部に付着した導電性高分子を除去することができるとともに、ポリグリセリン被膜を形成するため、リフロー前後の漏れ電流の安定化が達成できると考えられる。
Thereafter, the capacitor element is taken out of the polyglycerin solution and heated at a temperature of 150 to 210° C. to completely solidify the conductive polymer and form a polyglycerin coating on the conductive polymer layer and the round rod portion. The polyglycerin used in the polyglycerin solution preferably has a weight average molecular weight of 100 to 1,000, more preferably a polyglycerin in the range of 200 to 400.
Examples of the solvent used in the polyglycerin solution include ethanol, ethylene glycol (EG), and diethylene glycol, but it is preferable to use ethylene glycol, which can adjust the orientation of the conductive polymer. A solvent (eg, polyalkylene glycol, etc.) that does not adversely affect the conductive polymer may be added to the polyglycerin solution. The concentration of the polyglycerin solution is preferably 1 to 30% by weight, more preferably 3 to 20% by weight, particularly preferably 5 to 15% by weight.
In the present invention, the conductive polymer attached to the round bar part of the lead terminal can be removed by providing a step of immersing the round bar part of the lead terminal above the top surface of the capacitor element in the polyglycerin solution. In addition, since a polyglycerin film is formed, it is thought that stabilization of leakage current before and after reflow can be achieved.

本発明では、上記により導電性高分子層を形成したコンデンサ素子に電解液を含浸させる。この際使用される電解液としては、溶質と安定剤を含有する溶液が一般に採用され、沸点が180℃以上で、1kΩ・cm以上の比抵抗を有するものが好ましい。
上記の電解液における溶媒としては、水、エチレングリコール、エチレングリコールモノメチルエーテル、1,5-ペンタンジオール、γ‐ブチロラクトン、γ-バレロラクトン、N‐メチルホルムアミド、スルホランなどが挙げられ、溶質としては、ホウ酸、アジピン酸、マレイン酸、安息香酸、フタル酸、サリチル酸、リシノール酸、亜リン酸、ジブチルアミン、トリエチルアミンなどが挙げられ、上記電解液中の溶質濃度は0.5~15.0重量%であることが好ましく、1~11重量%であることがより好ましい。
In the present invention, the capacitor element on which the conductive polymer layer is formed as described above is impregnated with an electrolytic solution. The electrolytic solution used in this case is generally a solution containing a solute and a stabilizer, and preferably has a boiling point of 180° C. or higher and a specific resistance of 1 kΩ·cm or higher.
Solvents in the above electrolyte include water, ethylene glycol, ethylene glycol monomethyl ether, 1,5-pentanediol, γ-butyrolactone, γ-valerolactone, N-methylformamide, sulfolane, etc., and solutes include: Examples include boric acid, adipic acid, maleic acid, benzoic acid, phthalic acid, salicylic acid, ricinoleic acid, phosphorous acid, dibutylamine, triethylamine, etc., and the solute concentration in the electrolyte is 0.5 to 15.0% by weight. It is preferably 1 to 11% by weight, and more preferably 1 to 11% by weight.

本発明の製造方法においては、上記の電解液を含浸したコンデンサ素子を、有底筒状の金属ケース内に収納し、当該金属ケースの開口部を密封するための封口部材を取り付け、金属ケースの開口部をカーリングして封止する(封止工程)。この際、封口部材は弾性のあるゴム(例えばブチルゴム等)からなり外部引き出し端子が貫通する貫通孔を備えたものを用いる。なお、コンデンサ素子と電解液とを金属ケースに収納し、金属ケース内でコンデンサ素子に電解液を含浸してもよい。
続いて、カテゴリ上限温度以下の温度条件にてコンデンサに定格電圧を印加し、エージング処理を行う(エージング処理工程)と、ハイブリッドアルミニウム電解コンデンサが完成する。
上記の工程を実施することによって得られるハイブリッドコンデンサは漏れ電流の低減が達成されたものであり、リフロー前後の漏れ電流の変動が小さいという特性を有する。
以下に、実施例に基づいて、本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
In the manufacturing method of the present invention, a capacitor element impregnated with the electrolytic solution described above is housed in a cylindrical metal case with a bottom, a sealing member for sealing the opening of the metal case is attached, and the capacitor element is impregnated with the electrolytic solution. The opening is sealed by curling (sealing process). At this time, the sealing member is made of elastic rubber (for example, butyl rubber, etc.) and has a through hole through which the external lead terminal passes. Note that the capacitor element and the electrolyte may be housed in a metal case, and the capacitor element may be impregnated with the electrolyte within the metal case.
Next, a rated voltage is applied to the capacitor under a temperature condition below the upper limit temperature of the category, and an aging treatment is performed (aging treatment step), thereby completing a hybrid aluminum electrolytic capacitor.
The hybrid capacitor obtained by carrying out the above process has achieved a reduction in leakage current, and has a characteristic that fluctuations in leakage current before and after reflow are small.
The present invention will be described in more detail below based on Examples, but the present invention is not limited to these Examples.

〔実施例:本発明の製造方法を用いたハイブリッドアルミニウム電解コンデンサの製造例〕
陽極箔として、アルミニウム箔をエッチング処理にて粗面化した後、化成処理を施すことにより、誘電体酸化皮膜が形成されたものを準備し、陰極箔としては、表面がエッチング処理にて粗面化されているアルミニウム箔を準備し、セパレータとしては、一般的なセルロース繊維のセパレータを用いた。
そして、所定の幅に切断された上記陽極箔および陰極箔に、それぞれ外部引き出し電極用のリード端子の扁平部(アルミニウムで形成)を接続し、上記のセパレータを介して巻回することにより巻回素子を作製した。
[Example: Example of manufacturing a hybrid aluminum electrolytic capacitor using the manufacturing method of the present invention]
The anode foil is prepared by roughening aluminum foil by etching and then chemical conversion treatment to form a dielectric oxide film, and the cathode foil is prepared by roughening the surface by etching. An ordinary cellulose fiber separator was used as a separator.
Then, the flat parts (formed of aluminum) of lead terminals for external extraction electrodes are connected to the anode foil and cathode foil cut to a predetermined width, respectively, and wound by winding them through the separator. The device was fabricated.

次いで、溶質にアジピン酸アンモニウムを主体とした水溶媒に溶解させ、濃度が1重量%の化成液を調製し、この化成液を用いて上記巻回素子に、誘電体酸化皮膜の化成電圧値に似した電圧を印加し、第一化成処理を行った。その後、熱処理(200℃、30分)を加え、リン酸を主体とした溶質を水溶媒に溶解させ濃度を0.2重量%に調整した化成液を用いて最終化成を実施した。この化成~熱処理工程を繰り返すことにより、誘電体酸化皮膜を形成した。
その後、化成処理後の巻回素子を、減圧下で、PEDOT/PSSを含む分散液に、浸漬深さが巻回素子高さの1/2程度となるようにして15分間浸漬させ、分散液から巻回素子を引き上げた後に90℃以下で乾燥を行った。分散液は巻回素子内部を浸透し、当該巻回素子の上面まで保持され導電性高分子が形成されているが、テープ表面に形成される導電性高分子は、テープと分散液との接触角が大きいため、巻回素子の浸漬位置までしか形成されない。
Next, the solute is dissolved in an aqueous solvent mainly containing ammonium adipate to prepare a chemical liquid with a concentration of 1% by weight, and this chemical liquid is applied to the wound element to adjust the chemical formation voltage value of the dielectric oxide film. A similar voltage was applied to perform the first chemical conversion treatment. Thereafter, a heat treatment (200° C., 30 minutes) was added, and a final chemical conversion was performed using a chemical conversion solution in which a solute mainly composed of phosphoric acid was dissolved in a water solvent and the concentration was adjusted to 0.2% by weight. By repeating this chemical formation and heat treatment process, a dielectric oxide film was formed.
Thereafter, the wound element after the chemical conversion treatment was immersed in a dispersion containing PEDOT/PSS under reduced pressure for 15 minutes so that the immersion depth was approximately 1/2 of the height of the wound element, and the dispersion was After the wound element was pulled up from the substrate, it was dried at 90° C. or lower. The dispersion liquid permeates inside the wound element and is retained up to the upper surface of the wound element, forming a conductive polymer. Since the corner is large, it is formed only up to the immersion position of the wound element.

そして、エチレングリコールにポリグリセリン(PG、重量平均分子量:300)を10%混合したポリグリセリン溶液を準備し、この溶液中に、導電性高分子が付着した巻回素子を、当該巻回素子の上面よりも上方の部分、リード端子の丸棒部全域までが浸漬するようにして浸漬し、上記ポリグリセリン溶液が巻回素子のリード端子の丸棒部に付着するようにした(浸漬時間:1分)。また、ポリグリセリン溶液への浸漬により、リード端子の丸棒部表面に付着した導電性高分子は除去されるが、テープ表面に形成された導電性高分子はあまり除去されない。
その後、巻回素子を引き上げて160℃にて乾燥を行うことにより導電性高分子層を形成させコンデンサ素子を作製した。
Then, a polyglycerin solution is prepared by mixing 10% polyglycerin (PG, weight average molecular weight: 300) in ethylene glycol, and the wound element to which the conductive polymer is attached is placed in this solution. The polyglycerin solution was immersed so that the part above the top surface and the entire round bar part of the lead terminal was immersed, so that the polyglycerin solution adhered to the round bar part of the lead terminal of the wound element (soaking time: 1 minutes). Furthermore, although the conductive polymer attached to the surface of the round bar part of the lead terminal is removed by immersion in the polyglycerin solution, the conductive polymer formed on the tape surface is not removed much.
Thereafter, the wound element was pulled up and dried at 160°C to form a conductive polymer layer, thereby producing a capacitor element.

その後、上記で得られたコンデンサ素子と所定量の電解液(溶媒:1,5-ペンタンジオールおよびγ-バレロラクトン、溶質:リシノール酸、亜リン酸、ジブチルアミン、溶質濃度:10.5%)を、有底筒状の金属ケース内に収納し、当該金属ケースの開口部を密封するための封口部材(ブチルゴム製)を取り付け、金属ケースの開口部をカーリングして封止した。続いて、カテゴリ上限温度の125℃の温度条件にてコンデンサに所定電圧を印加しエージング処理(125℃、1時間)を施し、ハイブリッドアルミニウム電解コンデンサ(本発明品)を50個作製した。なお、この実施例にて作製したハイブリッドコンデンサは、サイズが直径φ10mm×長さ10mmで、定格電圧が35V、定格静電容量が270μFのものである。 Thereafter, the capacitor element obtained above and a predetermined amount of electrolyte solution (solvent: 1,5-pentanediol and γ-valerolactone, solute: ricinoleic acid, phosphorous acid, dibutylamine, solute concentration: 10.5%) was housed in a bottomed cylindrical metal case, a sealing member (made of butyl rubber) for sealing the opening of the metal case was attached, and the opening of the metal case was sealed by curling. Subsequently, a predetermined voltage was applied to the capacitor under a temperature condition of 125° C., which is the upper limit temperature of the category, and an aging treatment (125° C., 1 hour) was performed to produce 50 hybrid aluminum electrolytic capacitors (products of the present invention). The hybrid capacitor manufactured in this example has a size of 10 mm in diameter x 10 mm in length, a rated voltage of 35 V, and a rated capacitance of 270 μF.

〔比較例:巻回素子高さの1/2までポリグリセリン溶液に浸漬させた場合〕
前記実施例における、ポリグリセリン溶液中への浸漬深さを巻回素子高さの1/2程度の高さまでとし、意図的な液面レベルのアップを行わない以外は、前記実施例1と同様にして、ハイブリッドアルミニウム電解コンデンサ(比較品)を50個作製した。この比較例にて作製したハイブリッドコンデンサのサイズ、定格電圧および定格静電容量は、実施例のものと同じである。
[Comparative example: When the wound element is immersed up to 1/2 of the height in polyglycerin solution]
Same as Example 1, except that the depth of immersion in the polyglycerin solution in the Example was set to about 1/2 of the height of the wound element, and the liquid level was not intentionally raised. Then, 50 hybrid aluminum electrolytic capacitors (comparative product) were manufactured. The size, rated voltage, and rated capacitance of the hybrid capacitor manufactured in this comparative example are the same as those in the example.

〔リフロー前後の電気特性比較〕
上記実施例で作製した電解コンデンサと、上記比較例で作製した電解コンデンサのそれぞれについて、リフロー前(エージング後)とリフロー後の電気特性、即ち、周波数120Hzにおける静電容量(Cap)と損失角の正接(tanδ)、周波数100kHzにおける等価直列抵抗(ESR)、および定格電圧を2分間印加した後の漏れ電流(LC)を測定し、比較を行った。
その結果を、以下の表1に示す。この表1には、測定値の最大値(MAX)、最小値(MIN)とn=50の平均値(AVE)の他に、静電容量の変化割合(ΔCap)、等価直列抵抗の変化率も示されている。
[Comparison of electrical characteristics before and after reflow]
Regarding the electrolytic capacitor manufactured in the above example and the electrolytic capacitor manufactured in the above comparative example, the electrical characteristics before reflow (after aging) and after reflow, that is, the capacitance (Cap) at a frequency of 120 Hz and the loss angle The tangent (tan δ), the equivalent series resistance (ESR) at a frequency of 100 kHz, and the leakage current (LC) after applying the rated voltage for 2 minutes were measured and compared.
The results are shown in Table 1 below. In addition to the maximum value (MAX), minimum value (MIN), and average value (AVE) of n=50 measured values, Table 1 also includes the rate of change in capacitance (ΔCap), rate of change in equivalent series resistance. is also shown.

上記表1の結果から、ポリグリセリン溶液に、導電性高分子が付着した巻回素子を、リード端子の丸棒部まで浸漬させて丸棒部にポリグリセリン被膜を形成した場合には、リフロー前後の漏れ電流(LC)の変動を安定化できることが確認された。 From the results in Table 1 above, it can be seen that when a wound element with a conductive polymer attached to it is immersed in a polyglycerin solution up to the round bar part of the lead terminal to form a polyglycerin film on the round bar part, there is a difference between before and after reflow. It was confirmed that fluctuations in leakage current (LC) can be stabilized.

なお、実施例では、PEDOT/PSSを導電性高分子に用いたが、自己ドープ型ポリエチレンジオキシチオフェン、ポリピロール、ポリアニリンや等の他の導電性高分子を用いた場合でも同様の効果が得られる。 In the examples, PEDOT/PSS was used as the conductive polymer, but the same effect can be obtained by using other conductive polymers such as self-doped polyethylenedioxythiophene, polypyrrole, polyaniline, etc. .

本発明の製造方法によれば、導電性高分子を完全固化させる前の巻回素子を、ポリグリセリン溶液中に、当該素子の上面よりも上方の部分、すなわちリード端子の丸棒部まで浸漬させることで、漏れ電流を改善することができ、本製法は、電解コンデンサ、特に導電性高分子ハイブリッドアルミニウム電解コンデンサの製造に有用である。 According to the manufacturing method of the present invention, the wound element before completely solidifying the conductive polymer is immersed in a polyglycerin solution up to the portion above the upper surface of the element, that is, the round bar portion of the lead terminal. As a result, leakage current can be improved, and this manufacturing method is useful for manufacturing electrolytic capacitors, particularly conductive polymer hybrid aluminum electrolytic capacitors.

1 ハイブリッドコンデンサ
2 金属ケース(外装ケース)
3 コンデンサ素子
4 封口部材
5 コンデンサ素子の上面
11 陽極箔(陽極)
12 陰極箔(陰極)
13 セパレータ
14 テープ
15 導電性高分子
21,22 リード端子
23 丸棒部
31,32 孔
1 Hybrid capacitor 2 Metal case (exterior case)
3 Capacitor element 4 Sealing member 5 Top surface of capacitor element 11 Anode foil (anode)
12 Cathode foil (cathode)
13 Separator 14 Tape 15 Conductive polymer 21, 22 Lead terminal 23 Round bar part 31, 32 Hole

Claims (5)

外部引出電極用のリード端子を接続した陽極箔と陰極箔とをセパレータを介して巻回することにより巻回素子を作製する巻回素子作製工程と、
当該巻回素子の、前記陽極箔の切断された断面および前記リード端子との取り付け部を化成処理する化成処理工程と、
化成処理後の巻回素子を、導電性高分子が水に分散した分散液または導電性高分子溶液に浸漬して、前記導電性高分子からなる導電性高分子層を形成させてコンデンサ素子を作製する導電性高分子形成工程と、
当該コンデンサ素子と電解液を有底筒状の金属ケース内に収納し、当該金属ケースの開口部を封止する封止工程と、
エージング処理工程と
を有する電解コンデンサの製造方法において、
前記導電性高分子形成工程は、前記分散液または導電性高分子溶液に浸漬した後の巻回素子を乾燥した後、前記導電性高分子を完全に固化させる前に、前記巻回素子をポリグリセリン溶液中に、当該巻回素子の上面よりも上方の前記リード端子の丸棒部まで浸漬させ、当該丸棒部に付着した導電性高分子を除去した後、前記ポリグリセリン溶液から取り出して乾燥を行い、前記導電性高分子を完全に固化させて前記導電性高分子層を形成させることを特徴とする電解コンデンサの製造方法。
a wound element manufacturing step of manufacturing a wound element by winding an anode foil and a cathode foil to which lead terminals for external extraction electrodes are connected via a separator;
a chemical conversion treatment step of chemically treating the cut cross section of the anode foil and the attachment portion to the lead terminal of the wound element;
The wound element after the chemical conversion treatment is immersed in a dispersion of a conductive polymer dispersed in water or a conductive polymer solution to form a conductive polymer layer made of the conductive polymer to form a capacitor element. A conductive polymer formation process to produce;
a sealing step of storing the capacitor element and the electrolyte in a bottomed cylindrical metal case and sealing the opening of the metal case;
In a method for manufacturing an electrolytic capacitor, the method includes an aging treatment step,
In the conductive polymer forming step, after drying the wound element after immersing it in the dispersion or conductive polymer solution, and before completely solidifying the conductive polymer, the wound element is coated with polyester. The round bar part of the lead terminal above the top surface of the wound element is immersed in the glycerin solution , and the conductive polymer adhering to the round bar part is removed , and then removed from the polyglycerin solution. A method for manufacturing an electrolytic capacitor , comprising drying to completely solidify the conductive polymer to form the conductive polymer layer.
前記ポリグリセリン溶液は、エタノール、エチレングリコール、ジエチレングリコール、またはエタノール、エチレングリコール、ジエチレングリコールの2以上の溶媒の混合物を溶媒とすることを特徴とする請求項1に記載の電解コンデンサの製造方法。 2. The method for manufacturing an electrolytic capacitor according to claim 1, wherein the polyglycerin solution uses ethanol, ethylene glycol, diethylene glycol, or a mixture of two or more solvents of ethanol, ethylene glycol, and diethylene glycol as a solvent. 前記ポリグリセリン溶液は、エチレングリコールを溶媒とし、ポリグリセリン濃度が1~30重量%であることを特徴とする請求項1または2に記載の電解コンデンサの製造方法。 3. The method for manufacturing an electrolytic capacitor according to claim 1, wherein the polyglycerin solution uses ethylene glycol as a solvent and has a polyglycerin concentration of 1 to 30% by weight. 外部引出電極用リード端子が丸棒部の一方を加工した扁平部と丸棒部の他方に溶接されたリード線からなり、前記リード端子の扁平部を接続した陽極箔と陰極箔とをセパレータを介して巻回した巻回素子と、前記セパレータに保持された導電性高分子と電解液とを備えた電解コンデンサにおいて、
前記リード端子の丸棒部が、導電性高分子層を有さず、ポリグリセリン被膜によって被覆されていることを特徴とする電解コンデンサ。
The lead terminal for the external extraction electrode consists of a flat part made from one round bar part and a lead wire welded to the other round bar part, and the anode foil and cathode foil connected to the flat part of the lead terminal are separated by a separator. An electrolytic capacitor comprising a wound element wound through the separator, a conductive polymer held by the separator, and an electrolytic solution,
An electrolytic capacitor characterized in that the round rod portion of the lead terminal does not have a conductive polymer layer and is covered with a polyglycerin film .
前記巻回素子の外周は、前記巻回素子の前記リード端子引出方向を上方としたとき、前記巻回素子の下方端より上方側に前記巻回素子高さの1/3~2/3まで前記導電性高分子で覆われていることを特徴とする請求項4に記載の電解コンデンサ。 The outer periphery of the winding element extends from 1/3 to 2/3 of the height of the winding element above the lower end of the winding element, when the lead terminal drawing direction of the winding element is set upward. The electrolytic capacitor according to claim 4, wherein the electrolytic capacitor is covered with the conductive polymer.
JP2020156087A 2020-09-17 2020-09-17 Manufacturing method of electrolytic capacitor and electrolytic capacitor Active JP7394728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020156087A JP7394728B2 (en) 2020-09-17 2020-09-17 Manufacturing method of electrolytic capacitor and electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020156087A JP7394728B2 (en) 2020-09-17 2020-09-17 Manufacturing method of electrolytic capacitor and electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2022049839A JP2022049839A (en) 2022-03-30
JP7394728B2 true JP7394728B2 (en) 2023-12-08

Family

ID=80854446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020156087A Active JP7394728B2 (en) 2020-09-17 2020-09-17 Manufacturing method of electrolytic capacitor and electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP7394728B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082053A (en) 2014-10-16 2016-05-16 パナソニックIpマネジメント株式会社 Electrolytic capacitor
JP2020072132A (en) 2018-10-30 2020-05-07 ニチコン株式会社 Manufacturing method of electrolytic capacitor
JP2020119916A (en) 2019-01-18 2020-08-06 ルビコン株式会社 Solid electrolytic capacitor and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082053A (en) 2014-10-16 2016-05-16 パナソニックIpマネジメント株式会社 Electrolytic capacitor
JP2020072132A (en) 2018-10-30 2020-05-07 ニチコン株式会社 Manufacturing method of electrolytic capacitor
JP2020119916A (en) 2019-01-18 2020-08-06 ルビコン株式会社 Solid electrolytic capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
JP2022049839A (en) 2022-03-30

Similar Documents

Publication Publication Date Title
KR101770859B1 (en) Solid electrolyte capacitor
JP6384896B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US10121599B2 (en) Method for producing electrolytic capacitor
WO2015174056A1 (en) Electrolytic capacitor manufacturing method
US20110232055A1 (en) Method of manufacturing electrolytic capacitor
JP6868848B2 (en) Electrolytic capacitor
CN110098057B (en) Method for manufacturing electrolytic capacitor
JP6655781B2 (en) Manufacturing method of electrolytic capacitor
JP7394728B2 (en) Manufacturing method of electrolytic capacitor and electrolytic capacitor
JP2016082053A (en) Electrolytic capacitor
JP7072487B2 (en) How to manufacture electrolytic capacitors
CN113994446A (en) Solid electrolytic capacitor and method for manufacturing the same
JP3522294B2 (en) Method for manufacturing solid electrolytic capacitor
JP7458258B2 (en) Manufacturing method of electrolytic capacitor
JP6395202B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3548035B2 (en) Manufacturing method of electrolytic capacitor
JP4269351B2 (en) Manufacturing method of solid electrolytic capacitor
JP7407371B2 (en) Electrolytic capacitor
JP5000795B2 (en) Manufacturing method of solid electrolytic capacitor
JP3285044B2 (en) Method for manufacturing solid electrolytic capacitor
JP2000228331A (en) Manufacture of electrolytic capacitor
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001044079A (en) Manufacture of capacitor
JP2023029570A (en) Electrolytic capacitor
JP2023059576A (en) Method of manufacturing electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231128

R150 Certificate of patent or registration of utility model

Ref document number: 7394728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150