JP2837914B2 - AFC device - Google Patents
AFC deviceInfo
- Publication number
- JP2837914B2 JP2837914B2 JP2077074A JP7707490A JP2837914B2 JP 2837914 B2 JP2837914 B2 JP 2837914B2 JP 2077074 A JP2077074 A JP 2077074A JP 7707490 A JP7707490 A JP 7707490A JP 2837914 B2 JP2837914 B2 JP 2837914B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- output
- delay
- outputting
- frequency band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Channel Selection Circuits, Automatic Tuning Circuits (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、π/4シフトQPSK信号遅延検波用の自動周波
数制御(AFC)装置に関するものである。Description: TECHNICAL FIELD The present invention relates to an automatic frequency control (AFC) device for π / 4 shift QPSK signal differential detection.
(従来の技術) 従来、通信装置の受信部のAFC装置としては、受信信
号を局部発振器の発振出力により中間周波数の信号に変
換し、該中間周波数のずれを周波数弁別器により検出
し、これを前記局部発振器に帰還してその発振周波数を
制御することにより前記中間周波数のずれを補正するも
のが広く用いられていた(例えば、マイクロ波技術研究
会編「マイクロ波通信工学」(昭47−3−20)社団法人
電気通信協会p356−361)。(Conventional technology) Conventionally, as an AFC device of a receiving unit of a communication device, a received signal is converted into an intermediate frequency signal by an oscillation output of a local oscillator, and a deviation of the intermediate frequency is detected by a frequency discriminator. A device which corrects the deviation of the intermediate frequency by controlling the oscillation frequency by feeding back to the local oscillator has been widely used (for example, "Microwave Communication Engineering" edited by Microwave Technology Research Group (Showa 47-3). -20) Telecommunications Association of Japan, p356-361).
(発明が解決しょうとする課題) しかしながら、π/4シフトQPSK変調信号のようなディ
ジタル信号による変調信号のスペクトルがディジタル信
号のパターンにより中心周波数を基準とする偏りが生じ
る場合があるので、上記構成のAFC装置では、必ずしも
受信部の局部発振器の発振出力と受信信号の差周波数の
ずれを正しく検出できるとは限らないという欠点があっ
た。(Problems to be Solved by the Invention) However, since the spectrum of a modulation signal based on a digital signal such as a π / 4 shift QPSK modulation signal may be deviated with respect to the center frequency due to the pattern of the digital signal, the above-described configuration is used. The AFC device has a drawback that the difference between the frequency difference between the oscillation output of the local oscillator of the receiving unit and the received signal cannot always be detected correctly.
本発明は、上記欠点を除去するためになされたもので
あって、π/4シフトQPSK信号を遅延検波した同相成分と
直交成分の2信号をもとに信号処理を行い、変調信号の
位相に無関係なAFC制御信号を得ることのできるAFC装置
を提供することを目的とする。The present invention has been made in order to eliminate the above-described drawbacks, and performs signal processing based on two signals of an in-phase component and a quadrature component obtained by delay-detecting a π / 4-shifted QPSK signal, and adjusts the phase of the modulated signal. An object of the present invention is to provide an AFC device capable of obtaining an irrelevant AFC control signal.
(課題を解決するための手段) 本発明は上記目的を達成するため、入力π/4シフトQP
SK信号を可変周波数発振器の出力信号により、直交位相
関係を有する第1および第2の基底周波数帯π/4シフト
QPSK信号に周波数変換する周波数変換手段と、前記第1
及び第2の基底周波数帯のπ/4シフトQPSK信号を遅延検
波してた直交位相関係を有する2つの遅延検波信号を出
力する遅延検波処理回路と、前記2つの遅延検波信号に
基づき振幅が前記入力π/4シフトQPSK信号と前記可変周
波数発振器の出力信号との間の周波数ずれの関数となる
AFC信号を出力するAFC検出手段と、 前記AFC信号を積分する積分手段を有し、前記積分手
段の出力を前記可変周波数発振器に帰還して発振周波数
を制御するものである。(Means for Solving the Problems) In order to achieve the above object, the present invention provides an input π / 4 shift QP.
The SK signal is shifted by a first and second base frequency band π / 4 having a quadrature phase relationship by an output signal of a variable frequency oscillator.
Frequency converting means for converting the frequency into a QPSK signal;
And a delay detection processing circuit that outputs two delay detection signals having a quadrature phase relationship obtained by delay detection of a π / 4 shift QPSK signal of a second base frequency band, and an amplitude based on the two delay detection signals. It is a function of the frequency shift between the input π / 4 shifted QPSK signal and the output signal of the variable frequency oscillator
It has AFC detection means for outputting an AFC signal, and integration means for integrating the AFC signal, wherein the output of the integration means is fed back to the variable frequency oscillator to control the oscillation frequency.
(作 用) 入力されたπ/4シフトQPSK信号を周波数変換手段によ
り直交位相関係を有する2つの基底周波数帯のπ/4シフ
トQPSK信号に変換し、次いで、遅延検波処理回路により
遅延検波して直交位相関係を有する2つの遅延検波信号
を出力する。(Operation) The input π / 4 shift QPSK signal is converted into two base frequency band π / 4 shift QPSK signals having a quadrature phase relationship by frequency conversion means, and then delayed detection is performed by a delay detection processing circuit. Two differential detection signals having a quadrature phase relationship are output.
しかし、入力π/4シフトQPSK信号と前記周波数変換手
段の可変周波数発振器の出力信号との周波数が一致しな
いとき、前記遅延検波信号には周波数不一致による周波
数差の成分が存在することとなり、遅延検波信号が劣化
する。However, when the frequency of the input π / 4 shift QPSK signal does not match the frequency of the output signal of the variable frequency oscillator of the frequency conversion means, a component of the frequency difference due to the frequency mismatch is present in the differential detection signal, and the delay detection is performed. The signal deteriorates.
そこで、AFC検出手段より前記遅延検波信号に含まれ
る前記周波数差の成分を検出し、これを積分手段を介し
て前記可変周波数発振器に帰還し、AFCをかけることに
より前記遅延検波信号に含まれる周波数差の成分を抑圧
している。ここで、安定なAFCをかけるためには、AFCが
π/4シフトQPSK信号の変調信号成分に影響されないこと
が必要である。そこで、前記遅延検波信号の位相、すな
わち入力信号と1シンボル時間前の入力信号との位相差
は、これを8倍すると常に2π(rad)の整数倍になる
ことに着目し、AFC検出手段により前記位相差の成分を
巧みに消去して前記周波数差の成分のみを取りだしてい
る。これにより、入力信号の変調成分に影響されない安
定なAFCを実現している。Therefore, the frequency difference component included in the differential detection signal is detected by the AFC detection unit, and the component of the frequency difference included in the differential detection signal is fed back to the variable frequency oscillator via the integration unit, and subjected to AFC. The difference component is suppressed. Here, in order to apply stable AFC, it is necessary that the AFC is not affected by the modulation signal component of the π / 4 shift QPSK signal. Therefore, focusing on the fact that the phase of the differential detection signal, that is, the phase difference between the input signal and the input signal one symbol time before, always becomes an integral multiple of 2π (rad) when multiplied by 8, the AFC detection means The phase difference component is skillfully erased to extract only the frequency difference component. This realizes a stable AFC that is not affected by the modulation component of the input signal.
(実施例) 第1図は本発明の実施例の構成図である。以下、第1
図を用いて詳細に説明する。(Embodiment) FIG. 1 is a configuration diagram of an embodiment of the present invention. Hereinafter, the first
This will be described in detail with reference to the drawings.
端子よりπ/4QPSK信号xを加える。ここで、π/4QPSK
信号xは式(1)で表されるものとする。Apply a π / 4 QPSK signal x from the terminal. Where π / 4QPSK
The signal x is represented by Expression (1).
x=cos(ω1t+θN) (1) 但し ω1;角周波数 θn;位相でo,π/4,π/2, 3π/4,5π/2,3π/2,7π/4 前記π/4QPSK信号xを2つに分岐し、一方を乗算器2
の第1の入力端子に、他方を乗算器4の第1の入力端子
に加える。また、可変周波数発振器5の出力yを2つに
分岐し、一方をπ/2(rad)位相器3を通して乗算器4
の第2の入力端子に、他方を乗算器2の第2の入力端子
に加える。ここで、可変周波数発振器5の出力yは式
(2)で表されるものである。x = cos (ω 1 t + θ N ) (1) where ω 1 ; angular frequency θ n ; o, π / 4, π / 2,3π / 4,5π / 2,3π / 2,7π / 4 in phase / 4QPSK signal x is split into two, one of which is multiplier 2
, And the other is applied to a first input terminal of the multiplier 4. Also, the output y of the variable frequency oscillator 5 is branched into two, and one of them is passed through the π / 2 (rad)
And the other is applied to the second input terminal of the multiplier 2. Here, the output y of the variable frequency oscillator 5 is represented by Expression (2).
y=cos(ω2t+φ) (2) 但し ω2;角周波数 φ ;位相 乗算器2,4は、第1,第2の入力端子に入力された、両
信号の積を求め、その結果を低域通過濾波器6,7を通じ
て遅延検波処理回路100の入力端子8,9に加える。入力端
子8,9における信号a,cはそれぞれ式(3),式(4)で
示される。基底周波数帯のQPSK信号である。y = cos (ω 2 t + φ) (2) where ω 2 ; angular frequency φ; phase multipliers 2 and 4 calculate the product of both signals input to the first and second input terminals, and calculate the result. It is applied to the input terminals 8 and 9 of the differential detection processing circuit 100 through the low-pass filters 6 and 7. The signals a and c at the input terminals 8 and 9 are expressed by Expressions (3) and (4), respectively. This is a QPSK signal in the base frequency band.
a=cos{Δωt+θn−φ} (3) 但しΔω=ω1−ω2 c=cos{Δωt+θn−φ−π/2} (4) 遅延検波処理回路100においては、入力端子8に加え
た信号aを分岐し、乗算器12,14のそれぞれの第1の入
力端子に加えるとともに、遅延素子10に加える。同様に
して、入力端子9に加えた信号Cを分岐し、乗算器13,1
5のそれぞれの第1の入力端子に加えるとともに、遅延
素子11に加える。遅延素子10,11はそれぞれ1タイムス
ロットの遅延(τ)を与えるので、その出力には式
(5),式(6)で示す信号b,dが得られる。a = cos {Δωt + θ n -φ} (3) where Δω = ω 1 -ω 2 c = cos {Δωt + θ n -φ-π / 2} (4) In the delay detection processing circuit 100, The signal a is branched and applied to the first input terminals of the multipliers 12 and 14 and to the delay element 10. Similarly, the signal C applied to the input terminal 9 is branched, and the signals are applied to the multipliers 13 and 1.
5 as well as to the first input terminal and to the delay element 11. Since the delay elements 10 and 11 each provide a delay (τ) of one time slot, signals b and d represented by Expressions (5) and (6) are obtained at the output.
b=cos{Δωt+θn-1−Δωt−φ} (5) 但しθn-1;θnに対し1タイムスロット前の信号の
位相で、θnに対して±π/4,±3π/4の位相差を有す
る。 b = cos {Δωt + θ n -1 -Δωt-φ} (5) where θ n-1; θ n in a time slot phase of the previous signal to, ± respect θ n π / 4, ± 3π / 4 Has the following phase difference.
d=cos{Δωt+θn-1Δωt−φ−π/2} (6) 前記信号bを乗算器12の第2の入力端子に入力し、第
1の入力端子に入力した前記信号aとの積を求める。こ
れにより、乗算器12の出力に式(7)に示す信号gを得
る。d = cos {Δωt + θ n−1 Δωt−φ−π / 2} (6) The signal b is input to the second input terminal of the multiplier 12 and is multiplied by the signal a input to the first input terminal. Ask for. As a result, a signal g shown in Expression (7) is obtained at the output of the multiplier 12.
g=a*b =1/2cos{2Δωt−2φ+θn +θn-1−Δωt} +1/2cos{θn−θn-1+Δωt} (7) また、前記信号dを乗算器14の第2の入力端子に入力
し、第1の入力端子に入力した前記信号aとの積を求め
る。これにより、乗算器14の出力に式(8)に示す信号
eを得る。g = a * b = 1 / 2cos {2Δωt-2φ + θ n + θ n-1 -Δωt} + 1 / 2cos {θ n -θ n-1 + Δωt} (7) The product is input to the input terminal and is multiplied by the signal a input to the first input terminal. As a result, a signal e shown in Expression (8) is obtained at the output of the multiplier 14.
e=a*d =1/2cos{2Δωt+2φ+θn +θn-1−Δωt−π/2} +1/2cos{θn−θn-1+Δωt+π/2}
(8) また、前記信号dを乗算器13の第2の入力端子に入力
し、第1の入力端子に入力した信号cとの積を求める。
これにより、乗算器13の出力に式(8)に示す信号hを
得る。e = a * d = 1 / 2cos {2Δωt + 2φ + θ n + θ n-1 −Δωt-π / 2} + 1 / 2cos {θ n -θ n-1 + Δωt + π / 2}
(8) The signal d is input to the second input terminal of the multiplier 13 and the product of the signal d and the signal c input to the first input terminal is obtained.
As a result, a signal h shown in Expression (8) is obtained at the output of the multiplier 13.
h=c*d =−1/2cos{2Δωt−2φ +θn−θn-1−Δωt} +1/2cos{θn−θn-1+Δωt} (9) さらに、前記信号bを乗算器15の第2の入力端子に入
力し、第1の入力端子に入力した信号cとの積を求め
る。これにより、乗算器15の出力に式(10)に示す信号
fを得る。h = c * d = -1 / 2cos {2Δωt-2φ + θ n -θ n-1 -Δωt} + 1 / 2cos {θ n -θ n-1 + Δωt} (9) Further, the multiplier 15 the signal b The product of the signal c input to the second input terminal and the signal c input to the first input terminal is obtained. As a result, a signal f shown in Expression (10) is obtained at the output of the multiplier 15.
f=b*c =1/2cos{2Δωt+θn+θn-1 −Δωt−2φ−π/2} +1/2cos{θn-1−θn +Δωt−π/2} (10) 前記信号eを減算器16の第1の入力端子に、前記信号
fを第2の入力端子にそれぞれ加え、両信号の差を求め
る。これにより、減算器16の出力に式(11)に示す信号
iを得る。f = b * c = 1 / 2cos {2Δωt + θ n + θ n-1 -Δωt-2φ-π / 2} + 1 / 2cos {θ n-1 -θ n + Δωt-π / 2} (10) subtracting the signal e The signal f is applied to a first input terminal of the detector 16 and to a second input terminal, respectively, and the difference between the two signals is obtained. As a result, a signal i shown in Expression (11) is obtained at the output of the subtractor 16.
i=f−e =cos{θn−θn-1+Δωt−π/2} (11) また、前記信号gを加算器17の第1の入力端子に、前
記信号hを第2の入力端子にそれぞれ加え、両信号を加
算する。これにより、加算器17の出力に式(12)に示す
信号kを得る。i = fe = cos {θ n −θ n−1 + Δωt−π / 2} (11) Further, the signal g is supplied to a first input terminal of an adder 17, and the signal h is supplied to a second input terminal. , And both signals are added. As a result, a signal k shown in Expression (12) is obtained at the output of the adder 17.
k=g+h =cos{θn−θn-1+Δωt} (12) 前記信号k,iを遅延検波処理回路100の出力端子32,33
から出力し、それぞれ遅延検波出力信号として出力端子
20,21から外部に出力する。k = g + h = cos {θ n −θ n−1 + Δωt} (12) The signals k and i are output to the output terminals 32 and 33 of the differential detection processing circuit 100.
Output terminals, and output terminals as differential detection output signals
Output from 20,21 to outside.
前記出力端子32からの信号kを乗算器23の第1及び第
2の入力端子に入力し、信号kを2乗する。これによ
り、乗算器23の出力に式(13)に示す信号nを得る。The signal k from the output terminal 32 is input to first and second input terminals of the multiplier 23, and the signal k is squared. As a result, a signal n shown in Expression (13) is obtained at the output of the multiplier 23.
n=k2 =1/2+1/2cos{2(θn−θn-1)+2Δωt}
(13) 同様にして、出力端子33からの信号iを乗算器24の第
1および第2の入力端子に入力し、信号iを2乗する。
これにより、乗算器24の出力に式(14)に示す信号Oを
得る。 n = k 2 = 1/2 + 1 / 2cos {2 (θ n -θ n-1) + 2Δωt}
(13) Similarly, the signal i from the output terminal 33 is input to the first and second input terminals of the multiplier 24, and the signal i is squared.
As a result, a signal O shown in Expression (14) is obtained at the output of the multiplier 24.
o=i2 =1/2−1/2cos{2(θn−θn-1)+2Δωt}
(14) さらに、前記信号nとoを減算器25に入力し、両信号
の差を求める。これにより、演算器25の出力に式(15)
に示す信号pを得る。o = i 2 = 1 / 2−1 / 2cos {2 (θ n −θ n−1 ) + 2Δωt}
(14) Further, the signals n and o are input to the subtractor 25, and the difference between the two signals is obtained. As a result, the expression (15) is output to the output of the arithmetic unit 25.
Is obtained.
p=n−o =−cos{2(θn−θn-1)+2Δωt} (15) 一方、前記信号iおよびkを乗算器22に入力し、両信
号の積を求める。これにより、乗算器22の出力に式(1
6)に示す信号mを得る。p = no = -cos {2 ([theta] n- [ theta] n -1 ) +2 [Delta] [omega] t} (15) On the other hand, the signals i and k are input to the multiplier 22, and the product of both signals is obtained. As a result, the output of the multiplier 22 is given by the equation (1)
The signal m shown in 6) is obtained.
m=k*i =1/2cos{2(θn−θn-1)+2Δωt−π/2} (16) 前記信号mとpを乗算器26に入力し、両信号の積を求
める。これにより、乗算器26の出力に式(17)に示す信
号gを得る。m = k * i = 1 / 2cos {2 ([theta] n- [ theta] n -1 ) +2 [Delta] [omega] t- [pi] / 2} (16) The signals m and p are input to the multiplier 26, and the product of both signals is obtained. As a result, a signal g shown in Expression (17) is obtained at the output of the multiplier 26.
g=m*p =1/4cos{4(θn−θn-1)+4Δωt−π/2} (17) 前記信号mを加算器の第1及び第2の入力端子に入力
し、等価的に信号mの振幅を2倍にする。これにより、
加算器18の出力に式(18)に示す信号jを得る。なお、
この加算器18を乗算器に置き換え、該乗算器の一方の入
力端子に信号mを加え、他方の端子に定数2を加えれば
同様の結果が得られることは言うまでもない。g = m * p = 1 / 4cos {4 ([theta] n- [ theta] n -1 ) +4 [Delta] [omega] t- [pi] / 2} (17) The signal m is input to the first and second input terminals of an adder, and is equivalent. Then, the amplitude of the signal m is doubled. This allows
A signal j shown in Expression (18) is obtained at the output of the adder 18. In addition,
It is needless to say that the same result can be obtained by replacing the adder 18 with a multiplier, adding the signal m to one input terminal of the multiplier, and adding a constant 2 to the other terminal.
j=m+m =cos{2(θn−θn-1)+2Δωt−π/2} (18) この信号jを乗算器19の第1及び第2の入力端子に入
力し、信号jの2乗を求める。これにより、乗算器19の
出力に式(19)に示す信号lを得る。j = m + m = cos {2 ([theta] n- [ theta] n -1 ) +2 [Delta] [omega] t- [pi] / 2} (18) The signal j is input to the first and second input terminals of the multiplier 19, and the square of the signal j is calculated. Ask for. As a result, a signal 1 shown in Expression (19) is obtained at the output of the multiplier 19.
l=j2 =1/2−1/2cos{4(θn−θn-1)+4Δωt}
(19) さらに、前記信号pを乗算器27の第1および第2の入
力端子に入力し、信号pの2乗を求める。これにより、
乗算器27の出力に式(20)に示す信号rを得る。l = j 2 = 1 / 2−1 / 2cos {4 (θ n −θ n−1 ) + 4Δωt}
(19) Further, the signal p is input to the first and second input terminals of the multiplier 27, and the square of the signal p is obtained. This allows
The signal r shown in equation (20) is obtained at the output of the multiplier 27.
r=p2 =1/2−1/2cos{4(θn−θn-1)+4Δωt}
(20) さらに、前記信号rとlを減算器28に入力し、両信号
の差を求める。これにより、演算器28の出力に式(21)
に示す信号sを得る。r = p 2 = 1 / 2−1 / 2cos {4 (θ n −θ n−1 ) + 4Δωt}
(20) Further, the signals r and l are input to a subtractor 28, and the difference between the two signals is obtained. As a result, the expression (21) is output to the output of the arithmetic unit 28.
Is obtained.
s=r−l =cos{4(θn−θn-1)+4Δωt} (21) なお、前記減算器28に入力される両信号は振幅係数が
等しければよいので、前記加算器18の代わりに乗算器19
の後段に振幅係数を4倍にする回路を挿入してもよく、
さらにまた、乗算器27の前段に振幅係数を1/2倍にする
回路を挿入するか、あるいは乗算器27の後段に振幅係数
を1/4倍にする回路を挿入しても等価であることは言う
までもないない。s = r−l = cos {4 (θ n −θ n−1 ) + 4Δωt} (21) Since both signals input to the subtractor 28 need only have the same amplitude coefficient, To multiplier 19
A circuit for increasing the amplitude coefficient by four times may be inserted in the subsequent stage,
Furthermore, it is equivalent to insert a circuit to increase the amplitude coefficient by a factor of 1/2 before the multiplier 27, or insert a circuit to increase the amplitude coefficient by a factor of 1/4 after the multiplier 27. Needless to say.
前記信号qとsは、さらに乗算器29に入力され、両信
号の積が求められる。これにより乗算器29の出力には式
(22)に示す信号tを得る。The signals q and s are further input to a multiplier 29, where a product of the two signals is obtained. As a result, a signal t shown in Expression (22) is obtained at the output of the multiplier 29.
t=q*s =cos{8(θn−θn-1)+8Δωt−π/2} (22) この信号tの(θn−θn-1)は、±π/4または±3
π/4の4つの値をとるので、それを8倍すると2πの整
数倍となり、式(24)を式(25)で表わすことができ
る。t = q * s = cos {8 (θ n -θ n-1 ) + 8Δωt-π / 2} (22) (θ n -θ n-1 ) of this signal t is ± π / 4 or ± 3
Since it takes four values of π / 4, when it is multiplied by 8, it becomes an integral multiple of 2π, and Expression (24) can be expressed by Expression (25).
t=cos(8Δωt−π/2) (23) 式(23)から、信号tの大きさは変調信号に依存する
ことなく周波数誤差Δωの関数になることがわかる。t = cos (8Δωt−π / 2) (23) From the equation (23), it can be seen that the magnitude of the signal t is a function of the frequency error Δω without depending on the modulation signal.
よって、信号tをアップダウンカウンタや低域通過濾
波器などで構成される積分器30を通じて可変周波数発振
器5の周波数制御端子31に帰還することによりAFCが可
能となる。Therefore, AFC can be performed by feeding back the signal t to the frequency control terminal 31 of the variable frequency oscillator 5 through the integrator 30 including an up-down counter and a low-pass filter.
(発明の効果) 以上、詳細に説明したように本発明によれば、可変周
波数発振器に帰還するAFC信号は入力π/4シフトQPSK信
号の変調信号に無関係であるので、該変調信号のパター
ンによりπ/4シフトQPSK信号にスペクトルの偏りが生じ
ても安定なAFCをかけることができる。(Effects of the Invention) As described above in detail, according to the present invention, the AFC signal fed back to the variable frequency oscillator is irrelevant to the modulation signal of the input π / 4 shift QPSK signal. Stable AFC can be applied even if a spectrum deviation occurs in the π / 4 shift QPSK signal.
また、通信装置の受信部等で通常用いられているAFC
用のディスクリミネータなどが不要となり、基底周波数
帯での乗算や加算で周波数制御信号が得られるので、デ
ィジタル信号処理集積回路などを用意に利用することが
でき、AFC装置を経済的に実現することができる。In addition, AFC, which is usually used in the receiver of a communication device, etc.
A discriminator is unnecessary, and a frequency control signal can be obtained by multiplication and addition in the base frequency band, so that digital signal processing integrated circuits can be easily used, and an AFC device can be economically realized. be able to.
第1図は本発明の実施例の構成図である。 1……入力端子、2,4,12〜15,19,22〜24,26,27,29……
乗算器、3……移相器、5……可変周波数発振器、6,7
……低域通過濾波器、8,9……入力端子、10,11……遅延
素子、16,25,28……減算器、17,18……加算器、20,21,3
2,33……出力端子、30……積分器、31……周波数制御端
子、100……遅延検波処理回路FIG. 1 is a configuration diagram of an embodiment of the present invention. 1 ... Input terminal, 2,4,12-15,19,22-24,26,27,29 ...
Multiplier, 3 ... Phase shifter, 5 ... Variable frequency oscillator, 6,7
…… Low-pass filter, 8,9 …… Input terminal, 10,11 …… Delay element, 16,25,28 …… Subtractor, 17,18 …… Adder, 20,21,3
2,33 output terminal, 30 integrator, 31 frequency control terminal, 100 delay detection processing circuit
Claims (2)
振器の出力信号により基底周波数帯π/4シフトQPSK信号
に周波数変換し、前記基底周波数帯π/4シフトQPSK信号
を1シンボル時間だけ遅延させた遅延信号の位相値にπ
/2加算した値を、前記基底周波数帯π/4シフトQPSK信号
の位相値から減算した、位相値を持つ第1の遅延検波信
号と、第1の遅延検波信号と直交位相関係を有する第2
の遅延検波信号を出力する遅延検波手段と、 前記2つの遅延検波信号をそれぞれ2乗し、その差を求
めて出力する第1の手段と、 前記2つの遅延検波信号の積を出力する第2の手段と、 前記第1の手段と第2の手段の出力信号の積を求めて出
力する第3の手段と、 前記第2の手段の出力信号の振幅を2倍して2乗する第
4の手段と、 前記第1の手段の出力信号を2乗して前記第4の手段の
出力信号との差を求めて出力する第5の手段と、 前記第3の手段の出力信号と第5の手段の出力信号の積
を求めてAFC信号として出力する第6の手段と、 前記AFC信号を積分して出力する積分手段とを有し、前
記積分手段の出力を前記可変周波数発振器に帰還して発
振周波数を制御することを特徴とするAFC装置。An input π / 4 shift QPSK signal is frequency-converted into a base frequency band π / 4 shift QPSK signal by an output signal of a variable frequency oscillator, and the base frequency band π / 4 shift QPSK signal is converted for one symbol time. The phase value of the delayed signal is π
A first differential detection signal having a phase value obtained by subtracting the value obtained by adding / 2 from the phase value of the base frequency band π / 4 shift QPSK signal, and a second differential detection signal having a quadrature phase relationship with the first differential detection signal.
Delay detection means for outputting a differential detection signal of the following, first means for squaring each of the two delay detection signals, and calculating and outputting the difference between them, and a second means for outputting a product of the two delay detection signals Means for obtaining a product of the output signals of the first means and the second means, and outputting the product; and a fourth means for doubling and squaring the amplitude of the output signal of the second means. Means for squaring the output signal of the first means to obtain the difference between the output signal of the fourth means and outputting the difference, and output means for the third means and the fifth A sixth means for obtaining a product of the output signals of the means and outputting the result as an AFC signal; and an integrating means for integrating and outputting the AFC signal. The output of the integrating means is fed back to the variable frequency oscillator. An AFC device characterized by controlling the oscillation frequency by using an AFC device.
信号を可変周波数発振器の出力信号により直交位相関係
を有する第1および第2の基底周波数帯のπ/4シフトQP
SK信号に周波数変換する周波数変換手段と、 前記第1の基底周波数帯のπ/4シフトQPSK信号を1シン
ボル時間だけ遅延する第1の遅延手段と、 前記第2の基底周波数帯のπ/4シフトQPSK信号を1シン
ボル時間だけ遅延する第2の遅延手段と、 前記1の遅延手段の出力信号と前記第2の基底周波数帯
のπ/4シフトQPSK信号との積と、前記第2の遅延手段の
出力信号と前記第1の基底周波数帯のπ/4シフトQPSK信
号との積の差を求めて一方の遅延検波信号を出力する手
段と、 前記第1の遅延手段の出力信号と前記第1の基底周波数
帯のπ/4シフトQPSK信号との積と、前記第2の遅延手段
の出力信号と前記第2の基底周波数帯のπ/4シフトQPSK
信号との積の和を求めて他方の遅延検波信号を出力する
手段とを有する請求項(1)記載のAFC装置。2. The delay detection means according to claim 1, wherein said delay detection means comprises an input π / 4 shift QPSK.
Π / 4 shift QP of the first and second base frequency bands having a quadrature phase relationship by the output signal of the variable frequency oscillator
Frequency conversion means for converting the frequency to an SK signal; first delay means for delaying the π / 4 shift QPSK signal of the first base frequency band by one symbol time; π / 4 of the second base frequency band A second delay means for delaying the shifted QPSK signal by one symbol time; a product of an output signal of the first delay means and a π / 4 shifted QPSK signal in the second base frequency band; Means for obtaining a product difference between the output signal of the means and the π / 4-shifted QPSK signal of the first base frequency band and outputting one of the differential detection signals; and the output signal of the first delay means and the second A product of the first base frequency band π / 4 shift QPSK signal, the output signal of the second delay means, and the π / 4 shift QPSK signal of the second base frequency band
2. The AFC apparatus according to claim 1, further comprising means for obtaining a sum of products of the signals and outputting the other differential detection signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2077074A JP2837914B2 (en) | 1990-03-28 | 1990-03-28 | AFC device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2077074A JP2837914B2 (en) | 1990-03-28 | 1990-03-28 | AFC device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03278648A JPH03278648A (en) | 1991-12-10 |
JP2837914B2 true JP2837914B2 (en) | 1998-12-16 |
Family
ID=13623646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2077074A Expired - Fee Related JP2837914B2 (en) | 1990-03-28 | 1990-03-28 | AFC device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2837914B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201215114D0 (en) * | 2012-08-24 | 2012-10-10 | Phasor Solutions Ltd | Improvements in or relating to the processing of noisy analogue signals |
-
1990
- 1990-03-28 JP JP2077074A patent/JP2837914B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03278648A (en) | 1991-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2115222C1 (en) | Phase-angle corrector for power amplifier feedback circuit (options) | |
EP0305603B1 (en) | Gain and phase correction in a dual branch receiver | |
JPS6348469B2 (en) | ||
US20060067431A1 (en) | Circuit and method for recovering a carrier | |
US5915028A (en) | Amplitude demodulator | |
JPH01135223A (en) | Differential frequency detector | |
JPH02157667A (en) | Phase detector and frequency demodulator | |
JPH05327808A (en) | Orthogonal modulation circuit | |
US4502148A (en) | FM Stereo demodulator for demodulating stereo signals directly from an FM intermediate frequency signal | |
US4109102A (en) | Phase synchronizing circuit | |
US5371902A (en) | Method and apparatus for recovering baseband signals from in-phase and quadrature-phase signal components having phase error therebetween | |
JP2837914B2 (en) | AFC device | |
JPS61273005A (en) | Amplitude modulation system receiver | |
JP2730346B2 (en) | Divider circuit | |
WO2003023950A2 (en) | Receiver | |
US5365185A (en) | Frequency controlled loop for demodulating OOK and PSK signals | |
JP2837915B2 (en) | AFC device | |
JP2837916B2 (en) | AFC device | |
JPH1141033A (en) | Orthogonal balance mixer circuit and receiver | |
JP2986254B2 (en) | AFC device | |
JP3259100B2 (en) | Modulator | |
JPS6331985B2 (en) | ||
KR810000345B1 (en) | Receive | |
JP3462277B2 (en) | Carrier recovery circuit | |
KR860000232B1 (en) | Compatible am stereo broadcast system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |