JP3381634B2 - Lithium secondary battery and method of manufacturing the same - Google Patents

Lithium secondary battery and method of manufacturing the same

Info

Publication number
JP3381634B2
JP3381634B2 JP22588798A JP22588798A JP3381634B2 JP 3381634 B2 JP3381634 B2 JP 3381634B2 JP 22588798 A JP22588798 A JP 22588798A JP 22588798 A JP22588798 A JP 22588798A JP 3381634 B2 JP3381634 B2 JP 3381634B2
Authority
JP
Japan
Prior art keywords
battery
lithium secondary
secondary battery
ppm
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22588798A
Other languages
Japanese (ja)
Other versions
JP2000058131A (en
Inventor
正巳 堤
博志 堀内
勉 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22588798A priority Critical patent/JP3381634B2/en
Publication of JP2000058131A publication Critical patent/JP2000058131A/en
Application granted granted Critical
Publication of JP3381634B2 publication Critical patent/JP3381634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池の
構造に関する。
TECHNICAL FIELD The present invention relates to a structure of a lithium secondary battery.

【0002】[0002]

【従来の技術】従来のリチウム二次電池は大略、(1) リ
チウム金属を活物質とする負極と、(2) 金属の酸化物、
硫化物、塩化物あるいはハロゲンの炭素化合物などの正
極活物質に被覆された正極と、 (3) プロピレンカーボ
ネート、エチレンカーボネート、ジメトキシエタンなど
を有機溶媒の過塩素酸リチウム、硼弗化リチウムなどの
無機塩で溶解した電解液とから構成されている。
2. Description of the Related Art Conventional lithium secondary batteries generally consist of (1) a negative electrode using lithium metal as an active material, (2) a metal oxide,
A positive electrode coated with a positive electrode active material such as a sulfide, chloride, or halogen carbon compound, and It is composed of an electrolyte solution dissolved in salt.

【0003】そして、このリチウム二次電池は充放電を
繰り返し行なわれる。
The lithium secondary battery is repeatedly charged and discharged.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな上記リチウム金属を活物質としたリチウム二次電池
によれば、充電時に負極のリチウム金属と電解液が不所
望な反応をして炭酸リチウム、酸化リチウムを析出す
る。そして負極のリチウム金属表面に堆積する。このた
め充放電効率が徐々に低下する。従って、電池寿命を短
くするという問題があった。
However, according to such a lithium secondary battery using the above lithium metal as an active material, the lithium metal of the negative electrode and the electrolytic solution react undesirably at the time of charging, and lithium carbonate, Precipitate lithium oxide. Then, it is deposited on the lithium metal surface of the negative electrode. Therefore, the charging / discharging efficiency gradually decreases. Therefore, there is a problem of shortening the battery life.

【0005】本発明はリチウム金属と電解液との不所望
な反応を抑圧し電池寿命を長くするリチウム二次電池を
提供することを目的とする。
An object of the present invention is to provide a lithium secondary battery which suppresses an undesired reaction between lithium metal and an electrolytic solution and extends the battery life.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明はリチウム金属と、電解液とを
電池缶内に有するリチウム二次電池において、前記缶内
に前記リチウム金属と前記電解液の不所望な反応を抑圧
する1ppm から1000ppm の硫化水素と1ppm から1
000ppm の水分との混合ガスを封入して成ることを特
徴とするリチウム二次電池を提供する。この構造にする
ことによりリチウム金属と電解液の反応を抑圧し電池寿
命を長くすることができる。また請求項2記載の発明
は、1ppm から1000ppm の硫化水素と1ppm から1
000ppm の水分とを含む雰囲気中で、電池缶に電池部
材を組込みすることを特徴とするリチウム二次電池の製
造方法を提供する。このような製造方法によりリチウム
金属と電解液の反応を抑圧し電池寿命を長くするリチウ
ム二次電池を製造できる。
In order to achieve the above object, the invention according to claim 1 comprises lithium metal and an electrolytic solution.
In a lithium secondary battery in a battery can,
Suppresses undesired reactions between the lithium metal and the electrolyte
1ppm to 1000ppm hydrogen sulfide and 1ppm to 1
It is specially made by enclosing a mixed gas with water of 000ppm.
A lithium secondary battery is provided. Make this structure
By suppressing the reaction between lithium metal and electrolyte,
You can prolong your life. The invention according to claim 2 is 1 ppm to 1000 ppm hydrogen sulfide and 1 ppm to 1
In an atmosphere containing 000ppm of water, put the battery part in a battery can.
Made of lithium secondary battery characterized by incorporating materials
A manufacturing method is provided. With such a manufacturing method, lithium
Lithuium that suppresses the reaction between metal and electrolyte and prolongs battery life
A secondary battery can be manufactured.

【0007】次に、請求項2記載の発明は、請求項1記
載の前記リチウム金属と前記電解液の不所望な反応を抑
圧するガスは10ppm から500ppm の硫化水素または
水分を前記電池缶に封入して成ることを特徴とするリチ
ウム二次電池を提供する。この構造にすることによりリ
チウム金属と電解液の反応を抑圧することができる。ま
た請求項3記載の発明は、硫化水素または、水分また
は、硫化水素と水分との混合ガスのいずれかを含む雰囲
気中で、電池缶に電池部材を組込みすることを特徴とす
るリチウム二次電池の製造方法を提供する。このような
製造方法によりリチウム金属と電解液の反応を抑圧し電
池寿命を長くするリチウム二次電池を製造できる。
Next, in the invention described in claim 2, the gas for suppressing an undesired reaction between the lithium metal according to claim 1 and the electrolytic solution contains hydrogen sulfide or water of 10 ppm to 500 ppm in the battery can. A lithium secondary battery is provided. With this structure, the reaction between the lithium metal and the electrolytic solution can be suppressed. Further, the invention according to claim 3 is characterized in that a battery member is incorporated into a battery can in an atmosphere containing either hydrogen sulfide or moisture or a mixed gas of hydrogen sulfide and moisture. A method for manufacturing the same is provided. With such a manufacturing method, it is possible to manufacture a lithium secondary battery that suppresses the reaction between the lithium metal and the electrolytic solution and extends the battery life.

【0008】[0008]

【発明の実施の形態】以下、図面に示した実施例に基づ
いて本発明の要旨を詳細に説明する。 <第1の実施例>図1は本発明の実施例によるリチウム
二次電池のコイン型セルを示す構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION The gist of the present invention will be described in detail below with reference to the embodiments shown in the drawings. <First Embodiment> FIG. 1 is a block diagram showing a coin-type cell of a lithium secondary battery according to an embodiment of the present invention.

【0009】1はリチウム二次電池、11は正極体、1
2は正極電池缶、13はガスケット、21は負極体、2
2は負極電池缶、23はバネ、31はセパレータ、32
は電解液保持材である。リチウム二次電池1は具体的に
はコインセル2032型電池である。電池缶内の電池部
材は下記のように構成されている。
1 is a lithium secondary battery, 11 is a positive electrode body, 1
2 is a positive electrode battery can, 13 is a gasket, 21 is a negative electrode body, 2
2 is a negative electrode battery can, 23 is a spring, 31 is a separator, 32
Is an electrolyte holding material. The lithium secondary battery 1 is specifically a coin cell 2032 type battery. The battery member in the battery can has the following structure.

【0010】正極電池缶12は正極11と対向接触し、
正極電池缶12の縁にガスケット13が設けられてい
る。また負極電池缶22の面はバネ23が設けられ、負
極21をバネ23が押圧接触するように構成されてい
る。そしてセパレータ31の表裏両面に電解液保持材3
2が設けられている。この電解液保持材32は電解液を
含浸している。また該セパレータ31を介して正極11
と負極21とが対向している。そして正極電池缶12と
負極電池缶22とは嵌着し封印されている。従って、電
池内の全部材はバネ23によって相互に押圧接触してい
る。
The positive electrode battery can 12 is in contact with the positive electrode 11,
A gasket 13 is provided on the edge of the positive electrode battery can 12. A spring 23 is provided on the surface of the negative electrode battery can 22, and the negative electrode 21 is configured so that the spring 23 presses and contacts the negative electrode 21. Then, the electrolytic solution holding material 3 is formed on both front and back surfaces of the separator 31.
Two are provided. The electrolyte holding material 32 is impregnated with the electrolyte. In addition, the positive electrode 11
And the negative electrode 21 face each other. Then, the positive electrode battery can 12 and the negative electrode battery can 22 are fitted and sealed. Therefore, all the members in the battery are pressed against each other by the spring 23.

【0011】このリチウム二次電池1の缶内は電池部材
を除いて約0.2CCから約0.3CCのスペースを有して
いる。上記電解液は大略有機溶媒と溶質とから構成され
ている。この有機溶媒は高誘電率溶媒と低粘度溶媒とか
ら構成され、溶質はリチウム塩である。そして高誘電率
溶媒は例えばエチレンカーボネート(以下ECと略
す)、プロピレンカーボネート(以下PCと略す)、ブ
チレンカーボネート(以下BCと略す)等の炭素数2〜
4(但し、カルボニル炭素を除く)の環状カーボネート
である。
The inside of the can of the lithium secondary battery 1 has a space of about 0.2 CC to about 0.3 CC excluding the battery member. The electrolyte solution is generally composed of an organic solvent and a solute. This organic solvent is composed of a high dielectric constant solvent and a low viscosity solvent, and the solute is a lithium salt. The high dielectric constant solvent has, for example, 2 to 2 carbon atoms such as ethylene carbonate (hereinafter abbreviated as EC), propylene carbonate (hereinafter abbreviated as PC), butylene carbonate (hereinafter abbreviated as BC), and the like.
It is a cyclic carbonate of 4 (excluding carbonyl carbon).

【0012】また低粘度溶媒としてはジメチルカーボネ
ート(以下DMCと略す)、ジエチルカーボネート(以
下DECと略す)、ジプロピルカーボネート(以下DP
Cと略す)、メチルエチルカーボネート(以下MECと
略す)等の炭素数2〜8(但し、カルボニル炭素を除
く)の鎖状カーボネート、1、2─ジメトキシエタン
(以下DMEと略す)、1、2−ジエトキシエタン(以
下DEEと略す)、1、2−ジブトキシエタン(以下D
BEと略す)等の鎖状エーテル、テトラヒドロフラン、
2─メチルテトラヒドロフラン等の環状エーテル、ギ酸
メチル、酢酸メチル、プロピオン酸メチル等のエステル
及びベンゼン(以下Bzと略す)、トルエン、キシレン
等の芳香族炭化水素である。
As the low viscosity solvent, dimethyl carbonate (hereinafter abbreviated as DMC), diethyl carbonate (hereinafter abbreviated as DEC), dipropyl carbonate (hereinafter DP)
C), methyl ethyl carbonate (hereinafter abbreviated as MEC) and other chain carbonates having 2 to 8 carbon atoms (excluding carbonyl carbon), 1,2-dimethoxyethane (hereinafter abbreviated as DME), 1, 2 -Diethoxyethane (hereinafter abbreviated as DEE), 1,2-dibutoxyethane (hereinafter D)
Abbreviated as BE), etc., chain ether, tetrahydrofuran,
They are cyclic ethers such as 2-methyltetrahydrofuran, esters such as methyl formate, methyl acetate and methyl propionate, and aromatic hydrocarbons such as benzene (hereinafter abbreviated as Bz), toluene and xylene.

【0013】これらの高誘電率溶媒と低粘度溶媒はそれ
ぞれ単独でもまた複数のものを組み合わせて使用しても
差し支えない。高誘電率溶媒と低粘度溶媒との組み合わ
せとしては、具体的にはEC−DMC、EC−DEC、
PC−DMC、PC−DEC、PC−MEC等の2成分
溶媒系、EC−DMC−Bz、EC−DEC−Bz、P
C−DMC−Bz、PC−DEC−Bz、EC−PC−
DMC、EC−PC−DEC等の3成分溶媒系、EC−
PC−DMC−Bz、EC−PC−DEC−Bz等の4
成分溶媒系である。なお高誘電率溶媒と低粘度溶媒の容
量比は、高誘電率溶媒:低粘度溶媒が通常1:4〜2:
1、好ましくは1:2〜1:1の割合である。
These high dielectric constant solvents and low viscosity solvents may be used alone or in combination of two or more. Specific examples of the combination of the high dielectric constant solvent and the low viscosity solvent include EC-DMC, EC-DEC,
Two-component solvent system such as PC-DMC, PC-DEC, PC-MEC, EC-DMC-Bz, EC-DEC-Bz, P
C-DMC-Bz, PC-DEC-Bz, EC-PC-
Three-component solvent system such as DMC, EC-PC-DEC, EC-
4 such as PC-DMC-Bz, EC-PC-DEC-Bz
It is a component solvent system. The volume ratio of the high dielectric constant solvent and the low viscosity solvent is usually 1: 4 to 2:
The ratio is 1, preferably 1: 2 to 1: 1.

【0014】リチウム塩としては、例えばLiPF6 、
LiClO4 、LiAsF6 、LiBF4 、LiAlC
l4 、LiCl、LiBr等の無機塩、CH3 SO3 L
i、CF3 SO3 Li、LiB(C6 H5 )4 、CF3
COOLi等の有機塩である。これらリチウム塩は単独
でもまた組み合わせて使用しても差し支えなく、前記有
機溶媒中に通常0.5〜3(1mol/l)、好ましく
は1〜1.5(1mol/l)の濃度である。本実施例
では下記のものが使用された。
As the lithium salt, for example, LiPF6,
LiClO4, LiAsF6, LiBF4, LiAlC
Inorganic salts such as l4, LiCl, LiBr, CH3 SO3 L
i, CF3 SO3 Li, LiB (C6 H5) 4, CF3
It is an organic salt such as COOLi. These lithium salts may be used alone or in combination, and the concentration is usually 0.5 to 3 (1 mol / l), preferably 1 to 1.5 (1 mol / l) in the organic solvent. The following were used in this example:

【0015】電解液は、LiPF6 (6弗化リン酸リチ
ウム)を1mol/リットル濃度で溶解した容積比1:
2のEC(エチレンカーボネート)とDEC(ジエチル
カーボネート)との混合液である。負極4は、直径15
mmの円板状で厚み70μmの箔状のリチウム金属Li
である。
The electrolytic solution was prepared by dissolving LiPF6 (lithium hexafluorophosphate) at a concentration of 1 mol / liter, and the volume ratio was 1 :.
2 is a mixed solution of EC (ethylene carbonate) and DEC (diethyl carbonate). The negative electrode 4 has a diameter of 15
mm disk-shaped foil-shaped lithium metal Li with a thickness of 70 μm
Is.

【0016】正極5は約30mgの紛状体のLiCoO
2 を直径15mmの円板状ステンレス板に圧着塗布して
いる。この正極5に塗布される正極活物質として、例え
ば重合体のポリアニリン、ポリアセチレン、ポリ─p−
フェニレン、ポリベンゼン、ポリピリジン、ポリアニリ
ン、ポリアセチレン、ポリピロール、アントラセン、ポ
リナフタリン及びこれらの誘導体等の高分子誘導体等が
ある。
The positive electrode 5 is about 30 mg of LiCoO powder.
2 is pressure-coated on a disk-shaped stainless steel plate having a diameter of 15 mm. As the positive electrode active material applied to the positive electrode 5, for example, polymer polyaniline, polyacetylene, poly-p-
There are polymer derivatives such as phenylene, polybenzene, polypyridine, polyaniline, polyacetylene, polypyrrole, anthracene, polynaphthalene and derivatives thereof.

【0017】更に無機酸化物としては二酸化マンガン、
五酸化バナジウム、三酸化モリブデン、三酸化クロム、
酸化第2銅等の金属酸化物等がある。また無機硫化物と
しては三硫化モリブデン、二硫化チタン、三硫化鉄等の
金属硫化物がある。その他としてはフッ化炭素がある。
Further, as the inorganic oxide, manganese dioxide,
Vanadium pentoxide, molybdenum trioxide, chromium trioxide,
Examples include metal oxides such as cupric oxide. Inorganic sulfides include metal sulfides such as molybdenum trisulfide, titanium disulfide, and iron trisulfide. Others include fluorocarbon.

【0018】本実施例の正極活物質としてはコバルト酸
リチウム(LiCoO2 )を使用した。またセパレータ
は、ポリプロピレン製の帯状体である。次にリチウム二
次電池の製造方法を説明する。リチウム二次電池の製作
は密閉された装置内、具体的にはグローブボックスの中
でおこなう。このグローブボックスの雰囲気は大気中に
水分を1ppm の一定値に保っている。
Lithium cobalt oxide (LiCoO2) was used as the positive electrode active material in this embodiment. The separator is a strip made of polypropylene. Next, a method for manufacturing a lithium secondary battery will be described. The lithium secondary battery is manufactured in a closed device, specifically, in a glove box. The atmosphere of this glove box keeps moisture in the atmosphere at a constant value of 1 ppm.

【0019】そして下記の要領で電池缶に電池部材を組
立する。 1)負極電池缶22の内面に設けられたバネ23の上に
負極体21を載置する。 2)該負極体21の上に両面を電解液保持材32で挟持
されたセパレータ31をを載置する。 3)該セパレータ31の上に正極体11を載置する。 4)該正極体11の上に正極電池缶12を載置する。 5)電解液を注入し電解液保持材32に含浸させる。 6)正極電池缶12と負極電池缶22とを嵌着し、封印
する。
Then, the battery member is assembled to the battery can according to the following procedure. 1) The negative electrode body 21 is placed on the spring 23 provided on the inner surface of the negative electrode battery can 22. 2) A separator 31 having both surfaces sandwiched by an electrolyte holding material 32 is placed on the negative electrode body 21. 3) The positive electrode body 11 is placed on the separator 31. 4) Place the positive electrode battery can 12 on the positive electrode body 11. 5) The electrolytic solution is injected to impregnate the electrolytic solution holding material 32. 6) The positive electrode battery can 12 and the negative electrode battery can 22 are fitted and sealed.

【0020】上記のようにして作られたコインセル20
32型電池の缶内の0.2から0.3CCのスペースに水
分を一定値の1ppm に保つことができる。その後、グロ
ーブボックスの雰囲気を10ppm 、100ppm 、500
ppm 、1000ppm 、2000ppm 、5000ppm に代
えて6種類の電池缶を組立した。 <第2の実施例>次に、第2の実施例にて電池を作っ
た。但し、第1の実施例と異なる点は、グローブボック
スの雰囲気は大気中に硫化水素を1ppm 、10ppm 、5
0ppm 、100ppm 、500ppm 、1000ppm 、20
00ppm 、5000ppm の雰囲気で8種類の電池缶を組
立する。この点以外は全て第1の実施例と同じ方法であ
る。 <第3の実施例>更に、第3の実施例にて電池を作っ
た。但し、第1の実施例と異なる点は、グローブボック
スの雰囲気を硫化水素と水分との混合ガスを一定値に保
って電池缶を組立する。その後、硫化水素と水分との混
合ガスの割合を変化させた16種類の電池缶を組立す
る。この点以外は全て第1の実施例と同じ方法である。
Coin cell 20 made as described above
Moisture can be maintained at a constant value of 1 ppm in the space of 0.2 to 0.3 CC in the can of 32 type battery. After that, change the atmosphere of the glove box to 10ppm, 100ppm, 500
Six types of battery cans were assembled in place of ppm, 1000 ppm, 2000 ppm and 5000 ppm. <Second Embodiment> Next, a battery was manufactured in the second embodiment. However, the difference from the first embodiment is that the atmosphere of the glove box is 1 ppm, 10 ppm, 5 ppm of hydrogen sulfide in the atmosphere.
0ppm, 100ppm, 500ppm, 1000ppm, 20
Eight types of battery cans are assembled in the atmosphere of 00ppm and 5000ppm. Except for this point, the method is the same as that of the first embodiment. <Third Example> Further, a battery was manufactured in the third example. However, the point different from the first embodiment is that the battery can is assembled by keeping the mixed gas of hydrogen sulfide and water at a constant value in the atmosphere of the glove box. After that, 16 types of battery cans with different ratios of mixed gas of hydrogen sulfide and water are assembled. Except for this point, the method is the same as that of the first embodiment.

【0021】次に、上記実施例1、2、3にて作られた
31種類の電池について下記の充放電試験を行い寿命判
断を行なった。 <安全性試験>充放電試験は、上記第1、2、3実施例
共に以下の条件で行った。 1)充電:4.2 Vカットオフ、充電電流密度1 mA/平
方cm 2)休止;1分間 3)放電:3.0 Vカットオフ、放電電流密度1mA/平方
cm 4)休止;1分間 5)上記1から4までを繰り返して各電池の容量と充放
電サイクル数を調べた。 <充放電試験結果>表1に実施例1、実施例2のガス濃
度とサイクル回数の関係を示す。
Next, the following types of batteries were subjected to the following charge / discharge tests to determine the life of the 31 types of batteries produced in Examples 1, 2, and 3 above. <Safety test> The charge / discharge test was performed under the following conditions in all of the first, second and third examples. 1) Charge: 4.2 V cutoff, charging current density 1 mA / square cm 2) Pause; 1 minute 3) Discharge: 3.0 V cutoff, discharge current density 1 mA / square
cm 4) Pause; 1 minute 5) The above 1 to 4 were repeated to examine the capacity and the number of charge / discharge cycles of each battery. <Charge / Discharge Test Results> Table 1 shows the relationship between the gas concentration and the number of cycles in Examples 1 and 2.

【0022】[0022]

【表1】 [Table 1]

【0023】また表2に実施例3の混合ガスの割合とサ
イクル回数の関係を示す。
Table 2 shows the relationship between the ratio of the mixed gas of Example 3 and the number of cycles.

【0024】[0024]

【表2】充放電試験結果 [Table 2] Charge / discharge test results

【0025】ここで実施例1の大気中に1ppm の水分で
製作した電池が従来の電池に相当する。電池寿命を初期
容量の60%と規定すると、実施例1及び2の内10pp
m から500ppm の範囲で電池寿命を顕著に改善でき
た。実施例1は約1.1から約1.4倍にできた。また
実施例2は約1.1から約1.2倍に改善できた。実施
例3では100ppm の水分と1000ppm の硫化水素と
の混合ガスで約1.3倍に、1ppm の水分と1000pp
m の硫化水素との混合ガスで約1.4に改善できた。
Here, the battery manufactured in Example 1 with a water content of 1 ppm corresponds to a conventional battery. If the battery life is defined as 60% of the initial capacity, 10 pp of Examples 1 and 2
The battery life was remarkably improved in the range of m to 500 ppm. Example 1 was able to be increased from about 1.1 to about 1.4 times. Further, in Example 2, it was possible to improve about 1.1 to about 1.2 times. In Example 3, the mixed gas of 100 ppm of water and 1000 ppm of hydrogen sulfide was about 1.3 times as large as 1 ppm of water and 1000 pp.
It could be improved to about 1.4 by mixing gas with m 2 of hydrogen sulfide.

【0026】[0026]

【発明の効果】以上、詳述した本発明によれば、リチウ
ム金属と電解液との不所望な反応を抑圧し電池寿命を改
善できる。
As described above, according to the present invention described in detail, it is possible to suppress an undesired reaction between the lithium metal and the electrolytic solution and improve the battery life.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のリチウム二次電池の分解側面図FIG. 1 is an exploded side view of a lithium secondary battery of the present invention.

【符号の説明】 1 リチウム二次電池、 11 正極体、 12 正極電池缶、 13 ガスケット、 21 負極体、 22 負極電池缶、 23 バネ、 31 セパレータ、 32 電解液保持材である。[Explanation of symbols] 1 lithium secondary battery, 11 positive electrode body, 12 positive electrode battery can, 13 gaskets, 21 negative electrode body, 22 negative electrode battery can, 23 springs, 31 separator, 32 Electrolyte holding material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−63649(JP,A) 特開 平10−64523(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-9-63649 (JP, A) JP-A-10-64523 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウム金属と、電解液とを電池缶内に
有するリチウム二次電池において、 前記缶内に前記リチウム金属と前記電解液の不所望な反
応を抑圧する1ppm から1000ppm の硫化水素と1pp
m から1000ppm の水分との混合ガスを封入して成る
ことを特徴とするリチウム二次電池。
1. A lithium secondary battery having a lithium metal and an electrolytic solution in a battery can, wherein 1 to 1000 ppm of hydrogen sulfide that suppresses an undesired reaction between the lithium metal and the electrolytic solution is contained in the can. 1 pp
A lithium secondary battery characterized by being filled with a mixed gas of m to 1000 ppm of water .
【請求項2】 リチウム金属と、電解液との電池部材を
電池缶内に有するリチウム二次電池の製造方法におい
て、 1ppm から1000ppm の硫化水素と1ppm から100
0ppm の水分 との混合ガスを含む雰囲気中で、前記電池
缶に前記電池部材を組込みすることを特徴とするリチウ
ム二次電池の製造方法。
2. A battery member containing lithium metal and an electrolytic solution.
In the manufacturing method of the lithium secondary battery contained in the battery can
Te, from 1000ppm hydrogen sulfide and 1ppm from 1ppm 100
In an atmosphere containing a mixed gas of water 0 ppm, a manufacturing method of a lithium secondary battery, which comprises incorporation the battery member to the battery can.
JP22588798A 1998-08-10 1998-08-10 Lithium secondary battery and method of manufacturing the same Expired - Fee Related JP3381634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22588798A JP3381634B2 (en) 1998-08-10 1998-08-10 Lithium secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22588798A JP3381634B2 (en) 1998-08-10 1998-08-10 Lithium secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000058131A JP2000058131A (en) 2000-02-25
JP3381634B2 true JP3381634B2 (en) 2003-03-04

Family

ID=16836434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22588798A Expired - Fee Related JP3381634B2 (en) 1998-08-10 1998-08-10 Lithium secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3381634B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689512B2 (en) 2001-04-11 2004-02-10 Hitachi Maxell Ltd. Flat-shaped nonaqueous electrolyte battery
EP2472638A3 (en) * 2003-12-15 2013-09-11 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
CZ2016569A3 (en) * 2016-09-15 2017-09-06 Jaroslav PolĂ­vka A lithium accumulator with high capacity and increased safety

Also Published As

Publication number Publication date
JP2000058131A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
CA2215756C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
JPH0613110A (en) Method for inserting alalkali metal into material of secondary electrochemical battery and highly graphitized carbon electrode
EP1022797A1 (en) Polymer electrolyte battery and polymer electrolyte
JPH1027626A (en) Lithium secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JPH07230824A (en) Nonaqueous electrolyte battery
JP3381634B2 (en) Lithium secondary battery and method of manufacturing the same
JP2734978B2 (en) Non-aqueous electrolyte battery
JP2701327B2 (en) Non-aqueous electrolyte secondary battery
JPH11273726A (en) Nonaqueous electrolyte secondary battery
JPH1027627A (en) Lithium secondary battery
JP3831547B2 (en) Non-aqueous electrolyte secondary battery
JPH1197059A (en) Nonaqueous electrolyte secondary battery
JPH04171674A (en) Nonaqueous-electrolyte secondary battery
JPH05307974A (en) Organic electrolyte secondary battery
JP3353455B2 (en) Organic electrolyte secondary battery
JPH07296850A (en) Nonaqueous electrolyte lithium secondary battery
JPH06215799A (en) Nonaqueous electrolytic secondary battery
JPH06163078A (en) Nonaqueous electrolytic secondary battery
JP3066086B2 (en) Non-aqueous secondary battery
JPH0822840A (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees