JP3413902B2 - Frequency shift keying data demodulator - Google Patents

Frequency shift keying data demodulator

Info

Publication number
JP3413902B2
JP3413902B2 JP24662093A JP24662093A JP3413902B2 JP 3413902 B2 JP3413902 B2 JP 3413902B2 JP 24662093 A JP24662093 A JP 24662093A JP 24662093 A JP24662093 A JP 24662093A JP 3413902 B2 JP3413902 B2 JP 3413902B2
Authority
JP
Japan
Prior art keywords
signal
voltage change
switching
baseband signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24662093A
Other languages
Japanese (ja)
Other versions
JPH07107126A (en
Inventor
康男 吉村
良雄 堀池
誠 長谷川
政博 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24662093A priority Critical patent/JP3413902B2/en
Publication of JPH07107126A publication Critical patent/JPH07107126A/en
Application granted granted Critical
Publication of JP3413902B2 publication Critical patent/JP3413902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として無線通信の直
接変換受信機に適用される周波数シフトキーイング・デ
ータ復調器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency shift keying data demodulator mainly applied to a direct conversion receiver for wireless communication.

【0002】[0002]

【従来の技術】最近、無線通信において、周波数偏移変
調(FSK:Frequency Sift Keyi
ng;周波数シフトキーイング)信号を用いた直接変換
受信器が、集積回路化に適した構成として検討されてい
る。
2. Description of the Related Art Recently, in wireless communication, frequency shift keying (FSK) is performed.
A direct conversion receiver using an ng (frequency shift keying) signal has been studied as a configuration suitable for integration into an integrated circuit.

【0003】例えば、特開昭58−19038号公報に
記載されている構成が知られている。以下、図11を参
照して従来のFSKデータ復調器について簡単に説明す
る。
For example, the configuration described in Japanese Patent Laid-Open No. 58-19038 is known. Hereinafter, a conventional FSK data demodulator will be briefly described with reference to FIG.

【0004】図11において、入力60に加えられたF
SK受信信号は、ミキサ61に供給されると同時に、9
0度移相器62を通してミキサ63に供給され、それぞ
れ局部発振器64の信号と混合することによりダウンコ
ンバートし、ベースバンド信号のみを通過する低域通過
フィルタ65、66を通し、I信号67とQ信号68を
得る。I信号67は、振幅制限増幅器69によりディジ
タル信号70とし、Q信号68は90度移相器71によ
り移相した後、振幅制限増幅器72によりディジタル信
号73とする。そして、ディジタル信号70、73を入
力とする論理演算回路74で、データの復号を行う。
In FIG. 11, F applied to input 60
The SK reception signal is supplied to the mixer 61 and, at the same time, 9
The signals are supplied to the mixer 63 through the 0-degree phase shifter 62, down-converted by mixing with the signal of the local oscillator 64, respectively, and passed through low-pass filters 65 and 66 that pass only the baseband signal, and the I signal 67 and Q The signal 68 is obtained. The I signal 67 is converted into a digital signal 70 by the amplitude limiting amplifier 69, and the Q signal 68 is converted into a digital signal 73 by the amplitude limiting amplifier 72 after being phase-shifted by the 90-degree phase shifter 71. Then, the logical operation circuit 74, which receives the digital signals 70 and 73 as input, decodes the data.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、伝送デ
ータのシンボルレートが周波数偏移と同等もしくはそれ
よりも高くなるような高速データ通信の場合、従来の技
術の項に記載した受信機の正確な復調には、低域周波数
から変調周波数偏移とシンボルレートとの和のオーダー
の周波数まで移相する必要があるので、非常に広帯域の
90度移相器が要求される。一般的に、低域周波数から
移相可能な90度移相器は、構成回路に大きなコンデン
サを使用する必要があるため、集積化が困難で、低消費
電力化や、小型化への障害となる。直接変換受信機の構
成を採る主な理由として、回路構成が簡単になるため回
路の集積化が容易であることがあげられるが、上記課題
点は、その目的と相反するものである。
However, in the case of high-speed data communication in which the symbol rate of the transmission data becomes equal to or higher than the frequency deviation, the accurate demodulation of the receiver described in the section of the prior art. Requires a very wide band 90-degree phase shifter because it is necessary to shift the phase from a low frequency to a frequency on the order of the sum of the modulation frequency shift and the symbol rate. Generally, a 90-degree phase shifter capable of shifting a phase from a low frequency needs to use a large capacitor in a constituent circuit, and thus it is difficult to integrate it, which causes an obstacle to low power consumption and miniaturization. Become. The main reason for adopting the configuration of the direct conversion receiver is that the circuit configuration is simple and thus the circuit can be easily integrated. However, the above problem is contrary to the purpose.

【0006】また、従来の構成による実際の受信機で
は、前述のような高速変調信号を受信する場合、移相す
べき信号に不連続点が多く含まれるため、90度移相器
による移相が完全に行われず、復調が困難になるという
課題を有していた。
Further, in an actual receiver having a conventional configuration, when receiving a high-speed modulated signal as described above, the signal to be phase-shifted contains many discontinuities, so that the 90-degree phase shifter causes a phase shift. However, there is a problem that the demodulation becomes difficult because it is not completely performed.

【0007】本発明は上記課題を解決するもので、伝送
データのシンボルレートが周波数偏移よりも高くなるよ
うな高速データ通信にも対応可能で、集積回路化に向い
た簡潔な回路構成の、直接変換受信機に適応したFSK
データ復調器の実現を目的とするものである。
The present invention solves the above-mentioned problems, and is compatible with high-speed data communication in which the symbol rate of transmission data is higher than the frequency deviation, and has a simple circuit configuration suitable for integrated circuits. FSK for direct conversion receiver
The purpose is to realize a data demodulator.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、変調信号の直接変換によって得られた
I、Q信号についてそれぞれ電圧の増減の有無を検出す
る第1、第2の電圧変化検出手段と、それぞれの電圧変
化信号とI信号、またはQ信号とを乗算する第1、第2
の乗算手段と、I信号とQ信号とを比較して切換信号を
出力する切換信号発生手段と、切換信号によって第1、
第2の乗算手段からの出力信号を切り換えて出力する切
換手段とから構成される。
In order to achieve the above object, the present invention provides a first voltage and a second voltage for detecting whether the I and Q signals obtained by direct conversion of a modulation signal are respectively increased or decreased. Change detecting means and first and second multiplying each voltage change signal and I signal or Q signal
And a switching signal generating means for comparing the I signal and the Q signal and outputting a switching signal.
And a switching means for switching and outputting the output signal from the second multiplication means.

【0009】[0009]

【作用】第1の乗算手段によって、I信号の電圧変化信
号とQ信号からの複号結果を得る。第2の乗算手段によ
って、Q信号の電圧変化信号とI信号との複号結果を得
る。切換手段により、I信号とQ信号とを比較した大小
に応じて、これらの複号結果を切り換える。
The first multiplication means obtains the decoding result from the voltage change signal of the I signal and the Q signal. The second multiplication means obtains the decoding result of the voltage change signal of the Q signal and the I signal. The switching means switches these decoding results according to the magnitude of comparison between the I signal and the Q signal.

【0010】[0010]

【実施例】以下、図1〜図4を参照しながら本発明の第
1の実施例について説明する。図1は、本発明のデータ
復調器を適用した受信機の主要部である、図1におい
て、1aはアンテナ、1bは増幅器、1は受信したFS
K変調信号、2は局部発振器、3は局部発振器2の信号
を移相する90度移相器、4は変調信号1を局部発振器
2の信号と混合する第1の混合器、5は変調信号1を9
0度移相器3の出力信号と混合する第2の混合器、6、
7は混合器4、5の出力信号からベースバンドI、Q信
号を得る第1、第2の低域通過フィルタである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. 1 is a main part of a receiver to which the data demodulator of the present invention is applied. In FIG. 1, 1a is an antenna, 1b is an amplifier, and 1 is a received FS.
K modulation signal, 2 is a local oscillator, 3 is a 90 degree phase shifter for shifting the signal of the local oscillator 2, 4 is a first mixer for mixing the modulation signal 1 with the signal of the local oscillator 2, and 5 is a modulation signal 1 to 9
A second mixer 6, which mixes with the output signal of the 0 degree phase shifter 3,
Reference numeral 7 denotes first and second low-pass filters for obtaining baseband I and Q signals from the output signals of the mixers 4 and 5.

【0011】なお、第1の混合器4には変調信号1と、
局部発振器2の出力信号を供給し、混合器4の出力を第
1の低域通過フィルタを通し、第1のベースバンド信号
として、I信号8を得る。第2の混合器5には変調信号
1と、局部発振器2の出力信号を90度移相器3により
移相した信号を供給し、混合器5の出力を第2の低減通
過フィルタを通し、第2のベースバンド信号として、Q
信号9を得る。10は第1の電圧変化検出回路で、I信
号8を入力とし、電圧変化判定結果として電圧変化信号
11を出力する。12は第1の乗算回路で、電圧変化信
号11とQ信号9とを入力して、乗算結果として信号1
3を出力する。14は第2の電圧変化検出回路で、Q信
号9を入力とし、電圧判定結果として電圧変化信号15
を出力する。16は第2の乗算回路で、電圧変化信号1
5とI信号8とを入力して、乗算結果として信号17を
出力する。22はI信号8とQ信号9と入力して振幅を
比較し切換信号23を出力する切換信号発生手段であ
る。切換回路18は、切換信号23に応じて出力信号1
3と出力信号17とを切り換えて信号19を出力する。
20は復調手段で、信号19を入力して復調信号21を
出力する。
In the first mixer 4, the modulated signal 1 and
The output signal of the local oscillator 2 is supplied, the output of the mixer 4 is passed through a first low pass filter, and an I signal 8 is obtained as a first baseband signal. The modulation signal 1 and a signal obtained by phase-shifting the output signal of the local oscillator 2 by the 90-degree phase shifter 3 are supplied to the second mixer 5, and the output of the mixer 5 is passed through a second reduction pass filter. As the second baseband signal, Q
Get signal 9. A first voltage change detection circuit 10 receives the I signal 8 as an input and outputs a voltage change signal 11 as a voltage change determination result. Reference numeral 12 is a first multiplication circuit, which inputs the voltage change signal 11 and the Q signal 9 and outputs the signal 1 as the multiplication result.
3 is output. A second voltage change detection circuit 14 receives the Q signal 9 as an input and outputs a voltage change signal 15 as a voltage determination result.
Is output. Reference numeral 16 is a second multiplication circuit, which is a voltage change signal 1
5 and the I signal 8 are input and a signal 17 is output as a multiplication result. Reference numeral 22 is a switching signal generating means for inputting the I signal 8 and the Q signal 9, comparing the amplitudes and outputting the switching signal 23. The switching circuit 18 outputs the output signal 1 according to the switching signal 23.
3 and the output signal 17 are switched to output the signal 19.
Reference numeral 20 is a demodulation means, which inputs the signal 19 and outputs a demodulated signal 21.

【0012】以上の回路構成による信号処理の詳細を説
明する。前記の受信した変調信号1をR(t)とし、以
下の(数1)で定義する。
Details of signal processing by the above circuit configuration will be described. The received modulated signal 1 is defined as R (t) and is defined by the following (Equation 1).

【0013】[0013]

【数1】 [Equation 1]

【0014】但し、(数1)において、Aは受信波の振
幅、ωcは搬送波周波数、ωdは周波数偏移、D(t)
は時刻tにおける送信データをあらわす関数である。
However, in (Equation 1), A is the amplitude of the received wave, ωc is the carrier frequency, ωd is the frequency shift, and D (t).
Is a function representing the transmission data at time t.

【0015】また前記局部発振器2の出力をL(t)と
し、下記(数2)で定義する。
The output of the local oscillator 2 is L (t) and is defined by the following (Equation 2).

【0016】[0016]

【数2】 [Equation 2]

【0017】但し、(数2)において、Δωは搬送波、
局部発振器間の周波数差、φはt=0における受信信号
と、局部発振器出力間の位相差である。
However, in (Equation 2), Δω is a carrier wave,
The frequency difference between the local oscillators, φ is the phase difference between the received signal at t = 0 and the output of the local oscillator.

【0018】すると、I信号8、Q信号9として以下の
(数3)に示す、I(t)、Q(t)を得る。
Then, I (t) and Q (t) shown in the following (Equation 3) are obtained as the I signal 8 and the Q signal 9.

【0019】[0019]

【数3】 [Equation 3]

【0020】今、簡単にするために、搬送波、局部発振
器間の周波数差、Δω=0、受信信号と、局部発振器出
力間の位相差、φ=0とする。この設定は、受信時にお
ける理想的な状況を示すもので、復調器の動作本質の説
明になんら影響がないものである。
For simplification, it is assumed that the carrier wave, the frequency difference between the local oscillators, Δω = 0, and the phase difference between the received signal and the output of the local oscillator, φ = 0. This setting shows an ideal situation at the time of reception and has no influence on the description of the operation essence of the demodulator.

【0021】本実施例では、I信号の位相象限を信号の
電圧変化方向の検出により判定し、判定した位相象限
と、Q信号の電圧符号の関係により、送信信号のマー
ク、スペースを判定し複号を行う。I信号の各象限と、
各々の象限における信号の電圧変化と、その90度位相
がずれた信号の電圧状態を(表1)に示す。
In the present embodiment, the phase quadrant of the I signal is determined by detecting the voltage change direction of the signal, and the mark or space of the transmission signal is determined based on the relationship between the determined phase quadrant and the voltage sign of the Q signal. Issue. Each quadrant of the I signal,
The voltage change of the signal in each quadrant and the voltage state of the signal whose phase is shifted by 90 degrees are shown in (Table 1).

【0022】[0022]

【表1】 [Table 1]

【0023】従って、(1)I信号の位相象限が0〜π
の場合、I信号の電圧変化の方向は負となる。このと
き、Q信号の電圧が正であればマーク、負であればスペ
ースと判定できる。
Therefore, (1) the phase quadrant of the I signal is 0 to π.
In the case of, the direction of the voltage change of the I signal becomes negative. At this time, if the voltage of the Q signal is positive, it can be determined as a mark, and if it is negative, it can be determined as a space.

【0024】(2)I信号の位相象限がπ〜2πの場
合、I信号の電圧変化の方向は正となる。このとき、Q
信号の電圧が負であればマーク、正であればスペースと
判定できる。
(2) When the phase quadrant of the I signal is π to 2π, the direction of the voltage change of the I signal is positive. At this time, Q
If the signal voltage is negative, it can be judged as a mark, and if it is positive, it can be judged as a space.

【0025】すなわち、I信号8の増減方向を電圧変化
検出回路10で検出し、出力信号である電圧変化信号1
1とQ信号9とを乗算し、その結果が正であればスペー
ス、負であればマークと判定する。
That is, the increase / decrease direction of the I signal 8 is detected by the voltage change detection circuit 10, and the voltage change signal 1 which is an output signal is detected.
1 is multiplied by the Q signal 9, and if the result is positive, it is determined to be a space, and if negative, it is determined to be a mark.

【0026】また、Q信号の位相象限を信号の電圧変化
方向の検出により判定し、判定した位相象限と、I信号
の電圧符号の関係により、送信信号のマーク、スペース
を判定し復号を行うことも可能である。Q信号9の増減
方向を電圧変化検出回路14で検出し、出力信号である
電圧変化信号15とI信号8とを乗算し、その結果が負
であればスペース、正であればマークと判定する。
Further, the phase quadrant of the Q signal is determined by detecting the voltage change direction of the signal, and the mark and space of the transmission signal are determined and decoded based on the relationship between the determined phase quadrant and the voltage code of the I signal. Is also possible. The increase / decrease direction of the Q signal 9 is detected by the voltage change detection circuit 14, and the output voltage change signal 15 and the I signal 8 are multiplied. If the result is negative, it is determined to be a space, and if positive, it is determined to be a mark. .

【0027】従って、I信号の位相象限とQ信号の電圧
から得た複号結果と、Q信号の位相象限とI信号の電圧
から得た復号結果の2つを有効に用いることにより、そ
れぞれの過程において生じた、同相の雑音を相殺する効
果が得られる。また、信号処理の冗長性から、復号結果
の信頼性を上げることができる。
Therefore, by effectively using the decoding result obtained from the phase quadrant of the I signal and the voltage of the Q signal, and the decoding result obtained from the phase quadrant of the Q signal and the voltage of the I signal, the respective results can be obtained. The effect of canceling in-phase noise generated in the process is obtained. Also, the reliability of the decoding result can be improved due to the redundancy of the signal processing.

【0028】その動作原理を説明する。図1において、
乗算回路12、16の代わりにXOR回路を用いてディ
ジタル処理とすることが可能である。XOR回路の入力
を二値化する必要があるが、XOR回路はアナログ乗算
回路に比べてIC化が容易となる。図2に示すようにI
信号8(図中a)とQ信号9(図中b)との振幅を比較
して切換信号23(図中c)を得る。I信号8>Q信号
9のときにI信号8は変曲点(たとえば図中t1)のと
きに、第1の電圧変化検出回路10にてノイズの影響を
受け易い。また同時にQ信号もゼロクロス点となり、こ
のときノイズの影響を受け易い。したがってこのような
I信号8>Q信号9のときには、第1の乗算(XOR回
路)12の出力信号13はノイズの影響を受け易く(図
中e)、第2の乗算回路(XOR回路)16の出力信号
17(図中d)を復調に用いる。I信号8>Q信号9の
ときには切換信号23がHighとなり、切換回路18
は第2の乗算回路(XOR回路)16の出力信号17
(図中d)を復調手段20に出力する(図中f)。I信
号8<Q信号9のときは切換信号23がLowとなり切
換回路24は第1の乗算回路(XOR回路)12の出力
信号13を復調手段20に出力する。このように切換信
号発生手段22と切換回路18によってノイズの影響を
受けにくい方を選択し、復調結果の信頼性を上げること
ができる。また、変調信号1の搬送波周波数と局部発振
器2の出力信号の周波数とがずれてくると、I信号8、
Q信号9の周期が共に変化する。このようなときにも、
I信号8とQ信号9との振幅を比較して切換信号23を
得るため周期の変化に対応でき有効である。
The operating principle will be described. In FIG.
It is possible to perform digital processing by using an XOR circuit instead of the multiplication circuits 12 and 16. Although it is necessary to binarize the input of the XOR circuit, the XOR circuit can be easily integrated into an IC as compared with an analog multiplication circuit. As shown in FIG.
The switching signal 23 (c in the figure) is obtained by comparing the amplitudes of the signal 8 (a in the figure) and the Q signal 9 (b in the figure). When I signal 8> Q signal 9, the I signal 8 is easily affected by noise in the first voltage change detection circuit 10 at the inflection point (for example, t1 in the drawing). At the same time, the Q signal also becomes a zero-cross point, and is easily affected by noise at this time. Therefore, when I signal 8> Q signal 9 as described above, the output signal 13 of the first multiplication (XOR circuit) 12 is easily affected by noise (e in the figure), and the second multiplication circuit (XOR circuit) 16 is provided. The output signal 17 (d in the figure) is used for demodulation. When I signal 8> Q signal 9, the switching signal 23 becomes High and the switching circuit 18
Is an output signal 17 of the second multiplication circuit (XOR circuit) 16
(D in the figure) is output to the demodulation means 20 (f in the figure). When I signal 8 <Q signal 9, the switching signal 23 becomes Low, and the switching circuit 24 outputs the output signal 13 of the first multiplication circuit (XOR circuit) 12 to the demodulation means 20. As described above, the switching signal generating means 22 and the switching circuit 18 can select the one less susceptible to the influence of noise to improve the reliability of the demodulation result. If the carrier frequency of the modulated signal 1 and the frequency of the output signal of the local oscillator 2 deviate, the I signal 8,
The cycle of the Q signal 9 changes together. Even in this case,
Since the switching signal 23 is obtained by comparing the amplitudes of the I signal 8 and the Q signal 9, it is effective since it can cope with the change in the cycle.

【0029】次に、図3を用いて切換信号発生手段22
の構成について説明する。図3において、41はQ信号
9を反転して出力する信号反転器、42はI信号8とQ
信号9とを比較する第1の比較回路、43はI信号8と
信号反転器41の出力信号を比較する第2の比較回路、
44は第1の比較回路42の出力信号と第2の比較回路
43との出力信号とのXORを演算して切換信号23を
出力するXOR回路で構成される。第1の比較回路でI
信号8とQ信号9とを大きさを比較した結果と、第2の
比較回路でI信号8とQ信号9の反転信号とを大きさを
比較した結果が、共にI信号8の方が大きいときおよび
小さいときに切換信号23はHighとなる。これはI
信号8とQ信号9とで振幅を比較し、I信号8の方が大
きいときである。信号反転器41は演算素子で、比較回
路42、43はコンパレータでそれぞれ容易に実現でき
る。あるいは、I信号の信号電圧の絶対値とQ信号の信
号電圧の絶対値とを比較したり、図4のようにI信号の
信号電圧の2乗をミキサー51aで、Q信号の信号電圧
の2乗をミキサー51bで演算し、これを比較回路52
で比較し切換信号を出力する構成としても同様の効果が
得られる。
Next, the switching signal generating means 22 will be described with reference to FIG.
The configuration of will be described. In FIG. 3, 41 is a signal inverter for inverting and outputting the Q signal 9, and 42 is the I signal 8 and Q.
A first comparison circuit for comparing the signal 9 with 43; a second comparison circuit 43 for comparing the I signal 8 with the output signal of the signal inverter 41;
Reference numeral 44 is composed of an XOR circuit that calculates the XOR of the output signal of the first comparison circuit 42 and the output signal of the second comparison circuit 43 and outputs the switching signal 23. I in the first comparison circuit
The result of comparing the magnitudes of the signal 8 and the Q signal 9 and the result of comparing the magnitudes of the inverted signals of the I signal 8 and the Q signal 9 in the second comparing circuit are both larger in the I signal 8. When and when it is small, the switching signal 23 becomes High. This is I
This is when the amplitudes of the signal 8 and the Q signal 9 are compared, and the I signal 8 is larger. The signal inverter 41 can be easily realized by an arithmetic element, and the comparison circuits 42, 43 can be easily realized by comparators. Alternatively, the absolute value of the signal voltage of the I signal is compared with the absolute value of the signal voltage of the Q signal, or the square of the signal voltage of the I signal is calculated by the mixer 51a as shown in FIG. The squared power is calculated by the mixer 51b, and this is compared
The same effect can be obtained even if the configuration is compared and the switching signal is output.

【0030】次に、図5を用いて切換回路24の構成に
ついて説明する。図5において、45は切換信号23を
反転して出力するNOT回路、46は乗算信号13と切
換信号23とのNANDを演算して信号49を出力する
第1のNAND回路、47は乗算信号17とNOT回路
45の出力信号とのNANDを演算して出力する第3の
NAND回路である。切換回路24は、切換信号23に
よって出力信号を切り換え、切換信号23がHighで
あれば乗算信号13を、Lowであれば乗算信号17を
出力する。なお、これと同じ構成でなくても、同一動作
を行うものであればよい。
Next, the configuration of the switching circuit 24 will be described with reference to FIG. In FIG. 5, reference numeral 45 is a NOT circuit that inverts and outputs the switching signal 23, 46 is a first NAND circuit that calculates the NAND of the multiplication signal 13 and the switching signal 23 and outputs a signal 49, and 47 is a multiplication signal 17 Is a third NAND circuit that calculates and outputs a NAND of the output signal from the NOT circuit 45. The switching circuit 24 switches the output signal according to the switching signal 23, and outputs the multiplication signal 13 when the switching signal 23 is High and outputs the multiplication signal 17 when the switching signal 23 is Low. It should be noted that the configuration does not have to be the same as this, as long as the same operation is performed.

【0031】さらに、IC化を容易にするため、乗算回
路を1個とした回路構成が考えられる。図6を参照しな
がら本発明の第2の実施例について説明する。図6に示
すように、切換回路を2個用意して第1の切換回路18
a、第2の切換回路18bとする。第1の切換回路18
aは切換信号23に応じてI信号8とその電圧変化信号
11とを切り換える。第2の切換回路18bは切換信号
23に応じてQ信号9とその電圧変化信号15とを切り
換える。切換信号23がHighのときは、第1の切換
回路18aからI信号の電圧変化信号11が、第2の切
換回路18bからQ信号9が出力される。この2信号を
乗算回路12で乗算し、復調手段20へ乗算信号を出力
する。切換信号23がLowのときは、第1の切換回路
18aからI信号8が、第2の切換回路18bからQ信
号の電圧変化信号15が出力される。この2信号を乗算
回路12で乗算し、復調手段20へ乗算信号を出力す
る。乗算回路が1個減るため低消費電力化が図れる。
Furthermore, in order to facilitate IC integration, a circuit configuration with one multiplication circuit is conceivable. A second embodiment of the present invention will be described with reference to FIG. As shown in FIG. 6, two switching circuits are prepared and the first switching circuit 18 is provided.
a and the second switching circuit 18b. First switching circuit 18
A switches between the I signal 8 and its voltage change signal 11 in response to the switching signal 23. The second switching circuit 18b switches between the Q signal 9 and its voltage change signal 15 according to the switching signal 23. When the switching signal 23 is High, the first switching circuit 18a outputs the voltage change signal 11 of the I signal, and the second switching circuit 18b outputs the Q signal 9. The two signals are multiplied by the multiplication circuit 12, and the multiplication signal is output to the demodulation means 20. When the switching signal 23 is Low, the first switching circuit 18a outputs the I signal 8 and the second switching circuit 18b outputs the voltage change signal 15 of the Q signal. The two signals are multiplied by the multiplication circuit 12, and the multiplication signal is output to the demodulation means 20. Since the number of multiplication circuits is reduced by one, power consumption can be reduced.

【0032】次に電圧変化検出回路の構成について説明
する。図7において31は遅延回路、32は減算回路で
ある。遅延回路31は入力信号であるI信号8を一定量
Δt遅らせる。減算回路32は、I信号8と遅延回路3
1の出力信号とを比較して信号差ΔVの符号を判定、電
圧変化信号11を出力する。
Next, the configuration of the voltage change detection circuit will be described. In FIG. 7, 31 is a delay circuit and 32 is a subtraction circuit. The delay circuit 31 delays the input signal I signal 8 by a predetermined amount Δt. The subtraction circuit 32 uses the I signal 8 and the delay circuit 3
The output signal of 1 is compared to determine the sign of the signal difference ΔV, and the voltage change signal 11 is output.

【0033】ここで、電圧変化信号11はI信号8と比
べて(Δt/2)時間遅延し、第1の乗算回路12にお
いて電圧変化信号11とQ信号9との間に時間ずれが生
じる。この時間ずれは復調誤りとなるため、従来Δtは
微小量とされていた。また、Δtが微小であるため、電
圧変化検出回路10内の減算回路32においてΔVがノ
イズの影響を受け易かった。そこで本発明ではΔtが大
きいときでも電圧変化信号11とQ信号9との間の時間
のずれが問題とならないようにした。その結果、Δtを
大きくすることによって耐ノイズ性が向上する。図8に
示すように遅延回路31を挿入することによってI信号
8、Q信号9を(Δt/2)遅延させた。また、図1の
ように2つの復号結果を用いる構成であれば、図9に示
す構成がより実用的である。第1の電圧変化検出回路1
0内で遅延回路31a、31bの二段構成として(Δt
/2)ずつ遅延させ、(Δt/2)時間遅延した信号8
aをNAND回路16に入力する。第2の電圧検出分回
路についてもΔtを同じ値とする。Δtを大きくするこ
とによってΔVが大きくなり、I信号8に大きなノイズ
成分が含まれるときでも電圧変化信号11を得ることが
可能となる。Δtが変調周波数の1/2周期であると
き、ΔVが最大となりS/N特性が最も優れる。しかし
その一方でΔt遅延させることによって復調誤り(最大
Δt)が発生し、Δtを単に大きくすれば良いわけでは
ない。そこで、復調手段20内にローパスフィルタを備
え、このフィルタによって誤り補正可能である最大時間
長をΔtとすることが考えられる。ローパスフィルタと
してロールフィルタを用いた場合、この最大時間長は1
ビット長の1/2である。しかし実際にはノイズによっ
ても復調誤りが発生するので、Δtは1ビット長の1/
2以下でなければならない。これらを考慮して、第1の
電圧変化検出回路10と第2の電圧変化検出回路14と
を共にΔt=1ビット長の1/4程度とするのがよい。
Here, the voltage change signal 11 is delayed by (Δt / 2) time compared with the I signal 8, and a time shift occurs between the voltage change signal 11 and the Q signal 9 in the first multiplication circuit 12. Since this time lag causes a demodulation error, Δt has been conventionally set to a minute amount. Further, since Δt is minute, ΔV was easily affected by noise in the subtraction circuit 32 in the voltage change detection circuit 10. Therefore, in the present invention, the time lag between the voltage change signal 11 and the Q signal 9 does not matter even when Δt is large. As a result, noise resistance is improved by increasing Δt. By inserting a delay circuit 31 as shown in FIG. 8, the I signal 8 and the Q signal 9 are delayed by (Δt / 2). Further, if the configuration uses two decoding results as shown in FIG. 1, the configuration shown in FIG. 9 is more practical. First voltage change detection circuit 1
Within 0, the delay circuits 31a and 31b have a two-stage configuration (Δt
Signal 8 delayed by (/ 2) each and delayed by (Δt / 2) time 8
a is input to the NAND circuit 16. .DELTA.t has the same value for the second voltage detection circuit. By increasing Δt, ΔV becomes large, and the voltage change signal 11 can be obtained even when the I signal 8 contains a large noise component. When Δt is ½ cycle of the modulation frequency, ΔV becomes maximum and the S / N characteristic is the best. On the other hand, however, delaying Δt causes a demodulation error (maximum Δt), and it is not sufficient to simply increase Δt. Therefore, it is conceivable to provide a low-pass filter in the demodulation means 20 and set the maximum time length at which errors can be corrected by this filter to Δt. When a roll filter is used as the low pass filter, this maximum time length is 1
It is 1/2 of the bit length. However, in reality, a demodulation error also occurs due to noise, so Δt is 1 / bit length 1 /
Must be 2 or less. Considering these points, it is preferable that both the first voltage change detection circuit 10 and the second voltage change detection circuit 14 have Δt = 1/4 of one bit length.

【0034】さらに、ノイズレベルなどの信号によって
Δtを変化させ、耐ノイズ性と復調誤りとのバランスを
調整する構成が考えられる。たとえば電圧変化検出回路
を図10のように構成する。Δtの異なる遅延回路系3
3を複数用意し、選択回路34によってΔtを選択す
る。選択回路34にはノイズレベルを入力してノイズの
大きさに応じてΔtを調整したり、伝送速度が変化する
場合にはその伝送速度に応じてΔtを変化させる。ま
た、遅延回路については、可変抵抗や可変容量を用いて
Δtを変化させてもよい。
Further, a configuration is conceivable in which Δt is changed according to a signal such as a noise level to adjust the balance between noise resistance and demodulation error. For example, the voltage change detection circuit is configured as shown in FIG. Delay circuit system 3 with different Δt
A plurality of 3 are prepared and Δt is selected by the selection circuit 34. A noise level is input to the selection circuit 34 to adjust Δt according to the magnitude of noise, or when the transmission rate changes, Δt is changed according to the transmission rate. Further, in the delay circuit, Δt may be changed by using a variable resistance or a variable capacitance.

【0035】なお、電圧変化検出回路を、アナログ/デ
ィジタル変換手段を用いてマイクロコンピュータで数値
比較して電圧変化信号を出力してもよい。マイクロコン
ピュータでの演算処理によってノイズ除去処理を行うこ
とが可能となる。たとえば、Δtの時間内に変化するΔ
Vの最大値を見積ることができる。数値比較した値がこ
の最大値を越えたときはこれをノイズの影響を判断し取
り除く。これはΔtを大きくしなくても、ノイズに強い
正確な電圧変化検出を行うことができる。加えて、その
ときのノイズの大きさなどによってΔtを調整すること
も数値比較なので容易となる。
The voltage change detection circuit may output a voltage change signal by numerical comparison with a microcomputer using analog / digital conversion means. The noise removal process can be performed by the calculation process in the microcomputer. For example, Δ that changes within the time of Δt
The maximum value of V can be estimated. When the numerically compared value exceeds this maximum value, the effect of noise is judged and removed. This makes it possible to perform accurate voltage change detection resistant to noise without increasing Δt. In addition, it is easy to adjust Δt according to the magnitude of noise at that time because it is a numerical comparison.

【0036】最後に、変調信号1の搬送波周波数と局部
発振器2の出力信号の周波数とがずれに対して、より復
号結果の信頼性をあげるため、復調手段20の出力信号
の直流電圧を周波数補正手段で検出し、この直流電圧が
ある基準値になるように局部発振器2の出力信号の周波
数を制御すれば効果的である。基準値は周波数ずれがな
いときの復調手段20からの出力信号の直流電圧とす
る。周波数補正手段は抵抗とコンデンサーより構成され
るローパスフィルタを用い、このローパスフィルタの出
力で局部発振器2の出力信号の周波数を制御する。ある
いは、復調手段20の出力信号の直流電圧をアナログ/
ディジタル変換した後マイクロコンピュータ処理によっ
て、局部発振器2の出力信号の周波数を制御する直流電
圧を制御する。
Finally, in order to improve the reliability of the decoding result even if the carrier frequency of the modulated signal 1 and the frequency of the output signal of the local oscillator 2 are different, the DC voltage of the output signal of the demodulation means 20 is frequency-corrected. It is effective if the frequency of the output signal of the local oscillator 2 is controlled so that this DC voltage becomes a certain reference value by the means. The reference value is the DC voltage of the output signal from the demodulation means 20 when there is no frequency shift. The frequency correction means uses a low-pass filter composed of a resistor and a capacitor, and the frequency of the output signal of the local oscillator 2 is controlled by the output of this low-pass filter. Alternatively, the DC voltage of the output signal of the demodulation means 20 can be converted to analog /
After the digital conversion, the microcomputer process controls the DC voltage that controls the frequency of the output signal of the local oscillator 2.

【0037】[0037]

【発明の効果】以上の説明から明かのように本発明の周
波数シフトキーイング・データ復調器によれば次の効果
が得られる。
As is apparent from the above description, the frequency shift keying data demodulator of the present invention has the following advantages.

【0038】(1)2系統の復号経路からの出力を有効
に用いることにより、それぞれの過程において生じた、
同相の雑音を相殺する効果が得られる。また、信号処理
の冗長性から、復号結果の信頼性を上げることができ
る。さらに、IC化を容易にするため、乗算回路を1個
とすることができる。
(1) By effectively using the outputs from the two decoding paths,
The effect of canceling in-phase noise is obtained. Also, the reliability of the decoding result can be improved due to the redundancy of the signal processing. Further, the number of multiplication circuits can be one in order to facilitate integration into an IC.

【0039】(2)電圧変化検出過程における遅延量Δ
tに関して、ノイズの影響を受けにくく、かつ復調誤り
の少ない値をとることができる。また、Δtを可変とし
て受信状況に応じてこれを調整することができる。
(2) Delay amount Δ in the voltage change detection process
Regarding t, it is possible to take a value that is less susceptible to noise and has few demodulation errors. Further, it is possible to make Δt variable and adjust it according to the reception situation.

【0040】(3)変調信号の搬送波周波数と局部発振
器の出力信号の周波数とがずれたときに、これを検出し
て局部発振器の出力信号の周波数を搬送波周波数に合わ
せ周波数ずれによる影響を取り除くことができる。
(3) When the carrier frequency of the modulated signal deviates from the frequency of the output signal of the local oscillator, this is detected to adjust the frequency of the output signal of the local oscillator to the carrier frequency to eliminate the influence of the frequency deviation. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における周波数シフトキ
ーイング・データ復調器を示す図
FIG. 1 is a diagram showing a frequency shift keying data demodulator according to a first embodiment of the present invention.

【図2】上記図1の各信号の出力図FIG. 2 is an output diagram of each signal in FIG. 1 above.

【図3】上記図1の切換手段発生回路のブロック図FIG. 3 is a block diagram of a switching means generating circuit shown in FIG.

【図4】上記図1の他の切換手段発生回路のブロック図FIG. 4 is a block diagram of another switching means generating circuit shown in FIG.

【図5】上記図1の切換回路のブロック図5 is a block diagram of the switching circuit of FIG.

【図6】本発明の第2の実施例における周波数シフトキ
ーイング・データ復調器のブロック図
FIG. 6 is a block diagram of a frequency shift keying data demodulator according to a second embodiment of the present invention.

【図7】上記図5の電圧検出回路のブロック図7 is a block diagram of the voltage detection circuit shown in FIG.

【図8】本発明の第3の実施例における周波数シフトキ
ーイング・データ復調器のブロック図
FIG. 8 is a block diagram of a frequency shift keying data demodulator according to a third embodiment of the present invention.

【図9】本発明の第4の実施例における周波数シフトキ
ーイング・データ復調器のブロック図
FIG. 9 is a block diagram of a frequency shift keying data demodulator according to a fourth embodiment of the present invention.

【図10】本発明の他の電圧変化検出回路のブロック図FIG. 10 is a block diagram of another voltage change detection circuit of the present invention.

【図11】従来の周波数シフトキーイング・データ復調
器のブロック図
FIG. 11 is a block diagram of a conventional frequency shift keying data demodulator.

【符号の説明】[Explanation of symbols]

1a 受信アンテナ 1b 増幅器 2 局部発振器 3 90度移相器 4 第1の混合器 5 第2の混合器 6 第1の低域通過フィルタ 7 第2の低域通過フィルタ 10 第1の電圧変化検出回路 12 第1の乗算回路 14 第2の電圧変化検出回路 16 第2の乗算回路 18 切換回路 20 復調手段 22 切換信号発生手段 31 遅延回路 32 減算回路 33 遅延回路系 34 選択回路 41 信号反転器 42 第1の比較回路 43 第2の比較回路 44 XOR回路 45 NOT回路 46 第1のNAND回路 47 第2のNAND回路 48 第3のNAND回路 51 ミキサー 52 比較回路 1a receiving antenna 1b amplifier 2 local oscillator 3 90 degree phase shifter 4 First mixer 5 Second mixer 6 First low pass filter 7 Second low pass filter 10 First voltage change detection circuit 12 First multiplication circuit 14 Second voltage change detection circuit 16 Second multiplication circuit 18 Switching circuit 20 Demodulation means 22 Switching signal generating means 31 Delay circuit 32 subtraction circuit 33 Delay circuit system 34 Selection circuit 41 Signal Inverter 42 First Comparison Circuit 43 Second Comparison Circuit 44 XOR circuit 45 NOT circuit 46 First NAND Circuit 47 Second NAND circuit 48 Third NAND Circuit 51 mixer 52 Comparison circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三村 政博 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平5−191463(JP,A) 特開 平1−162402(JP,A) 特開 平4−364525(JP,A) 特開 昭64−74850(JP,A) 特開 平5−205409(JP,A) 特開 平3−76382(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04L 27/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Mimura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-5-191463 (JP, A) JP-A-1- 162402 (JP, A) JP 4-364525 (JP, A) JP 64-74850 (JP, A) JP 5-205409 (JP, A) JP 3-76382 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H04L 27/14

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互いに位相が直交し、かつ周波数偏移変調
である信号の搬送波周波数からの周波数偏移の上下によ
り、互いの位相関係が相対的に反転する第1、第2のベ
ースバンド信号に対し、前記第1のベースバンド信号を
入力して信号電圧の増減を検出し第1の電圧変化信号を
出力する第1の電圧変化検出手段と、前記第1の電圧変
化信号と前記第2のベースバンド信号とを乗算する第1
の乗算手段と、前記第2のベースバンド信号を入力して
信号電圧の増減を検出し第2の電圧変化信号を出力する
第2の電圧変化検出手段と、前記第2の電圧変化信号と
前記第1のベースバンド信号とを入力して乗算する第2
の乗算手段と、前記第1のベースバンド信号と前記第2
のベースバンド信号とを入力して振幅を比較し切換信号
を出力する切換信号発生手段と、前記切換信号に応じて
前記第1の乗算手段の出力信号と前記第2の乗算手段の
出力信号とを切り換えて出力する切換手段と、前記切換
手段の出力信号を用いてデータ復調を行う復調手段とを
備えた周波数シフトキーイング・データ復調器。
1. A first baseband signal and a second baseband signal whose phases are orthogonal to each other and whose phase relationship is relatively inverted due to up and down of frequency deviation from a carrier frequency of a signal which is frequency shift keying. On the other hand, first voltage change detection means for inputting the first baseband signal, detecting increase / decrease of the signal voltage, and outputting a first voltage change signal, the first voltage change signal and the second voltage change signal. First multiplication with the baseband signal of
Multiplying means, second voltage change detecting means for inputting the second baseband signal, detecting increase / decrease of a signal voltage, and outputting a second voltage change signal, the second voltage change signal and the second voltage change signal. A second base that inputs and multiplies the first baseband signal
Means for multiplying the first baseband signal and the second baseband signal
Switching signal generating means for inputting the baseband signal of the above and comparing amplitudes and outputting a switching signal, and an output signal of the first multiplying means and an output signal of the second multiplying means according to the switching signal. A frequency shift keying data demodulator comprising switching means for switching and outputting and a demodulation means for demodulating data using the output signal of the switching means.
【請求項2】互いに位相が直交し、かつ周波数偏移変調
である信号の搬送波周波数からの周波数偏移の上下によ
り、互いの位相関係が相対的に反転する第1、第2のベ
ースバンド信号に対し、前記第1のベースバンド信号と
前記第2のベースバンド信号とを入力して振幅を比較し
切換信号を出力する切換信号発生手段と、前記第1のベ
ースバンド信号を入力して信号電圧の増減を検出し第1
の電圧変化信号を出力する第1の電圧変化検出手段と、
前記切換信号に応じて前記第1のベースバンド信号と前
記第1の電圧変化信号とを切り換えて出力する第1の切
換手段と、前記第2のベースバンド信号を入力して信号
電圧の増減を検出し第2の電圧変化信号を出力する第2
の電圧変化検出手段と、前記切換信号に応じて、前記第
2のベースバンド信号と前記第2の電圧変化信号とを切
り換えて出力する第2の切換手段と、前記第1の切換手
段からの出力信号と前記第2の切換手段からの出力信号
とを入力して乗算する乗算手段と、前記乗算手段の出力
信号を用いてデータ復調を行う復調手段とを備えた周波
数シフトキーイング・データ復調器。
2. A first baseband signal and a second baseband signal whose phases are orthogonal to each other and whose phase relationship is relatively inverted due to up and down frequency deviation from a carrier frequency of a signal which is frequency shift keying. On the other hand, switching signal generating means for inputting the first baseband signal and the second baseband signal, comparing amplitudes and outputting a switching signal, and a signal for inputting the first baseband signal First to detect the increase and decrease of voltage
First voltage change detection means for outputting the voltage change signal of
First switching means for switching and outputting the first baseband signal and the first voltage change signal according to the switching signal, and inputting the second baseband signal to increase or decrease the signal voltage. Second detecting and outputting a second voltage change signal
Of the voltage change detection means, the second switching means for switching and outputting the second baseband signal and the second voltage change signal in response to the switching signal, and the first switching means. A frequency shift keying data demodulator including a multiplication means for inputting and multiplying an output signal and an output signal from the second switching means, and a demodulation means for demodulating data using the output signal of the multiplication means. .
【請求項3】切換信号発生手段は、第1のベースバンド
信号の信号電圧の2乗と第2のベースバンド信号の信号
電圧の2乗とを比較し切換信号を出力する請求項1また
は2記載の周波数シフトキーイング・データ復調器。
3. The switching signal generating means compares the square of the signal voltage of the first baseband signal with the square of the signal voltage of the second baseband signal, and outputs the switching signal. The described frequency shift keying data demodulator.
【請求項4】互いに位相が直交し、かつ周波数偏移変調
である信号の搬送波周波数からの周波数偏移の上下によ
り、互いの位相関係が相対的に反転する第1、第2のベ
ースバンド信号に対し、前記第1のベースバンド信号を
入力して、Δt遅延させたときの電圧変化量から信号電
圧の増減を検出する電圧変化検出手段と、第2のベース
バンド信号を入力して(Δt/2)遅延させる遅延手段
と、前記電圧変化検出手段の出力信号と前記遅延手段の
出力信号とを乗算する乗算手段と、前記乗算手段の出力
信号を用いてデータ復調を行う復調手段とを備えた周波
数シフトキーイング・データ復調器。
4. A first baseband signal and a second baseband signal whose phases are orthogonal to each other and whose phase relationship is relatively inverted due to up and down frequency deviation from a carrier frequency of a signal that is frequency shift keying. On the other hand, by inputting the first baseband signal and inputting the second baseband signal by inputting the second baseband signal and the voltage change detecting means for detecting an increase or decrease in the signal voltage from the voltage change amount when delayed by Δt. / 2) delaying means for delaying, multiplying means for multiplying the output signal of the voltage change detecting means and the output signal of the delaying means, and demodulating means for demodulating data using the output signal of the multiplying means Frequency shift keying data demodulator.
【請求項5】互いに位相が直交し、かつ周波数偏移変調
である信号の搬送波周波数からの周波数編移の上下によ
り、互いの位相関係が相対的に反転する第1、第2のベ
ースバンド信号に対し、第1のベースバンド信号を入力
して(Δt/2)遅延させる第1の遅延手段と、前記第
1の遅延手段の出力信号を入力して、(Δt/2)遅延
させる第2の遅延手段と、第1のベースバンド信号と前
記第2の遅延手段の出力信号の電圧変化量から信号電圧
の増減を検出する第1の減算手段と、第2のベースバン
ド信号を入力して(Δt/2)遅延させる第3の遅延手
段と、前記第3の遅延手段の出力信号を入力して、(Δ
t/2)遅延させる第4の遅延手段と、第2のベースバ
ンド信号と前記第4の遅延手段の出力信号の電圧変化量
から信号電圧の増減を検出する第2の減算手段と、前記
第1もしくは第2の電圧変化検出手段の出力信号と前記
第3もしくは第1の遅延手段の出力信号とを乗算する乗
算手段と、前記乗算手段の出力信号を用いてデータ復調
を行う復調手段とを、備えた周波数シフトキーイング・
データ復調器。
5. A first baseband signal and a second baseband signal whose phases are orthogonal to each other and whose phase relationship is relatively inverted by the frequency shift from a carrier frequency of a signal which is frequency shift keying. On the other hand, first delay means for inputting the first baseband signal to delay it by (Δt / 2) and second delay means for inputting the output signal of the first delay means to delay it by (Δt / 2) Delay means, first subtraction means for detecting an increase or decrease in the signal voltage from the voltage change amount of the output signal of the first baseband signal and the second delay means, and the second baseband signal as input. (Δt / 2) The third delay means for delaying and the output signal of the third delay means are input, and (Δt / 2)
t / 2) fourth delay means for delaying, second subtraction means for detecting an increase or decrease in signal voltage from the voltage change amount of the second baseband signal and the output signal of the fourth delay means, and the second delay means. Multiplying means for multiplying the output signal of the first or second voltage change detecting means by the output signal of the third or first delay means, and demodulating means for performing data demodulation using the output signal of the multiplying means. , Equipped with frequency shift keying
Data demodulator.
【請求項6】Δtは1ビット長の1/2以下とする請求
項4または5記載の周波数シフトキーイング・データ復
調器。
6. The frequency shift keying data demodulator according to claim 4, wherein Δt is 1/2 or less of one bit length.
【請求項7】外部からの信号によってΔtを可変とする
構成とした請求項4、5または6記載の周波数シフトキ
ーイング・データ復調器。
7. The frequency shift keying data demodulator according to claim 4, 5 or 6, wherein .DELTA.t is variable by an external signal.
【請求項8】Δtの異なる遅延手段を複数備え、前記遅
延手段からの出力信号を選択することによってΔtを可
変とする構成とした請求項7記載の周波数シフトキーイ
ング・データ復調器。
8. A frequency shift keying data demodulator according to claim 7, wherein a plurality of delay means having different Δt are provided, and Δt is made variable by selecting an output signal from said delay means.
【請求項9】電圧変化検出手段にアナログ/ディジタル
変換手段を用い、ディジタル演算処理によってΔtを可
変とする構成とした請求項7記載の周波数シフトキーイ
ング・データ復調器。
9. The frequency shift keying data demodulator according to claim 7, wherein the voltage change detecting means is an analog / digital converting means, and Δt is variable by digital arithmetic processing.
【請求項10】第1、第2のベースバンド信号は、受信
信号と局部発振器からの出力信号との周波数の差の信号
であり、復調手段からの出力信号で前記局部発振器手段
からの出力信号の周波数を前記受信信号の搬送波周波数
と等しくなる方向に制御する周波数補正手段とを備えた
請求項1、2、3、4、5、6、7、8または9記載の
周波数シフトキーイング・データ復調器。
10. The first and second baseband signals are signals of the frequency difference between the received signal and the output signal from the local oscillator, and the output signal from the demodulating means is the output signal from the local oscillator means. Frequency shift keying data demodulation according to any one of claims 1, 2, 3, 4, 5, 6, 7, 8 or 9, further comprising: frequency correction means for controlling the frequency of 1 to be equal to the carrier frequency of the received signal. vessel.
JP24662093A 1993-10-01 1993-10-01 Frequency shift keying data demodulator Expired - Fee Related JP3413902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24662093A JP3413902B2 (en) 1993-10-01 1993-10-01 Frequency shift keying data demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24662093A JP3413902B2 (en) 1993-10-01 1993-10-01 Frequency shift keying data demodulator

Publications (2)

Publication Number Publication Date
JPH07107126A JPH07107126A (en) 1995-04-21
JP3413902B2 true JP3413902B2 (en) 2003-06-09

Family

ID=17151119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24662093A Expired - Fee Related JP3413902B2 (en) 1993-10-01 1993-10-01 Frequency shift keying data demodulator

Country Status (1)

Country Link
JP (1) JP3413902B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546295B2 (en) * 2005-03-16 2010-09-15 富士通セミコンダクター株式会社 Receiver
CN103154085B (en) 2010-10-13 2015-07-08 旭化成化学株式会社 Polyphenylene ether as well as resin composition and molding thereof

Also Published As

Publication number Publication date
JPH07107126A (en) 1995-04-21

Similar Documents

Publication Publication Date Title
JPH01274518A (en) Direct converting receiver
JP2001525154A (en) Integrable radio receiver circuit for frequency modulated digital signals
JP3087459B2 (en) FSK data demodulator
EP0692867A1 (en) FM modulation circuit and method
JP3902661B2 (en) Receiver, demodulator, and demodulation method
JP3413902B2 (en) Frequency shift keying data demodulator
EP0412291B1 (en) Quadrature FSK receiver with compensation for frequency offset
JPH07154435A (en) Frequency detector
US5783967A (en) Frequency shift keying demodulation circuit using logic circuitry
EP1662653B1 (en) Demodulator of frequency modulated signals
JP4312705B2 (en) Quadrature demodulation error compensation method and quadrature demodulation error compensation circuit
JPH11313117A (en) Frequency control method, orthogonal detection circuit and fsk receiver
JPH11331291A (en) Automatic gain control method and demodulator provided with automatic gain control
JP3029394B2 (en) FSK demodulator
JPH06268694A (en) Fsk demodulator for direct converter receiver
US5982200A (en) Costas loop carrier recovery circuit using square-law circuits
JP2584171B2 (en) FSK data demodulator
JP3261013B2 (en) BPSK demodulator
JP3178277B2 (en) Direct conversion receiver
JP3658768B2 (en) FM receiver
JPS6093862A (en) Delay detector
US9219554B2 (en) Power detection method and related communication device
JP2808861B2 (en) Demodulator
JPH08107428A (en) Automatic frequency controller
JPH10262089A (en) Fsk receiver

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees