JP3446257B2 - Non-oriented electrical steel sheet with excellent iron loss properties after strain relief annealing - Google Patents

Non-oriented electrical steel sheet with excellent iron loss properties after strain relief annealing

Info

Publication number
JP3446257B2
JP3446257B2 JP22235793A JP22235793A JP3446257B2 JP 3446257 B2 JP3446257 B2 JP 3446257B2 JP 22235793 A JP22235793 A JP 22235793A JP 22235793 A JP22235793 A JP 22235793A JP 3446257 B2 JP3446257 B2 JP 3446257B2
Authority
JP
Japan
Prior art keywords
less
iron loss
sol
oriented electrical
relief annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22235793A
Other languages
Japanese (ja)
Other versions
JPH0770719A (en
Inventor
高島  稔
厚人 本田
隆史 小原
誠司 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP22235793A priority Critical patent/JP3446257B2/en
Publication of JPH0770719A publication Critical patent/JPH0770719A/en
Application granted granted Critical
Publication of JP3446257B2 publication Critical patent/JP3446257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄損特性の著しく優
れた低Si無方向性電磁鋼板に関し、とくに歪取焼鈍時に
おける粒成長性の向上を図ったものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-Si non-oriented electrical steel sheet having an excellent iron loss characteristic, and is particularly intended to improve grain growth during strain relief annealing.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、モーター、発電
機、小型トランス等の電気機器の鉄心材料として、広く
用いられているが、近年特に、これら電気機器の小型
化、高効率化のため、低鉄損化に対する要請が高まって
いる。
2. Description of the Related Art Non-oriented electrical steel sheets have been widely used as iron core materials for electric equipment such as motors, generators and small transformers. The demand for low iron loss is increasing.

【0003】無方向性電磁鋼板の鉄損を決定する主な要
因は、以下に述べる比抵抗、集合組織、結晶粒径
の3つである。 比抵抗 (Si+Al)含有量を増加すると、比抵抗は増加し、鉄損
は減少するが、(Si+Al)の増量は単なるグレードアッ
プにすぎず、この発明で目的とするところではない。
The three main factors that determine the iron loss of a non-oriented electrical steel sheet are the following specific resistance, texture and grain size. When the specific resistance (Si + Al) content is increased, the specific resistance is increased and the iron loss is decreased, but the increase of (Si + Al) is merely a grade upgrade and is not the purpose of the present invention.

【0004】集合組織 集合組織の改善方法としては、冷延前の粒径を粗大化さ
せる方法や、Sb, Snを添加する方法などが知られてい
る。
As a texture improving method, a method of coarsening the grain size before cold rolling and a method of adding Sb and Sn are known.

【0005】結晶粒径 鉄損(W15/50 )が最も小さくなる結晶粒径は、 100〜
150 μm であることが知られている。通常、低Si(Si≦
1.2 wt%(以下単に%で示す))の無方向性電磁鋼板の
出荷時における結晶粒径は10〜30μm であるが、その後
の歪取焼鈍(通常 750℃×2h)によって結晶粒は成長
し、鉄損は小さくなる。従って、低鉄損化には歪取焼鈍
時における粒成長性を向上させることがとりわけ重要で
ある。粒成長を阻害する因子としては、鋼中の微細な硫
化物、窒化物、酸化物等があり、これらを低減するため
に、従来から、脱硫フラックスの使用(Sの除去)、Ar
ガス還流による脱ガス(Nの除去)、Al脱酸(酸化物の
除去)などが、一般的に行われている。さらに、微細な
窒化物を減少させる方法としては、Si:0.1 〜1.0 %の
無方向性電磁鋼板において、Siのみで脱酸し、全Al量を
0.007%以下とする方法(特公昭56-43294号公報)や、
Alを0.15〜0.60%とすることにより、窒化物を粗大化さ
せ、酸化物を減少させる方法(特開昭61−119652号公
報)などが提案されている。
Crystal grain size The crystal grain size at which iron loss (W 15/50 ) is the smallest is 100 to
It is known to be 150 μm. Usually, low Si (Si ≦
The grain size of 1.2 wt% (hereinafter simply referred to as%) non-oriented electrical steel sheet is 10 to 30 μm at the time of shipment, but the grain grows by the subsequent strain relief annealing (usually 750 ° C x 2 h). , Iron loss becomes smaller. Therefore, to reduce iron loss, it is particularly important to improve grain growth during strain relief annealing. Factors that inhibit grain growth include fine sulfides, nitrides, oxides, etc. in steel. In order to reduce these, conventionally, use of desulfurization flux (removal of S), Ar
Degassing (removal of N) and deoxidation of Al (removal of oxides) by gas reflux are generally performed. Furthermore, as a method of reducing fine nitrides, in a non-oriented electrical steel sheet with Si: 0.1 to 1.0%, deoxidizing with only Si to reduce the total Al content.
A method of setting 0.007% or less (Japanese Patent Publication No. Sho 56-43294),
A method has been proposed in which Al is made 0.15 to 0.60% to coarsen nitrides and reduce oxides (JP-A-61-119652).

【0006】また特開昭63−195217号公報には、介在物
組成をMnO/SiO2+MnO+Al2O3 ≦0.15、sol.Al:0.00
1 〜0.005 %とすることにより、粒成長に有害な延性介
在物を減少し、非延性の介在物とする方法が開示されて
いる。しかし、上記の介在物制御を行うためには、Mnの
調整を転炉出鋼時に行う必要があるが、この転炉出鋼時
における処理は、Mnの歩留りが悪いだけでなく、真空脱
ガス時の調整に比べて、Mn濃度の適中率が低下する。そ
のため、Mn濃度の再調整処理として、真空脱ガス工程で
Mnを投入する必要がしばしば生じる。しかしながら、真
空脱ガス工程で投入されたMnは、延性介在物を形成し鉄
損を劣化させるため、この方法では安定して低鉄損を得
ることはできなかった。
Further, in JP-A-63-195217, the composition of inclusions is MnO / SiO 2 + MnO + Al 2 O 3 ≦ 0.15, sol.Al: 0.00
A method of reducing ductile inclusions harmful to grain growth to non-ductile inclusions by setting the content to 1 to 0.005% is disclosed. However, in order to control the inclusions described above, it is necessary to adjust Mn at the time of tapping the converter, but the treatment at the tapping of the converter is not only poor in the yield of Mn but also vacuum degassing. The predictive value of the Mn concentration is lower than that of the time adjustment. Therefore, as a readjustment process of Mn concentration, in the vacuum degassing process
It often becomes necessary to input Mn. However, since Mn introduced in the vacuum degassing step forms ductile inclusions and deteriorates iron loss, it was not possible to stably obtain low iron loss by this method.

【0007】さらに特開平3−249115号公報には、Si−
Mn脱酸による延性介在物の低減技術として、Mnを(55.6
+34.5×Si)×S(%) 添加する方法が示されているが、
かようなSi−Mnのみによる脱酸では、鋳造時にノズル詰
まりが生じ易いという問題があった。
Further, in Japanese Patent Laid-Open No. 3-249115, Si-
As a technique for reducing ductile inclusions by deoxidizing Mn, Mn (55.6
+ 34.5 × Si) × S (%) is added, but
Such deoxidation using only Si-Mn has a problem that nozzle clogging easily occurs during casting.

【0008】[0008]

【発明が解決しようとする課題】このため、真空脱ガス
時のMn調整によっても低鉄損が安定して得られる安価な
電磁鋼板の開発が望まれていた。この発明は、上記の要
請に有利に応えるもので、真空脱ガス時のMn調整によっ
ても、粒成長を阻害する延性介在物を形成せず、歪取焼
鈍後に安定して低鉄損を得ることができる無方向性電磁
鋼板を提案することを目的とする。
Therefore, there has been a demand for the development of an inexpensive magnetic steel sheet which can stably obtain a low iron loss even by adjusting Mn during vacuum degassing. The present invention advantageously responds to the above-mentioned requirements, and even by adjusting Mn during vacuum degassing, a ductile inclusion that inhibits grain growth is not formed, and a stable low iron loss is obtained after stress relief annealing. The purpose is to propose a non-oriented electrical steel sheet that can be manufactured.

【0009】[0009]

【課題を解決するための手段】すなわちこの発明は、
C:0.010 %以下、 Si:0.01〜1.2 %、P:0.20%以
下、 S:0.01%以下、T.O:0.020 %以下、 N:
0.0050%以下を含み、かつMnを次式 〔Mn〕2 /〔Si〕≦ 0.45 を満足する範囲で含有し、さらに sol.Al:8ppm 以下 を含有し、残部は実質的にFeの組成になることを特徴と
する歪取焼鈍後の鉄損特性に優れた無方向性電磁鋼板
(第1発明)である。
That is, this invention is
C: 0.010% or less, Si: 0.01 to 1.2%, P: 0.20% or less, S: 0.01% or less, TO: 0.020% or less, N:
Contains 0.0050% or less, contains Mn in a range satisfying the following formula [Mn] 2 /[Si]≦0.45, and further contains sol.Al: 8 ppm or less, and the balance is substantially Fe composition. This is a non-oriented electrical steel sheet (first invention) having excellent iron loss characteristics after stress relief annealing.

【0010】またこの発明は、C:0.010 %以下、 S
i:0.01〜1.2 %、P:0.20%以下、 S:0.01%以
下、T.O:0.020 %以下、 N:0.0050%以下を含み、
かつMnを次式 〔Mn〕2 /〔Si〕≦ 0.45 を満足する範囲で含有し、さらに sol.Al:8 ppm以下でかつsol.Al+Ti:20 ppm以下 を含有し、残部は実質的にFeの組成になることを特徴と
する歪取焼鈍後の鉄損特性に優れた無方向性電磁鋼板
(第2発明)である。
The present invention also provides C: 0.010% or less, S
i: 0.01 to 1.2%, P: 0.20% or less, S: 0.01% or less, TO: 0.020% or less, N: 0.0050% or less,
In addition, Mn is contained in a range that satisfies the following formula [Mn] 2 /[Si]≦0.45, and further contains sol.Al: 8 ppm or less and sol.Al + Ti: 20 ppm or less, and the balance is substantially Fe. It is a non-oriented electrical steel sheet (second invention) excellent in iron loss characteristics after stress relief annealing, which is characterized by the following composition.

【0011】以下、この発明の基礎となった実験結果に
ついて説明する。さて発明者らは、低Si無方向性電磁鋼
板のSi, Mn, Al濃度と鉄損との関係について調査したと
ころ、次に述べる結果を得た。図1に、Mnの調整を真空
脱ガス中でAl脱酸後のみに行った、種々のSi, Mn濃度の
無方向性電磁鋼板について、〔Mn〕2 /〔Si〕と 750
℃、2hの歪取焼鈍後の鉄損との関係について調べた結
果を示す。いずれの鋼板においても、sol.Al:2〜5 p
pm、Ti:6〜7 ppmであった。同図から明らかなよう
に、〔Mn〕2 /〔Si〕が増加し、特に0.45を超えると、
鉄損は急激に増大することが判明した。走査型電子顕微
鏡(SEM)による歪取焼鈍後の板断面の観察から、鉄
損不良材は良好材と比べると、細粒で粒成長性が極めて
悪いこと、また圧延方向に延びた延性介在物が多数存在
することが判明した。従って、これらの介在物が粒成長
を阻害したものと考えられる。
Below, the experimental results that form the basis of the present invention will be explained. Now, the inventors have investigated the relationship between the Si, Mn, Al concentrations and the iron loss of the low Si non-oriented electrical steel sheet, and obtained the following results. FIG. 1 shows [Mn] 2 / [Si] and 750 for non-oriented electrical steel sheets of various Si and Mn concentrations in which Mn was adjusted only after Al deoxidation in vacuum degassing.
The result of having investigated about the relationship with the core loss after the stress relief annealing of 2 degreeC is shown. For any steel sheet, sol.Al: 2-5 p
pm and Ti: It was 6-7 ppm. As is clear from the figure, when [Mn] 2 / [Si] increases, especially when it exceeds 0.45,
It was found that iron loss increased sharply. From the observation of the cross section of the plate after strain relief annealing with a scanning electron microscope (SEM), the iron loss defect material is fine grain and has extremely poor grain growth property compared with the good material, and the ductile inclusion extending in the rolling direction. It turned out that there are many. Therefore, it is considered that these inclusions inhibited the grain growth.

【0012】次に、図2に、Si:0.2 %、Mn:0.2 %及
びTi:5〜7 ppmを含む無方向性電磁鋼板のsol.Al濃度
と鉄損との関係について調べて結果を示す。なおMn濃度
の調整は、主に転炉出鋼時に行い、真空脱ガス中にサン
プリング・分析を行ってMn濃度が 0.2%を下回っている
場合のみ、真空脱ガス処理中に金属Mnを添加した。同図
より明らかなように、sol.Al濃度が低いとき鉄損は良好
であるが、sol.Al濃度が8 ppmを超えると、特に真空脱
ガス中にMnを添加した場合に、鉄損にばらつきを生じ、
低鉄損を安定して得ることができなかった。
Next, FIG. 2 shows the results by examining the relationship between the sol.Al concentration and the iron loss of the non-oriented electrical steel sheet containing Si: 0.2%, Mn: 0.2% and Ti: 5 to 7 ppm. . The Mn concentration was adjusted mainly during tapping of the converter, and metallic Mn was added during vacuum degassing only when the Mn concentration was below 0.2% by sampling and analysis during vacuum degassing. . As is clear from the figure, when the sol.Al concentration is low, the iron loss is good, but when the sol.Al concentration exceeds 8 ppm, the iron loss is increased especially when Mn is added during vacuum degassing. Causing variability,
Low iron loss could not be obtained stably.

【0013】上記したように、sol.Al濃度は鉄損に大き
な影響を及ぼすが、このsol.Al濃度だけでなく、Ti濃度
も鉄損に著しい影響を与えることが新たに見出された。
図3に、Si:0.2 %, Mn:0.2 %, sol.Al:1〜8 ppm
を含む無方向性電磁鋼板の(sol.Al+Ti)濃度と鉄損と
の関係について調べて結果を示す。なおMn濃度の調整
は、主に転炉出鋼時に行い、真空脱ガス中にサンプリン
グ・分析を行ってMn濃度が 0.2%を下回っている場合の
み、真空脱ガス処理中に金属Mnを添加した。同図より明
らかなように、(sol.Al+Ti)濃度が低いときには鉄損
は良好であるが、(sol.Al+Ti)濃度が20 ppmを超える
と、特に真空脱ガス中にMnを添加した場合に鉄損にばら
つきを生じ、低鉄損を安定して得ることができなかっ
た。
As described above, although the sol.Al concentration has a great influence on the iron loss, it was newly found that not only the sol.Al concentration but also the Ti concentration significantly affects the iron loss.
Fig. 3 shows Si: 0.2%, Mn: 0.2%, sol.Al: 1-8 ppm.
The relationship between the (sol.Al + Ti) concentration and the iron loss of the non-oriented electrical steel sheet containing Cr is investigated and the results are shown. The Mn concentration was adjusted mainly during tapping of the converter, and metallic Mn was added during vacuum degassing only when the Mn concentration was below 0.2% by sampling and analysis during vacuum degassing. . As is clear from the figure, when the (sol.Al + Ti) concentration is low, the iron loss is good, but when the (sol.Al + Ti) concentration exceeds 20 ppm, especially when Mn is added during vacuum degassing. The iron loss varied, and low iron loss could not be stably obtained.

【0014】Mnの調整は、転炉出鋼時、あるいは真空脱
ガス中Al脱酸前またはAl脱酸後に行われるのが一般的で
あるが、真空脱ガス中に金属MnやFe−Mn合金を投入した
場合には、転炉出鋼時に投入した場合に比べ、sol.Alが
8 ppmを超えたり、(sol.Al+Ti)濃度が20 ppmを超え
たりすると、同一のsol.Al濃度、(sol.Al+Ti)濃度で
比較しても、鉄損が劣化することが明らかとなった。
The Mn is generally adjusted at the time of tapping of the converter, or before or after Al deoxidation in vacuum degassing. However, the metal Mn or Fe-Mn alloy is vacuumed during degassing. When sol.Al exceeds 8 ppm or (sol.Al + Ti) concentration exceeds 20 ppm, the same sol.Al concentration, ( It was revealed that the iron loss was deteriorated even when the sol.Al + Ti) concentration was compared.

【0015】次に表1に、Si:0.12%, Mn:0.22%を含
む3種類の無方向性電磁鋼板の歪取焼鈍後における鉄損
並びに介在物の分析結果を示す。なお、Mn濃度の調整
は、真空脱ガス中に行った。また、介在物の組成分析
は、エネルギー分散型X線分析装置(EDX)により、
各々ランダムに5つの介在物を選んで行った。
Next, Table 1 shows the analysis results of iron loss and inclusions after stress relief annealing of three types of non-oriented electrical steel sheets containing Si: 0.12% and Mn: 0.22%. The Mn concentration was adjusted during vacuum degassing. In addition, the composition analysis of inclusions is performed by an energy dispersive X-ray analyzer (EDX).
Five inclusions were randomly selected.

【0016】[0016]

【表1】 [Table 1]

【0017】同表より明らかなように、sol.Alが8 ppm
を超えたり、(sol.Al+Ti)が 20ppm を超えた場合に
は、SiO2リッチな非延性の介在物だけでなく、 Al2O3
TiO2を20%程度含んだ延性介在物が多数認められた。
As is clear from the table, sol.Al is 8 ppm.
, Or (sol.Al + Ti) exceeds 20ppm, not only SiO 2 rich non-ductile inclusions but also Al 2 O 3 and
Many ductile inclusions containing about 20% TiO 2 were found.

【0018】以上の結果から、Mn濃度の調整を、真空脱
ガス中に行う場合には、〔Mn〕2 /〔Si〕を 0.45 以下
とし、かつsol.Al濃度あるいは(sol.Al+Ti)濃度を低
減することにより、延性介在物が減少し、その結果、歪
取焼鈍時における粒成長性が良好となって鉄損の低い無
方向性電磁鋼板が安定して得られることが突き止められ
たのである。
From the above results, when the Mn concentration is adjusted during vacuum degassing, [Mn] 2 / [Si] is set to 0.45 or less, and the sol.Al concentration or (sol.Al + Ti) concentration is adjusted. It was found that the reduction reduces the number of ductile inclusions, and as a result, the grain growth during strain relief annealing is improved and a non-oriented electrical steel sheet with low iron loss can be stably obtained. .

【0019】なお、Tiは窒化物形成元素であることか
ら、従来より、鉄損の改善にはTiの低減が望ましいとさ
れてきた。しかしながら、Ti単独では、鉄損に及ぼす悪
影響は少なく、むしろsol.Alとの共存によってSiO2-MnO
介在物が延性化され、粒成長不良、鉄損劣化となること
が新たに見出され、かくしてこの発明に想到するに至っ
たのである。
Since Ti is a nitride-forming element, it has been conventionally considered desirable to reduce Ti to improve iron loss. However, Ti alone has a small adverse effect on iron loss, and rather, by coexistence with sol.Al, SiO 2 -MnO
It was newly found that inclusions become ductile, resulting in poor grain growth and iron loss deterioration, thus leading to the present invention.

【0020】[0020]

【作用】以下、この発明において成分組成を前記の範囲
に限定した理由について説明する。 C:0.010 %以下 Cが 0.010%を超えると、C析出による磁気特性の劣化
が生じるので、C含有量は 0.010%以下に限定した。 Si:0.01〜1.2 % Siは、比抵抗を増し、鉄損を減少させる有用元素である
が、Siの増加はコストアップとなるので、この発明では
0.01〜1.2 %の範囲に限定した。 P:0.20%以下 Pは、打抜性の向上に有効に寄与するが、含有量が0.20
%を超えると冷延性が劣化するので、0.20%以下の範囲
に限定した。 S:0.01%以下 Sは、Mnと共に微細析出し、粒成長を阻害するので、で
きるだけ少ない方が望ましく、この発明では0.01%以下
に限定した。 T.O:0.020 %以下 Oは、酸化物として粒成長を阻害するので、できるだけ
少ない方が望ましく、この発明では0.02%以下に限定し
た。 N:0.0050%以下 Nは、窒化物として粒成長を阻害するので、できるだけ
少ない方が望ましく、この発明では0.0050%以下に限定
した。
The reason why the component composition is limited to the above range in the present invention will be described below. C: 0.010% or less If C exceeds 0.010%, the magnetic characteristics are deteriorated due to C precipitation, so the C content is limited to 0.010% or less. Si: 0.01 to 1.2% Si is a useful element that increases the specific resistance and decreases the iron loss, but since the increase of Si increases the cost, in the present invention,
It was limited to the range of 0.01 to 1.2%. P: 0.20% or less P effectively contributes to the improvement of punchability, but the content is 0.20%.
%, The cold rolling property deteriorates, so the content was limited to 0.20% or less. S: 0.01% or less S is finely precipitated together with Mn and hinders grain growth. Therefore, the S content is preferably as small as possible. In the present invention, S is limited to 0.01% or less. T.O: 0.020% or less O inhibits grain growth as an oxide, so it is desirable that it is as small as possible. In the present invention, it is limited to 0.02% or less. N: 0.0050% or less N inhibits grain growth as a nitride, so it is desirable that the amount is as small as possible. In the present invention, N is limited to 0.0050% or less.

【0021】Mn:〔Mn〕2 /〔Si〕≦ 0.45 Mn量が、〔Mn〕2 /〔Si〕で 0.45 を超えると、前掲図
1に示したとおり、真空脱ガス時にMn調整を行った場合
には、延性介在物が生成し、粒成長が阻害されるので、
上記の範囲に限定した。 sol.Al:8 ppm以下 Alは、脱酸のために添加するが、前掲図2に示したとお
り、sol.Alが8ppm を超えると、真空脱ガス時のMn調整
によって延性介在物を生じ、粒成長が阻害されるので、
8 ppm以下に限定した。なお、sol.Alを8ppm 以下にす
るには、Fe−Siなどの合金鉄からの混入Al量にも細心の
注意を払う必要がある。またAl投入前に予め、酸素プロ
ーブにて溶鋼中の free O濃度を測定し、Alが過剰とな
らぬようAl量を制御して投入し、脱酸する。さらに、ス
ラグの塩基度は、できるだけ小さく調整することが好適
である。
Mn: [Mn] 2 /[Si]≦0.45 When the amount of Mn exceeds 0.45 in [Mn] 2 / [Si], Mn was adjusted during vacuum degassing as shown in FIG. 1 above. In this case, ductile inclusions are generated and grain growth is inhibited, so
It is limited to the above range. sol.Al: 8 ppm or less Al is added for deoxidation, but as shown in Fig. 2, when sol.Al exceeds 8 ppm, ductile inclusions are generated by Mn adjustment during vacuum degassing, As grain growth is hindered,
Limited to 8 ppm or less. In addition, in order to reduce the sol.Al to 8 ppm or less, it is necessary to pay close attention to the amount of Al mixed from iron alloy such as Fe-Si. Before adding Al, the free O concentration in the molten steel is measured with an oxygen probe in advance, and the amount of Al is controlled so that it does not become excessive. Furthermore, it is preferable to adjust the basicity of the slag as small as possible.

【0022】sol.Al+Ti:20 ppm以下 前掲図3および表1に示したとおり、Tiはsol.Alと共に
加算的に延性介在物の生成に関与し、粒成長を阻害する
ので、Tiおよびsol.Alの合計量はかかるおそれのない20
ppm以下に限定した。なお、Tiは合金鉄などから混入す
るため、Al同様、細心の注意を払ってその混入を制限す
る必要がある。
Sol.Al + Ti: 20 ppm or less As shown in FIG. 3 and Table 1, Ti and sol.Al additively participate in the formation of ductile inclusions and inhibit grain growth. Therefore, Ti and sol. The total amount of Al is not likely to take 20
Limited to below ppm. Since Ti is mixed in from ferroalloy, etc., it is necessary to limit the mixing with the utmost care as in the case of Al.

【0023】次に、この発明鋼の好適製造方法について
説明する。鋼の溶製は、通常、転炉、真空脱ガス装置を
用いて行う。従来、Mnの添加は、転炉出鋼時にたとえば
Fe−Mn合金によって行い(100t転炉の場合は 300kg)、
真空脱ガス時のMn添加量は減少させていた。そのため転
炉出鋼時に投入されたMnのほとんどはMnOとなり、Mnの
歩留りは極めて悪かった。この点、この発明では、転炉
出鋼時におけるFe−Mn合金の添加を減少(同 100kg)ま
たは無くし、Mn調整は主として真空脱ガス時に行うの
で、歩留りは向上し、それに伴いMn濃度的中率も向上す
る。
Next, a preferred method for producing the inventive steel will be described. Steel is usually melted by using a converter and a vacuum degassing device. Conventionally, Mn is added, for example, when tapping the converter.
Fe-Mn alloy (300kg for 100t converter)
The amount of Mn added during vacuum degassing was reduced. Therefore, most of the Mn that was put into the steel when tapping the converter was MnO, and the yield of Mn was extremely poor. In this respect, in the present invention, the addition of the Fe-Mn alloy at the time of tapping of the converter is reduced (100 kg) or eliminated, and the Mn adjustment is mainly performed during vacuum degassing, so the yield is improved, and the Mn concentration The rate also improves.

【0024】ついで、連続鋳造法又は造塊−分塊圧延法
によってスラブとした後、常法に従う熱間圧延方法で、
板厚 2.0〜3.0 mm程度の熱延板に仕上げる。なお、板厚
はこの寸法に限定されるものではない。ついで、必要に
応じて製品の集合組織改善のための熱延板焼鈍を施して
から、冷間圧延により所定の板厚とした後、最終焼鈍を
行い、その後公知の方法により絶縁被膜を被成する。
Then, a slab is formed by a continuous casting method or an ingot-slabbing rolling method, and then a hot rolling method according to a conventional method is used.
Finish a hot rolled sheet with a sheet thickness of 2.0 to 3.0 mm. The plate thickness is not limited to this size. Then, if necessary, hot-rolled sheet annealing for improving the texture of the product is performed, and after cold rolling to a predetermined sheet thickness, final annealing is performed, and then an insulating coating is formed by a known method. To do.

【0025】[0025]

【実施例】表2に示す組成になる無方向性電磁鋼板用ス
ラブを、転炉−真空脱ガス−連続鋳造工程により製造し
た。Mn調整は、真空脱ガス時のAl脱酸後に行った。つい
で、1150℃にスラブ加熱後、熱延により 2.0mm厚とした
後、冷延して 0.5mm厚とし、 750℃, 10秒の仕上げ焼鈍
後、絶縁被膜を被成した。さらに 750℃、2hの歪取焼
鈍を施した。かくして得られた製品の成分、歪取焼鈍後
の粒径及び磁気特性について調べた結果を、表2に併記
する。
Example A slab for non-oriented electrical steel sheets having the composition shown in Table 2 was manufactured by a converter-vacuum degassing-continuous casting process. Mn adjustment was performed after Al deoxidation during vacuum degassing. Then, after heating the slab to 1150 ° C., it was hot-rolled to a thickness of 2.0 mm, then cold-rolled to a thickness of 0.5 mm, finish-annealed at 750 ° C. for 10 seconds, and then an insulating coating was applied. Further, strain relief annealing was performed at 750 ° C. for 2 hours. Table 2 also shows the results of examining the components of the product thus obtained, the grain size after the stress relief annealing, and the magnetic properties.

【0026】[0026]

【表2】 [Table 2]

【0027】同表より明らかなように、この発明鋼で
は、Mnの歩留り的中率の良い真空脱ガス中でのMn添加に
よっても、歪取焼鈍後に良好な鉄損が得られている。
As is clear from the table, in the steel according to the present invention, good iron loss was obtained after the strain relief annealing even by adding Mn in vacuum degassing having a high yield ratio of Mn.

【0028】[0028]

【発明の効果】かくしてこの発明に従い、鋼中のMn量並
びにsol.Al量さらにはTi量をそれぞれ〔Mn〕2 /〔Si〕
≦ 0.45 、sol.Al:8ppm 以下でかつ(sol.Al+Ti):
20 ppm以下に規制することにより、歪取焼鈍後に良好な
鉄損を安定して得ることができる。
Thus, according to the present invention, the amount of Mn, the amount of sol.Al, and the amount of Ti in steel are respectively [Mn] 2 / [Si].
≤ 0.45, sol.Al: 8ppm or less and (sol.Al + Ti):
By controlling to 20 ppm or less, good iron loss can be stably obtained after stress relief annealing.

【図面の簡単な説明】[Brief description of drawings]

【図1】〔Mn〕2 /〔Si〕と歪取焼鈍後の鉄損との関係
を示したグラフである。
FIG. 1 is a graph showing the relationship between [Mn] 2 / [Si] and iron loss after stress relief annealing.

【図2】sol.Al濃度と歪取焼鈍後の鉄損との関係を示し
たグラフである。
FIG. 2 is a graph showing the relationship between sol.Al concentration and iron loss after stress relief annealing.

【図3】(sol.Al+Ti)濃度と歪取焼鈍後の鉄損との関
係を示したグラフである。
FIG. 3 is a graph showing the relationship between (sol.Al + Ti) concentration and iron loss after stress relief annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鍋島 誠司 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 平3−104844(JP,A) 特開 平3−249115(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Nabeshima, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Works Ltd. Technical Research Division (56) Reference JP-A-3-104844 (JP, A) JP Flat 3-249115 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.010 wt%以下、 Si:0.01〜1.2 wt
%、 P:0.20wt%以下、 S:0.01wt%以下、 T.O:0.020 wt%以下、 N:0.0050wt%以下を含み、
かつMnを次式 〔Mn〕2 /〔Si〕≦ 0.45 を満足する範囲で含有し、さらに sol.Al:8 ppm以下 を含有し、残部は実質的にFeの組成になることを特徴と
する歪取焼鈍後の鉄損特性に優れた無方向性電磁鋼板。
1. C: 0.010 wt% or less, Si: 0.01 to 1.2 wt.
%, P: 0.20 wt% or less, S: 0.01 wt% or less, TO: 0.020 wt% or less, N: 0.0050 wt% or less,
In addition, Mn is contained in a range that satisfies the following formula [Mn] 2 /[Si]≦0.45, and further contains sol.Al: 8 ppm or less, and the balance is substantially Fe composition. Non-oriented electrical steel sheet with excellent iron loss characteristics after stress relief annealing.
【請求項2】C:0.010 wt%以下、 Si:0.01〜1.2 wt
%、 P:0.20wt%以下、 S:0.01wt%以下、 T.O:0.020 wt%以下、 N:0.0050wt%以下を含み、
かつMnを次式 〔Mn〕2 /〔Si〕≦ 0.45 を満足する範囲で含有し、さらに sol.Al:8 ppm以下でかつsol.Al+Ti:20 ppm以下 を含有し、残部は実質的にFeの組成になることを特徴と
する歪取焼鈍後の鉄損特性に優れた無方向性電磁鋼板。
2. C: 0.010 wt% or less, Si: 0.01 to 1.2 wt.
%, P: 0.20 wt% or less, S: 0.01 wt% or less, TO: 0.020 wt% or less, N: 0.0050 wt% or less,
In addition, Mn is contained in a range that satisfies the following formula [Mn] 2 /[Si]≦0.45, and further contains sol.Al: 8 ppm or less and sol.Al + Ti: 20 ppm or less, and the balance is substantially Fe. A non-oriented electrical steel sheet having excellent iron loss characteristics after stress relief annealing, which is characterized by the composition
JP22235793A 1993-09-07 1993-09-07 Non-oriented electrical steel sheet with excellent iron loss properties after strain relief annealing Expired - Fee Related JP3446257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22235793A JP3446257B2 (en) 1993-09-07 1993-09-07 Non-oriented electrical steel sheet with excellent iron loss properties after strain relief annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22235793A JP3446257B2 (en) 1993-09-07 1993-09-07 Non-oriented electrical steel sheet with excellent iron loss properties after strain relief annealing

Publications (2)

Publication Number Publication Date
JPH0770719A JPH0770719A (en) 1995-03-14
JP3446257B2 true JP3446257B2 (en) 2003-09-16

Family

ID=16781078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22235793A Expired - Fee Related JP3446257B2 (en) 1993-09-07 1993-09-07 Non-oriented electrical steel sheet with excellent iron loss properties after strain relief annealing

Country Status (1)

Country Link
JP (1) JP3446257B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099501A (en) 2008-07-22 2011-06-15 新日本制铁株式会社 Non-oriented electromagnetic steel plate and method for manufacturing the same
CN102796948B (en) * 2011-05-27 2014-03-19 宝山钢铁股份有限公司 Non-oriented electrical steel plate with extremely low content of Ti and smelting method for non-oriented electrical steel plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104844A (en) * 1989-09-18 1991-05-01 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetic characteristics and its manufacture
JPH03249115A (en) * 1990-02-28 1991-11-07 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property

Also Published As

Publication number Publication date
JPH0770719A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
KR102095142B1 (en) Non-oriented electrical steel sheet and production method thereof
JP3436857B2 (en) Thin steel sheet excellent in press formability with few defects and method for producing the same
JP3446257B2 (en) Non-oriented electrical steel sheet with excellent iron loss properties after strain relief annealing
JP3456295B2 (en) Melting method of steel for non-oriented electrical steel sheet
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP3458683B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP3430833B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties after strain relief annealing and method for producing the same
JP3215296B2 (en) Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone
JPH0742557B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP4218136B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JP3842898B2 (en) Cold rolled steel sheet with low in-plane anisotropy and excellent deep drawability
JPH0967654A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
CN114364821B (en) Grain-oriented electrical steel sheet and method for producing same
WO2022219742A1 (en) Hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing same
EP4253575A1 (en) Non-oriented electromagnetic steel sheet, method for producing same, and hot-rolled steel sheet
KR102528345B1 (en) Manufacturing method of non-oriented electrical steel sheet and slab cast steel as its material
JP3337117B2 (en) Semi-process non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same
JP3331402B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent all-around magnetic properties
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JP3235356B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JPH10152755A (en) Steel for steel sheet for can few in defect and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees