JPS6093862A - Delay detector - Google Patents

Delay detector

Info

Publication number
JPS6093862A
JPS6093862A JP58201389A JP20138983A JPS6093862A JP S6093862 A JPS6093862 A JP S6093862A JP 58201389 A JP58201389 A JP 58201389A JP 20138983 A JP20138983 A JP 20138983A JP S6093862 A JPS6093862 A JP S6093862A
Authority
JP
Japan
Prior art keywords
phase
output
detector
phase difference
reception signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58201389A
Other languages
Japanese (ja)
Inventor
Junji Namiki
並木 淳治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58201389A priority Critical patent/JPS6093862A/en
Publication of JPS6093862A publication Critical patent/JPS6093862A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2331Demodulator circuits; Receiver circuits using non-coherent demodulation wherein the received signal is demodulated using one or more delayed versions of itself

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To correct a cause to fluctuation by giving a phase shift in response to a phase error decreasing a quantized value where (2pi/k) of a phase difference is taken as a step size to a phase of a present reception signal or a phase of a phase difference detecting value or a reception signal before one symbol. CONSTITUTION:The phase difference between the present reception signal and the reception signal before one symbol is given to a detector 1 to detect a k-phase modulation information. A quantized value taking the (2pi/k) of the phase difference as a step size is decreased from the phase difference by a phase error detector 4. An output of the detector 4 is smoothed by a low pass filter 5. A phase shifter 52 conducting phase shift in response to an output phase amount of a low-pass filter output to any of the phase of the present reception signal, the phase of the phase difference detector output and the phase of the reception signal before one symbol is provided to detect the k-phase modulation information.

Description

【発明の詳細な説明】 この発明状位相変調信号を復調する遅延検波器に関る。[Detailed description of the invention] The present invention relates to a delay detector that demodulates a phase modulated signal.

位相変調信号(PSK)の復調に社同期検波と遅延検波
が広く用いられている。特に後者はキャリア信号再生を
必要としないので、多少の劣化(1,4dB程度)を許
容すれば簡単な復調器を構成することができる。ただし
、逆にキャリア位相同期機能が存在しない為に遅延線の
遅延時間誤差(To秒:正規の値はシンボル周期T)、
温度変化(G/dog)そして中間周波数f0の(RF
と言ってもよい)変動な誼、Fとすると次式で示される
定常位相誤差O・[rad]が発生する。
Synchronous detection and delayed detection are widely used for demodulating phase keyed signals (PSK). In particular, since the latter does not require carrier signal regeneration, a simple demodulator can be constructed by allowing some deterioration (about 1.4 dB). However, since there is no carrier phase synchronization function, the delay time error of the delay line (To seconds: normal value is symbol period T),
Temperature change (G/dog) and intermediate frequency f0 (RF
Assuming that F is a variable phase error, a steady phase error O·[rad] is generated as shown by the following equation.

0・≧2πちX(使用温度範囲) x G XT + 
2 w fg ・Ts+ΔWIF11T 従ってこれら諸量の変動が激しい所では使用できない訳
である。特に衛星通信の狭帯域通信方式%式%) 於いては、伝送レー)RK比べて先のΔW□アが大きく
、従来の遅延検波回路では劣化が非常に大きくなる。
0・≧2πchiX (Operating temperature range) x G XT +
2 w fg ・Ts+ΔWIF11T Therefore, it cannot be used in places where these various quantities fluctuate rapidly. In particular, in the narrowband communication system of satellite communication (% formula %), the previous ΔW□a is large compared to the transmission relay (RK), and the deterioration in conventional delay detection circuits is extremely large.

本発明の目的は、これら変動要因を補正することのでき
る遅延検波器を提供することにある。
An object of the present invention is to provide a delay detector that can correct these fluctuation factors.

本発明によれば、現在の受信信号と1シンホ、。According to the invention, the current received signal and one sympho.

前の受信信号との位相差を検出することによシ、k相位
相変調情報を検出する位相差検出器と、前2π 配位相差から前記位相差の(7)をステップΦサイズと
した量子化値を減する位相誤差検出器と該位相誤差検出
器の出力を平滑する低域F波器と前記現在の受信信号の
位相ないし、前記位相差検出器出力の位相ないt、 、
前記1シンボル前の受信信号との位相の内、いずれかに
前記低域P波器出力の出力位相量に応じた位相推移を行
う位相推移器とを含みに相位相変調情報を検出すること
を特徴とする遅延検波器が得られる。
A phase difference detector that detects k-phase phase modulation information by detecting the phase difference with the previous received signal, and a quantum detector whose step Φ size is (7) of the phase difference from the previous 2π configuration phase difference. a phase error detector for reducing the phase error detector; a low-frequency F-wave generator for smoothing the output of the phase error detector; and a phase difference t of the current received signal or the phase difference detector output.
detecting phase modulation information, including a phase shifter that shifts the phase according to the output phase amount of the low-band P-wave device output in any one of the phases with respect to the received signal one symbol before. A characteristic delayed detector is obtained.

次に本発明について図面を参照して詳細に説明する。第
1図は従来から知られている遅延検波器のブロック図で
ある。図中2はシンボル周期Tの遅延回路、1は現在の
受信信号(端子203)と1シンボル前の受信信号(端
子204)との位相差を検出する位相差検出器である。
Next, the present invention will be explained in detail with reference to the drawings. FIG. 1 is a block diagram of a conventionally known delay detector. In the figure, 2 is a delay circuit with a symbol period T, and 1 is a phase difference detector that detects the phase difference between the current received signal (terminal 203) and the received signal one symbol before (terminal 204).

端子100は受信信号の入力端子、端子101は遅延検
波出力端子である。
Terminal 100 is a received signal input terminal, and terminal 101 is a differential detection output terminal.

近年、復調器のディジタル化が進み、遅延検波方式もデ
ィジタル処理による方式がめられるようになってきた。
In recent years, digitalization of demodulators has progressed, and delay detection methods based on digital processing have come into use.

この場合送信信号は−H送信キャリアとほぼ同一周波数
で乗積検波を行い、複素ベースバンド信号X(転)を得
て、これをA/D変換器によシ複素ディジタル信号X(
kT) (k =整数)に変換し、以降ディジタル処理
によシ遅延検波を行うことになる。第2図はその乗積検
波器3のブロック図を示す。図中35は送信キャリアと
同一周波数の発振器30と31はダブルバランスドミキ
サー(掛算器)、32はπ/2位相推移器、 33 、
34は低域F波器、 36 、37は〜Φ変換器である
。出力端子102と103からは複素ディジタル信号X
(kT )の実部。
In this case, the transmitted signal undergoes multiplicative detection at almost the same frequency as the -H transmitted carrier to obtain a complex baseband signal
kT) (k = integer), and then delayed detection is performed by digital processing. FIG. 2 shows a block diagram of the product detector 3. In the figure, 35 is an oscillator having the same frequency as the transmission carrier, 30 and 31 are double balanced mixers (multipliers), 32 is a π/2 phase shifter, 33,
34 is a low-frequency F-wave device, and 36 and 37 are ~Φ converters. A complex digital signal X is output from output terminals 102 and 103.
Real part of (kT).

虚部が各々出力されるので、両端子をまとめて端子10
4と表わすことにする。
Since the imaginary parts are output respectively, both terminals are connected to terminal 10.
Let's express it as 4.

第3図は複素ディジタル信号x(kT)を受けてディジ
タル処理で遅延検波を行う回路のブロック図で、構成は
第1図と全く同一であシ、2社遅延回路であシ、この場
合ディジタル・メモリーを用いている。1は位相差検出
器であるが、これは現在の受信信号X(kT)と1シン
ボル前の受信信号X((k−1)T)を端子203.2
04から得て、X((k−1)T)はその複素共役値X
*((k−1)T)(虚部の極性を反転するのみ)を1
1の共役回路(入力をZB十)°X工とするとその出力
をZB−jZ工とする回路)から得てその間の位相変化
をベクトルν r=x(kT)* x ((ic−x)’T)によシ複
素掛算器10を用いて得るものである。出力端子105
へはベクトルVが出力される。ベクトルFと送信符号炭
化の識別は以下のように行われただし、arg(F) 
はベクトルiの・′。からの偏角を示す。
Figure 3 is a block diagram of a circuit that receives a complex digital signal x (kT) and performs delay detection using digital processing. -Uses memory. 1 is a phase difference detector, which outputs the current received signal X (kT) and the received signal one symbol before ((k-1)T) to a terminal 203.2.
04, X((k-1)T) is its complex conjugate value X
*((k-1)T) (only inverts the polarity of the imaginary part) to 1
1's conjugate circuit (when the input is ZB 0)°X, the output is ZB-j 'T) is obtained using the complex multiplier 10. Output terminal 105
A vector V is output to. Identification of vector F and transmission code carbonization is performed as follows, where arg(F)
is ・′ of vector i. Indicates the declination angle from.

上表を図示したのが1m4図である。この図に対応する
識別回路としては端子105の複素ディジタル値Fをア
ドレスにし、それに対応する送信符号の位相変化識別値
を出力とした読出し専用メモリ(Raad 0nly 
Memory ; ROM)が食い。
The above table is illustrated in the 1m4 diagram. The identification circuit corresponding to this figure is a read-only memory (Raad ONLY) which uses the complex digital value F at the terminal 105 as an address and outputs the phase change identification value of the corresponding transmission code.
Memory; ROM) is consumed.

第5図が本発明の一実施例のブロック図である。FIG. 5 is a block diagram of an embodiment of the present invention.

図中参照数字1と2は第1図の1と2と各々同一のもの
である。第1図の回路に4相PSK波を入力すると、出
力端子101へは #、+t+ = −H−1+ΔWxvIIT C1=o
、x、 −t、 2)が得られる。こ\で紘、遅延検波
の劣化要因としてはΔWIFのみを考えた。第5図の4
は上式〜・Tだけを検出する位相誤差検出器で、第4図
に示した識別回路40とその入出力信号の位相の差を得
る位相差検出器rから成りている。上記4 (tlの右
辺第1項の値は識別回路40の出力と同一であるので位
相差検出器rの出力0eは θ・=−1+ΔW□2・T−−、、=m□、Tとなる。
Reference numbers 1 and 2 in the figure are the same as 1 and 2 in FIG. 1, respectively. When a 4-phase PSK wave is input to the circuit shown in FIG. 1, the output terminal 101 receives #, +t+ = -H-1+ΔWxvIIT C1=o
, x, -t, 2) is obtained. Here, Hiro considered only ∆WIF as a factor in the deterioration of delayed detection. 4 in Figure 5
is a phase error detector that detects only the above equation ~·T, and is composed of the identification circuit 40 shown in FIG. 4 and a phase difference detector r that obtains the phase difference between its input and output signals. 4 (Since the value of the first term on the right side of tl is the same as the output of the identification circuit 40, the output 0e of the phase difference detector r is θ・=−1+ΔW□2・T−−,,=m□,T Become.

もし受信信号が無歪で無緘音状態であれば、と〜で得ら
れた#Oは定常位相誤差に対応するが、一般Ku受信入
力信号社歪も存在し絨音亀ある。そこで定常位相誤差は
θdt>の平均値[(#jt))からめる必要がある。
If the received signal is undistorted and has no noise, #O obtained in and ~ corresponds to a steady phase error, but there is also distortion in the general Ku received input signal, and there is no noise. Therefore, the steady phase error needs to be calculated from the average value [(#jt)) of θdt>.

その平均化を行うのが低域P波器50である。これによ
りめられ九E(θ帷))はその極性をインバータ51に
より一反転され−E(θeH)となる0X(kT)とX
((k−1)丁)との間にE(oJ))なる定常位相誤
差が存在するので、X(kT)の位相を−E(0e(t
l)だけ回してやれば良いことが分る。そこで位相推移
器52によりインバータ出力値だけ位相を回転(加算)
させてやれば良い訳である。これにより参照数字52.
 t 、40. r 、50.51は一次の帰還制御系
を構成していることが第5図より分る。この場合#1.
Tによるθe(tlを零にする為には帰還制御系は完全
積分器をループに含ませる必要がある。
The low-pass P wave unit 50 performs the averaging. As a result, the polarity of 9E(θeH)) is reversed by the inverter 51, and becomes -E(θeH), which is 0X(kT) and X
Since there is a steady phase error of E(oJ) between X(kT) and
It turns out that it is better to turn only l). Therefore, the phase is rotated (added) by the inverter output value using the phase shifter 52.
It's a good idea to let them do it. This brings us to reference number 52.
t, 40. It can be seen from FIG. 5 that r, 50.51 constitutes a first-order feedback control system. In this case #1.
In order to make θe(tl) due to T zero, the feedback control system must include a perfect integrator in the loop.

その為に低域p波器50を完全積分器にすることが望ま
しい。第5図のブロック5は位相ベースで記されたブロ
ック図であるが、複素ディジタル値ペースではブロック
5は第6図の様になる。すなわちブロックfの出力はe
′θ−1)なるベクトルである。そこで、7 fJ @
ftl = CD! e Jl + j ”0m1t)
のうち、虚数部のみ抽出する虚部抽出器55によりsi
n f)a (t)〜θ5(tlが抽出され、この出力
は50の実入力積分回路で積分され、その出力がインバ
ータで反転され−E(Odt)))となる。54はRO
Mで、−zl(θぺ1))を出力する。53は複素掛算
器で入力信号X(kりに・−7m(oJ)が掛けられ、
X(kT)の位相は−E(θeTtl)だけ回転される
ことになる。
For this reason, it is desirable that the low-pass p-wave converter 50 be a perfect integrator. Although block 5 in FIG. 5 is a block diagram drawn on a phase basis, in a complex digital value pace block 5 would look like FIG. 6. That is, the output of block f is e
'θ-1). Therefore, 7 fJ @
ftl = CD! e Jl + j ”0m1t)
The imaginary part extractor 55 extracts only the imaginary part of
n f) a (t) ~ θ5 (tl is extracted, this output is integrated by 50 real input integrating circuits, and the output is inverted by an inverter to become −E(Odt))). 54 is RO
M outputs -zl(θpe1)). 53 is a complex multiplier in which the input signal
The phase of X(kT) will be rotated by -E(θeTtl).

第7図と第8図は本発明の他の一実施例のブロック図で
ある。各図の構成要素は第5図の構成要素の同一番号の
ものと対応している。第5図と第7図、第8図の違いは
位相推移器52の位置である。
7 and 8 are block diagrams of another embodiment of the present invention. Components in each figure correspond to the same numbered components in FIG. The difference between FIG. 5, FIG. 7, and FIG. 8 is the position of the phase shifter 52.

10位相差検出器は位相差を検出する減算器であるので
同じく単なる加算器として働いている位相推移器52を
その出力側へ移しても(第7図)、また他方の入力端子
に極性を変えて(インバータ51を省略して)移して4
(第8図)全く同様の機能を実現できる。
10 Since the phase difference detector is a subtracter that detects a phase difference, even if the phase shifter 52, which also works as a mere adder, is moved to its output side (Fig. 7), it is also possible to change the polarity to the other input terminal. Change (omit inverter 51) and move 4
(Fig. 8) Exactly the same function can be realized.

以上の様に本発明によれば、衛星経由による狭帯域(S
ingle Channel per Carrier
)の様にキャリア周波数が伝送ボーレートに比較してに
〜%程度にまで変化するシステムに於いては、各チャン
ネル°別にキャリア周波数制御(AIi′c)を掛けな
ければならない所、これが不用になる。したがって、お
互いに独立な周波数オフセットを有する狭帯域5cpc
を敷液同時に−りの0変換器とシグナルプロセッザーで
復調する様なグループ復調が可能に々る訳である。
As described above, according to the present invention, narrow band (S
ingle Channel per Carrier
), where the carrier frequency changes by ~% compared to the transmission baud rate, carrier frequency control (AIi'c) must be applied to each channel separately, but this becomes unnecessary. . Therefore, narrowband 5cpc with frequency offsets independent of each other
This makes it possible to perform group demodulation in which the signal is simultaneously demodulated using a zero converter and a signal processor.

【図面の簡単な説明】[Brief explanation of drawings]

!s1図は従来の遅延検波回路のブロック図、第2図は
ディジタル処理による復調を行う為の乗積検波器のブロ
ック図、第3図は複素ディジタル信号用遅延検波回路の
ブロック図、第4図は4相PSK用の検波出力識別回路
を説明するための図、第5図、第6図、第7図および第
8図は本発明の一実施例を説明するだめのブロック図で
ある。 図中、1は位相差検出器、2は遅延回路、4は位相誤差
検出器、50は低域p波器、51はインバータ、52は
位相推移器をそれぞれ示す。 (9) 特開昭Go−938G2(5)
! Figure s1 is a block diagram of a conventional delay detection circuit, Figure 2 is a block diagram of a multiplicative detector for demodulating by digital processing, Figure 3 is a block diagram of a delay detection circuit for complex digital signals, and Figure 4. 1 is a diagram for explaining a detection output identification circuit for four-phase PSK, and FIGS. 5, 6, 7, and 8 are block diagrams for explaining an embodiment of the present invention. In the figure, 1 is a phase difference detector, 2 is a delay circuit, 4 is a phase error detector, 50 is a low-frequency p-wave device, 51 is an inverter, and 52 is a phase shifter. (9) Tokukai Sho Go-938G2 (5)

Claims (1)

【特許請求の範囲】 現在の受信信号と1シンボル前の受信信号との位相差を
検出することによJK相相位置変調情報検出する位相差
検出器と、前記位相差から前記位2π 相差の(−T−)をステップ・サイズとした量子化値を
減する位相誤差検出器と、誼位相糾差検出器の出力を平
滑する低域F波器と、前記現在の受信信号の位相ないし
、前記位相差検出器出力の位相ないし、前記1シンボル
前の受信信号の位相の内いずれかに前記低域F波器出力
の出力位相量に応じた位相推移を行う位相推移器とを含
みに相位相変調情報を検出することを特徴とする遅延検
波4
[Scope of Claims] A phase difference detector that detects JK phase position modulation information by detecting a phase difference between a current received signal and a received signal one symbol before; a phase error detector for reducing a quantized value with (-T-) as a step size; a low-pass F wave generator for smoothing the output of the phase difference detector; and a phase shifter that shifts the phase of the output of the phase difference detector or the phase of the received signal one symbol before in accordance with the output phase amount of the output of the low-frequency F-wave device. Delay detection 4 characterized by detecting phase modulation information
JP58201389A 1983-10-27 1983-10-27 Delay detector Pending JPS6093862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201389A JPS6093862A (en) 1983-10-27 1983-10-27 Delay detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201389A JPS6093862A (en) 1983-10-27 1983-10-27 Delay detector

Publications (1)

Publication Number Publication Date
JPS6093862A true JPS6093862A (en) 1985-05-25

Family

ID=16440268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201389A Pending JPS6093862A (en) 1983-10-27 1983-10-27 Delay detector

Country Status (1)

Country Link
JP (1) JPS6093862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270542U (en) * 1988-11-16 1990-05-29
WO1997020417A1 (en) * 1995-11-28 1997-06-05 Sanyo Electric Co., Ltd. Digital demodulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283155A (en) * 1975-12-31 1977-07-11 Ibm Device for compensating carrier phase error
JPS5552661A (en) * 1978-10-11 1980-04-17 Nec Corp Phase demodulator circuit
JPS5784631A (en) * 1980-11-17 1982-05-27 Nec Corp Automatic equalizer with leakage characteristic tap

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283155A (en) * 1975-12-31 1977-07-11 Ibm Device for compensating carrier phase error
JPS5552661A (en) * 1978-10-11 1980-04-17 Nec Corp Phase demodulator circuit
JPS5784631A (en) * 1980-11-17 1982-05-27 Nec Corp Automatic equalizer with leakage characteristic tap

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270542U (en) * 1988-11-16 1990-05-29
WO1997020417A1 (en) * 1995-11-28 1997-06-05 Sanyo Electric Co., Ltd. Digital demodulator
GB2322267A (en) * 1995-11-28 1998-08-19 Sanyo Electric Co Digital demodulator
GB2322267B (en) * 1995-11-28 2000-07-19 Sanyo Electric Co Digital demodulator
AU731886B2 (en) * 1995-11-28 2001-04-05 Kyocera Corporation Digital demodulator

Similar Documents

Publication Publication Date Title
US3993956A (en) Digital detection system for differential phase shift keyed signals
US4359692A (en) Rapid acquisition shift keyed signal demodulator
EP0032253B1 (en) Demodulator carrier recovery loop and method for demodulating a signal
US4054838A (en) QAM phase jitter and frequency offset correction system
JPS5925500B2 (en) Carrier wave regeneration circuit
US4109102A (en) Phase synchronizing circuit
JPS5918900B2 (en) demodulator
JPS6093862A (en) Delay detector
JP2002534909A (en) Demodulator having rotation means for correcting frequency deviation
JP2765601B2 (en) Demodulation circuit
JP2910695B2 (en) Costas loop carrier recovery circuit
JP3793641B2 (en) Direct conversion receiver
JP3185725B2 (en) Carrier recovery circuit
JP3413902B2 (en) Frequency shift keying data demodulator
JP3481486B2 (en) Digital demodulator
JPH07212428A (en) Circuit for restoring carrier wave by judgement with phase error sensor
JPS5835429B2 (en) Carrier regeneration circuit
JPS6366108B2 (en)
JP2837914B2 (en) AFC device
JP3067835B2 (en) Quadrature demodulation circuit
JPH0332933B2 (en)
JPH06105898B2 (en) Interference compensation circuit
JP2001086175A (en) Vsb demodulator
JPS58197944A (en) Carrier regenerative system for 4-phase demodulator
JPS58145202A (en) Amplitude modulation signal demodulating circuit