JP3369399B2 - Fabrication method of refractive index multidimensional periodic structure - Google Patents

Fabrication method of refractive index multidimensional periodic structure

Info

Publication number
JP3369399B2
JP3369399B2 JP11509796A JP11509796A JP3369399B2 JP 3369399 B2 JP3369399 B2 JP 3369399B2 JP 11509796 A JP11509796 A JP 11509796A JP 11509796 A JP11509796 A JP 11509796A JP 3369399 B2 JP3369399 B2 JP 3369399B2
Authority
JP
Japan
Prior art keywords
refractive index
periodic structure
base
dimensional periodic
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11509796A
Other languages
Japanese (ja)
Other versions
JPH09304611A (en
Inventor
毅 高森
浩 和田
健 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP11509796A priority Critical patent/JP3369399B2/en
Publication of JPH09304611A publication Critical patent/JPH09304611A/en
Application granted granted Critical
Publication of JP3369399B2 publication Critical patent/JP3369399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、半導体光デバイ
スの作製等への適用が期待できる、屈折率多次元周期構
造の作製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a refractive index multi-dimensional periodic structure, which can be expected to be applied to the manufacture of semiconductor optical devices.

【0002】[0002]

【従来の技術】屈折率の異なる2つの領域が交互にかつ
ある周期をもって然も少なくとも二次元方向それぞれに
生じている構造は、屈折率多次元周期構造といえる。こ
の構造は、例えば量子効率100%の半導体レーザ等、
有用な光素子を実現する可能性を持つと考えられている
(例えば文献I:「応用物理」第63巻、第6号,pp.604-
607(1994))。屈折率多次元周期構造のうち、屈折率二
次元周期構造を作製するための従来方法として、例えば
文献II(Applied Physics Letters vol.64,pp.687-689
(1994))に開示の方法がある。これは円形開口部を周期
的に有したレジストパタンを半導体基板表面上に形成
し、次に、反応性イオンエッチング技術等のエッチング
手段により該基板の前記レジストで覆われていない部分
をエッチングして、該基板の所定部分ごとに円柱形穴を
形成するという方法である。この方法で得られた構造で
は、円柱形穴の部分が空気(低屈折率部分)、その他の
部分が基板のまま(高屈折率部分)であるので、両者に
より屈折率二次元周期構造が構成される。また、屈折率
三次元周期構造を作製するための従来方法として、例え
ば文献III (Physical Review Letters vol.67,pp.2295
-2298(1993))に開示の方法がある。これは誘電体基板の
表面から該基板に円柱形穴をドリル手段によりしかも3
方向にそれぞれ形成するという方法である。この方法で
得られた構造では、円柱形穴の部分が空気(低屈折率部
分)、その他の部分が基板のまま(高屈折率部分)であ
るので、両者により屈折率三次元周期構造が構成され
る。
2. Description of the Related Art A structure in which two regions having different refractive indices are alternately arranged and at least in two-dimensional directions with a certain period can be said to be a refractive index multidimensional periodic structure. This structure is, for example, a semiconductor laser with a quantum efficiency of 100%,
It is considered to have the possibility of realizing a useful optical element (for example, Document I: "Applied Physics" Vol. 63, No. 6, pp. 604-).
607 (1994)). Among the refractive index multi-dimensional periodic structures, as a conventional method for producing a refractive index two-dimensional periodic structure, for example, reference II (Applied Physics Letters vol.64, pp.687-689)
(1994)). This forms a resist pattern having a circular opening periodically on the surface of a semiconductor substrate, and then etches the portion of the substrate not covered with the resist by etching means such as reactive ion etching technique. The method is to form a cylindrical hole in each predetermined portion of the substrate. In the structure obtained by this method, the cylindrical hole portion is air (low refractive index portion), and the other portion is the substrate (high refractive index portion), so the refractive index two-dimensional periodic structure is formed by both. To be done. Further, as a conventional method for producing a three-dimensional refractive index periodic structure, for example, reference III (Physical Review Letters vol.67, pp.2295
-2298 (1993)). This is done by drilling a cylindrical hole from the surface of the dielectric substrate to the substrate and
It is a method of forming each in the direction. In the structure obtained by this method, the cylindrical hole part is air (low refractive index part), and the other part is the substrate (high refractive index part), so the refractive index three-dimensional periodic structure is formed by both. To be done.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、文献II
に開示の従来方法の場合は、ドライエッチングにより円
柱形穴を形成するので深い穴を開けることが難しい。そ
のため、厚さが厚い屈折率二次元周期構造を作製するの
が困難であるという問題点がある。
[Problems to be Solved by the Invention] However, Document II
In the case of the conventional method disclosed in, it is difficult to make a deep hole because a cylindrical hole is formed by dry etching. Therefore, it is difficult to manufacture a two-dimensional periodic structure with a large refractive index.

【0004】また、文献III に開示の従来方法の場合で
あって、ドリル手段として同文献のFig.2の説明文
中にあるように反応性イオンエッチングを用いる場合
は、文献IIの場合と同様に深い穴を開けることが難しい
から、厚さが厚い屈折率三次元周期構造を作製するのが
困難であるという問題点がある。さらに、3方向の穴開
けのために3回の反応性イオンエッチングを実施する必
要があるから、目的の屈折率三次元周期構造を作製する
際の歩留りや再現性は極めて悪いものになると考えられ
る。さらに、文献III に開示の従来方法の場合であっ
て、ドリル手段として同文献のFig.2の説明文中に
あるように機械的なドリルを用いる場合は、誘電体基板
として例えば化合物半導体基板のような機械的強度に乏
しいものを用いることが出来ないという問題が生じる。
In the case of the conventional method disclosed in Document III, FIG. In the case of using reactive ion etching as described in the description of No. 2, it is difficult to make a deep hole as in the case of Document II, so that it is difficult to fabricate a thick refractive index three-dimensional periodic structure. There is a problem. Further, since it is necessary to carry out reactive ion etching three times for making holes in three directions, it is considered that the yield and reproducibility at the time of producing the target refractive index three-dimensional periodic structure will be extremely poor. . Further, in the case of the conventional method disclosed in Document III, FIG. When a mechanical drill is used as described in the description of item 2, there arises a problem that a dielectric substrate such as a compound semiconductor substrate having poor mechanical strength cannot be used.

【0005】所望の厚さを有した屈折率多次元周期構造
を簡易に作製でき、然も、光素子作製用の代表的な材料
である化合物半導体材料を用いる場合も所望の屈折率多
次元周期構造を簡易に作製できる方法の実現が望まれ
る。
A refractive index multidimensional periodic structure having a desired thickness can be easily manufactured, and even when a compound semiconductor material which is a typical material for manufacturing an optical element is used, the desired refractive index multidimensional periodic structure is obtained. It is desired to realize a method capable of easily producing a structure.

【0006】[0006]

【課題を解決するための手段】そこで、この発明の屈折
率多次元周期構造の作製方法によれば、周期的な凹凸構
造を表面に有した下地を用意し、該下地の前記表面上
に、後処理により少なくとも一方の屈折率が変化するよ
うな2種類の薄膜を、交互にかつそれぞれの膜厚が前記
凹凸における段差と等しいか実質的に等しい膜厚(以
下、「所定の膜厚」ともいう)となるように積層し、該
積層の済んだ試料に対し当該後処理を行なうことを特徴
とする。この発明において、2種類の薄膜は、最初から
互いに屈折率が異なっていてかつ後処理により少なくと
も一方の薄膜の屈折率がさらに変化するようなものでも
良く、或は、2種類の薄膜ともに最初は屈折率が同じで
あるが後処理の後に少なくとも一方の薄膜の屈折率が変
化するようなものでも良い。後の実施の形態では、下地
上に形成される2種類の薄膜が最初から互いに屈折率が
異なっていてかつそのうちの一方の屈折率が後処理によ
り(具体的には酸化処理により)さらに変化する例を示
す。
Therefore, according to the method for producing a refractive index multidimensional periodic structure of the present invention, an underlayer having a periodic concavo-convex structure on its surface is prepared, and on the surface of the underlayer, Two kinds of thin films whose refractive index is changed by at least one of them are alternately and each of the film thicknesses are equal to or substantially equal to the step in the unevenness (hereinafter, also referred to as “predetermined film thickness”). The above-mentioned post-treatment is performed on the laminated sample. In the present invention, the two kinds of thin films may have different refractive indexes from the beginning, and the refractive index of at least one of the thin films may be further changed by post-treatment, or both of the two kinds of thin films may be initially changed. The refractive index may be the same, but the refractive index of at least one of the thin films may change after the post-treatment. In the later embodiment, the two types of thin films formed on the base have different refractive indexes from the beginning, and one of them further changes in post-treatment (specifically, in oxidation treatment). Here is an example:

【0007】この発明によれば、所定の下地表面上に、
後処理により少なくとも一方の屈折率が変化するような
2種類の薄膜を、交互にかつそれぞれの膜厚が所定の膜
厚となるように積層し、該積層の済んだ試料に対し当該
後処理を行なっているので、下地面に垂直な方向では2
種類の薄膜がほぼ同じ膜厚で交互に積層され、かつ、下
地面に平行な方向に沿って2種類の薄膜が交互に出現す
る構造が形成される。ここで、下地表面の凹凸構造が下
地面に平行な一方向に沿っている場合は、この方向に沿
う屈折率周期構造と下地面に垂直な方向に沿う屈折率周
期構造とから成る屈折率二次元周期構造が得られる。ま
た、下地表面の凹凸構造が下地面に平行な二方向に沿っ
ている場合は、この二方向に沿う屈折率周期構造と下地
面に垂直な方向に沿う屈折率周期構造とから成る屈折率
三次元周期構造が得られる。そして、下地面に垂直な方
向における2種類の薄膜の周期は、下地表面に形成する
凹凸構造における段差の寸法により制御出来、一方、下
地面に平行な方向における2種類の薄膜の出現周期は、
下地表面に形成する凹凸構造における凹部の幅および凸
部の幅の一方または双方により制御出来るので、屈折率
周期構造の制御も容易に行なうことが出来る。なお、屈
折率周期構造における周期は該構造の使用目的に応じた
任意の周期とできる。例えば文献Iに示されているフォ
トニックバンドギャップ構造を作製する場合であれば、
扱う光の波長と同程度の寸法にこの発明でいう周期を設
定する。この場合は、自然放出光を人為的に制御し得る
ような光デバイスの実現が期待出来る。
According to the present invention, on a predetermined base surface,
Two kinds of thin films whose refractive indexes are changed by post-treatment are laminated alternately and each of them has a predetermined thickness, and the post-treatment is performed on the laminated sample. Since it is done, 2 in the direction perpendicular to the base surface
A structure is formed in which two kinds of thin films are alternately laminated with almost the same film thickness, and two kinds of thin films appear alternately along a direction parallel to the base surface. Here, when the concave-convex structure on the base surface is along one direction parallel to the base surface, a refractive index two structure consisting of a refractive index periodic structure along this direction and a refractive index periodic structure along the direction perpendicular to the base surface is used. A dimensional periodic structure is obtained. Further, in the case where the uneven structure of the underlying surface is along two directions parallel to the underlying surface, a refractive index tertiary structure composed of a refractive index periodic structure along these two directions and a refractive index periodic structure along the direction perpendicular to the underlying surface. The original periodic structure is obtained. Then, the periods of the two types of thin films in the direction perpendicular to the base surface can be controlled by the size of the step in the concavo-convex structure formed on the base surface, while the appearance periods of the two types of thin films in the direction parallel to the base surface are:
Since it can be controlled by one or both of the width of the concave portion and the width of the convex portion in the concavo-convex structure formed on the underlying surface, the control of the refractive index periodic structure can be easily performed. The period in the refractive index periodic structure may be any period according to the purpose of use of the structure. For example, in the case of manufacturing the photonic bandgap structure shown in Document I,
The period referred to in the present invention is set to a dimension approximately the same as the wavelength of light to be handled. In this case, realization of an optical device capable of artificially controlling spontaneous emission light can be expected.

【0008】なお、この発明において、下地の構成材料
および2種類の薄膜それぞれの構成材料は、屈折率多次
元周期構造の用途に応じた任意のものとできる。典型的
には、少なくとも2種類の薄膜は化合物半導体材料とす
るのが良い。光素子の用途に適合するからである。ま
た、2種類の薄膜は例えば格子定数が近いもの同士とす
る等、結晶成長が良好になされる材料からなるものとす
るのが良い。品質の優れた屈折率多次元周期構造が得ら
れるからである。下地も、2種類の薄膜のいずれか一方
の構成材料と同じ材料からなる下地とするか、異なる材
料であっても薄膜の結晶成長が良好になされる材料から
なる下地とするのが良い。その方が、下地上に形成され
る2種類の薄膜の品質が良好になるので、良好な屈折率
多次元周期構造が得られるからである。また、下地を2
種類の薄膜のうちの一方と同じ材料で構成された下地と
し、この下地上に2種類の薄膜のうちの他方の薄膜から
積層を開始すれば、下地表面の凸部分自体が屈折率周期
構造の一部を構成するようになる。
In the present invention, the underlying constituent material and the constituent materials of each of the two types of thin films may be arbitrary materials depending on the use of the refractive index multidimensional periodic structure. Typically, at least two types of thin films should be compound semiconductor materials. This is because it suits the application of the optical element. Further, it is preferable that the two kinds of thin films are made of a material that allows good crystal growth, for example, those having close lattice constants. This is because a refractive index multidimensional periodic structure with excellent quality can be obtained. The underlayer is also preferably made of the same material as one of the constituent materials of one of the two types of thin films, or is made of a different material that allows good crystal growth of the thin film. This is because the quality of the two types of thin films formed on the base becomes better, and a good refractive index multidimensional periodic structure can be obtained. Also, the base is 2
If a base made of the same material as one of the two types of thin films is used and stacking is started from the other thin film of the two types of thin films on this base, the convex portion of the base surface itself has a refractive index periodic structure. It will form a part.

【0009】[0009]

【0010】また、この発明では、周期的な凹凸構造が
表面に形成されている下地上に、後に行なうエッチング
方法によってエッチングされる第1の薄膜と該エッチン
グ方法によってはエッチングされないか実質的にエッチ
ングされない第2の薄膜とを、交互にかつ所定の膜厚と
なるように積層し、該積層の済んだ試料に対し当該エッ
チングを行なうようにしても良い。
Further, according to the present invention, the first thin film which is etched by the etching method to be performed later and the first thin film which is not etched or is substantially etched by the etching method is formed on the base on which the periodic uneven structure is formed. Alternatively, the second thin film that is not formed may be alternately laminated to have a predetermined film thickness, and the sample that has been laminated may be subjected to the etching.

【0011】[0011]

【発明の実施の形態】以下、図面を参照してこの発明の
屈折率多次元周期構造の作製方法の実施の形態について
説明する。しかしながら、説明に用いる各図はこの発明
を理解出来る程度に概略的に示してあるにすぎない。ま
た、各図において同様の構成成分については同一の番号
を付して示し、その重複する説明を省略することもあ
る。また、詳細は後述するが各図では、GaAs薄膜と
AlAs薄膜とを区分けするために、AlAs薄膜その
ものあるいは、それに関連する酸化膜(図5(B))や
空孔(図7(B))に網点模様を付して示してある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a method for producing a refractive index multidimensional periodic structure of the present invention will be described below with reference to the drawings. However, the drawings used in the description are merely schematic representations so that the present invention can be understood. Further, in each drawing, the same constituent components are denoted by the same reference numerals, and the duplicated description thereof may be omitted. Further, although details will be described later, in each figure, in order to distinguish the GaAs thin film from the AlAs thin film, the AlAs thin film itself or an oxide film (FIG. 5 (B)) and holes (FIG. 7 (B)) related thereto are formed. Is shown with a halftone dot pattern.

【0012】 1.屈折率二次元周期構造の作製例の説明 先ず、下地として、基板表面に平行な一方向に凹凸構造
が繰り返されているGaAs基板を用い、かつ、屈折率
が異なる2種類の薄膜として、GaAs薄膜およびAl
As薄膜を用いて、屈折率二次元周期構造を作製する例
を説明する。図1および図2はその説明に供する工程図
であって、製造工程中の主な工程での試料の様子をそれ
ぞれ斜視図により示した工程図である。なおGaAsお
よびAlAsを用いるこの例の場合、GaAsの屈折率
が約3.5であり、AlAsの屈折率が約2.9である
ので、GaAs薄膜が高屈折率薄膜、AlAs薄膜が低
屈折率薄膜にそれぞれ当たる。
1. Description of Example of Fabrication of Two-Dimensional Refractive Index Periodic Structure First, a GaAs thin film is used as a base, and a GaAs substrate in which a concavo-convex structure is repeated in one direction parallel to the substrate surface and two types of thin films having different refractive indices are used. And Al
An example of producing a two-dimensional refractive index periodic structure using an As thin film will be described. FIG. 1 and FIG. 2 are process diagrams used for the explanation, and are process diagrams showing perspective views of the state of the sample in the main steps of the manufacturing process. In this example using GaAs and AlAs, the refractive index of GaAs is about 3.5 and the refractive index of AlAs is about 2.9, so that the GaAs thin film has a high refractive index thin film and the AlAs thin film has a low refractive index. Hit each thin film.

【0013】はじめに、GaAs基板の表面に、リッジ
状の凸部11aがその幅方向(図1(A)中Yで示す方
向)に沿って周期Pで並置形成されるように、該GaA
s基板表面を通常のフォトリソグラフィ技術とエッチン
グ技術とを用いて加工する。この加工の済んだGaAs
基板11は、該基板表面に平行な一方向(図1(A)中
のY方向)に沿って凸部11aおよび凹部11bが繰り
返された周期構造(一次元周期構造)11xを表面に有
したGaAs基板11すなわちこの発明でいう下地11
になる(図1(A))。ここで、凸部11aの幅W1、
凹部11bの幅W2、凹凸における段差Hの各値は、屈
折率周期構造をどのような構造のものにするかに応じ、
任意の値にできる。具体的にはW1およびW2は、周期
構造11xにおける周期P(図1(A)参照)をどのよ
うな周期にするかに応じ決めることが出来、Hは、Ga
As基板11の表面に対し垂直な方向に後に形成される
周期構造の周期Pz(図1(B)参照)をどのような周
期とするかに応じ決めることが出来る。例えばW1=W
2=Hとすれば、GaAs基板11の表面に平行な方向
での屈折率周期構造と、GaAs基板11の表面に垂直
な方向での屈折率周期構造とが同じ周期となった屈折率
二次元周期構造の作製が可能になる。また、凸部11a
の側壁(凹部11bの側壁)はできるだけGaAs基板
表面に対し垂直になるようにするのが良い。そうした方
が、凹凸構造が、下地11上に薄膜を形成した後でも良
好に保存され易いからである。
First, the ridge-shaped convex portions 11a are formed on the surface of the GaAs substrate so as to be juxtaposed along the width direction (direction indicated by Y in FIG. 1A) at a period P.
s The substrate surface is processed by using ordinary photolithography technology and etching technology. This processed GaAs
The substrate 11 had on its surface a periodic structure (one-dimensional periodic structure) 11x in which convex portions 11a and concave portions 11b were repeated along one direction parallel to the substrate surface (Y direction in FIG. 1A). GaAs substrate 11, that is, base 11 in the present invention
(FIG. 1 (A)). Here, the width W1 of the convex portion 11a,
The values of the width W2 of the concave portion 11b and the step H in the unevenness depend on the structure of the refractive index periodic structure.
It can be any value. Specifically, W1 and W2 can be determined according to how the period P (see FIG. 1A) in the periodic structure 11x is set, and H is Ga.
The period Pz (see FIG. 1B) of the periodic structure formed later in the direction perpendicular to the surface of the As substrate 11 can be determined according to what period. For example W1 = W
If 2 = H, the refractive index periodic structure in the direction parallel to the surface of the GaAs substrate 11 and the refractive index periodic structure in the direction perpendicular to the surface of the GaAs substrate 11 have the same period. It becomes possible to fabricate a periodic structure. In addition, the convex portion 11a
The side wall (the side wall of the recess 11b) should be as vertical as possible to the surface of the GaAs substrate. This is because the concavo-convex structure is likely to be favorably stored even after the thin film is formed on the underlayer 11.

【0014】このように凹凸構造を表面に有したGaA
s基板11上に、第1の薄膜としてのAlAs薄膜13
と、第2の薄膜としてのGaAs薄膜15とを交互にか
つそれぞれの膜厚が前記凹凸における段差Hと等しいか
実質的に等しい膜厚となるように積層する(図1
(B)、図2(A))。これら薄膜13、15の積層数
は、希望する厚さの屈折率周期構造が作製できる数とす
る。これら薄膜13、15の成膜方法は、下地11の凹
凸構造11xを転写し易い成膜方法が好ましい。例えば
分子線成長法(MBE法)は好ましい成膜方法の1つと
して挙げられる。
In this way, GaA having a concavo-convex structure on its surface
The AlAs thin film 13 as the first thin film on the s substrate 11
And the GaAs thin film 15 as the second thin film are alternately laminated so that the respective film thicknesses thereof are equal to or substantially equal to the step H in the unevenness (FIG. 1).
(B), FIG. 2 (A)). The number of laminations of these thin films 13 and 15 is such that a refractive index periodic structure having a desired thickness can be manufactured. As a film forming method for these thin films 13 and 15, a film forming method for easily transferring the uneven structure 11x of the underlayer 11 is preferable. For example, the molecular beam growth method (MBE method) is mentioned as one of preferable film forming methods.

【0015】各薄膜13、15の形成工程においてAl
As薄膜13およびGaAs薄膜15それぞれは、凹部
11b上の成長部分と凸部11a上の成長部分とが凹凸
の段差H分ずれた状態で成長する。そのため交互積層が
済んだ試料では、GaAs基板11表面に平行でかつ凹
凸に沿う方向においても、基板11表面に垂直な方向に
おいても、GaAs薄膜とAlAs薄膜とが交互にかつ
周期的に存在する構造が作製されるので、屈折率二次元
周期構造17が作製できる(図2(B))。
In the process of forming the thin films 13 and 15, Al
Each of the As thin film 13 and the GaAs thin film 15 grows in a state in which the growing portion on the concave portion 11b and the growing portion on the convex portion 11a are deviated by the step height H of the unevenness. Therefore, in the sample which has been subjected to the alternate lamination, the structure in which the GaAs thin films and the AlAs thin films are alternately and periodically present both in the direction parallel to the surface of the GaAs substrate 11 and along the unevenness and in the direction perpendicular to the surface of the substrate 11 Thus, the two-dimensional refractive index periodic structure 17 can be manufactured (FIG. 2 (B)).

【0016】 2.屈折率三次元周期構造の作製例の説明 次に、下地として、基板表面に平行な二方向に凹凸構造
が繰り返されているGaAs基板を用い、かつ、屈折率
が異なる2種類の薄膜として、GaAs薄膜およびAl
As薄膜を用いて、屈折率三次元周期構造を作製する例
を説明する。図3および図4はその説明に供する工程図
であって、製造工程中の主な工程での試料の様子をそれ
ぞれ斜視図により示した工程図である。なお、ここでい
う基板表面に平行な二方向とは、互いが180°反対向
きである場合は除く方向である。ここでは上記二方向が
互いに直交する2方向(図3(A)中にX、Yで示す各
方向)である例を説明する。
2. Description of Fabrication Example of Three-Dimensional Refractive Index Periodic Structure Next, as a base, a GaAs substrate having a concavo-convex structure repeated in two directions parallel to the substrate surface is used, and two types of thin films having different refractive indices are used. Thin film and Al
An example of producing a three-dimensional refractive index periodic structure using an As thin film will be described. FIG. 3 and FIG. 4 are process diagrams used for the explanation, and are process diagrams showing perspective views of the state of the sample in the main steps of the manufacturing process. It should be noted that the two directions parallel to the substrate surface mentioned here are directions excluding the case where they are opposite to each other by 180 °. Here, an example in which the two directions are two directions orthogonal to each other (each direction indicated by X and Y in FIG. 3A) will be described.

【0017】はじめに、GaAs基板の表面に、凸部2
1aおよび凹部21bが基板表面に平行な二方向それぞ
れで交互に生じるように、該GaAs基板表面を通常の
フォトリソグラフィ技術とエッチング技術とを用いて加
工する。具体的には、開口部の平面形状が正方形または
長方形となっていてかつ深さ(段差)がHである凹部2
1bがGaAs基板に多数形成されるように、しかも、
それぞれの凹部21bが千鳥状にかつその四隅には別の
凹部21bの隅が接する配列となるように、GaAs基
板を加工する。この加工の済んだGaAs基板21は、
該基板表面に平行な二方向それぞれに沿って凸部21a
および凹部21bが繰り返された周期構造(二次元周期
構造)21xを表面に有したGaAs基板21すなわち
この発明でいう下地21になる(図3(A))。またこ
こでは、凸部21aの頂面の大きさおよび形状と、凹部
21bの開口部の大きさ及び形状とを、同じとしてあ
る。すなわち凸部21aの頂面におけるX方向の寸法
と、凹部21bの開口部におけるX方向の寸法とを、い
ずれもWxとし、凸部21aの頂面におけるY方向の寸
法と、凹部21bの開口部におけるY方向の寸法とを、
いずれもWyとしてある。またこれらWx、Wy、Hの
各値は、屈折率周期構造をどのような構造のものにする
かに応じ、任意の値にできる。具体的にはWxおよびW
yは、周期構造21xにおけるX方向の周期Pxおよび
Py(図3(A)参照)をそれぞれどのような周期とす
るかに応じ決めることが出来、Hは、GaAs基板11
の表面に対し垂直な方向に後に形成される周期構造の周
期Pz(図3(B)参照)をどのような周期とするかに
応じ決めることが出来る。例えばWx=Wy=Hとすれ
ば、GaAs基板11の表面に平行な二方向それぞれで
の屈折率周期構造すなわちX方向の屈折率周期構造と、
Y方向の屈折率周期構造と、GaAs基板11の表面に
垂直な方向での屈折率周期構造とが同じ周期となった屈
折率三次元周期構造の作製が可能になる。また、凸部2
1aの側壁(凹部21bの側壁)はできるだけGaAs
基板表面に対し垂直になるようにするのが良い。そうし
た方が凹凸構造が、下地21上に薄膜を形成した後でも
良好に保存され易いからである。
First, the convex portion 2 is formed on the surface of the GaAs substrate.
The surface of the GaAs substrate is processed by the usual photolithography technique and etching technique so that the 1a and the recess 21b are alternately formed in each of two directions parallel to the substrate surface. Specifically, the recess 2 having a square or rectangular planar shape at the opening and a depth (step) of H
1b is formed on the GaAs substrate in large numbers, and
The GaAs substrate is processed so that the recesses 21b are staggered and the four corners are in contact with the corners of the other recesses 21b. This processed GaAs substrate 21 is
Convex portions 21a are formed along each of two directions parallel to the substrate surface.
Further, the GaAs substrate 21 has a periodic structure (two-dimensional periodic structure) 21x in which the concave portions 21b are repeated, that is, the base 21 in the present invention (FIG. 3 (A)). In addition, here, the size and shape of the top surface of the convex portion 21a and the size and shape of the opening portion of the concave portion 21b are the same. That is, the dimension of the top surface of the convex portion 21a in the X direction and the dimension of the opening portion of the concave portion 21b in the X direction are both Wx, and the dimension of the top surface of the convex portion 21a in the Y direction and the opening portion of the concave portion 21b. And the dimension in the Y direction at
Both are Wy. Further, the respective values of Wx, Wy, and H can be set to arbitrary values according to the structure of the refractive index periodic structure. Specifically Wx and W
y can be determined according to the respective periods Px and Py in the X direction (see FIG. 3A) in the periodic structure 21x, and H is the GaAs substrate 11
Can be determined according to what the period Pz (see FIG. 3B) of the periodic structure formed later in the direction perpendicular to the surface of is. For example, if Wx = Wy = H, a refractive index periodic structure in each of two directions parallel to the surface of the GaAs substrate 11, that is, a refractive index periodic structure in the X direction,
It is possible to manufacture a three-dimensional refractive index structure in which the refractive index periodic structure in the Y direction and the refractive index periodic structure in the direction perpendicular to the surface of the GaAs substrate 11 have the same period. Also, the convex portion 2
The side wall of 1a (the side wall of the recess 21b) is made of GaAs as much as possible.
It is good to make it perpendicular to the substrate surface. This is because the uneven structure is likely to be favorably stored even after the thin film is formed on the base 21.

【0018】このように凹凸構造を表面に有したGaA
s基板21上に、AlAs薄膜13と、GaAs薄膜1
5とを交互にかつそれぞれの膜厚が段差Hと等しいか実
質的に等しい膜厚となるように積層する(図3(B)、
図4(A))。これら薄膜13、15の積層数は、希望
する厚さの屈折率周期構造が作製できる数とする。これ
ら薄膜13、15の成膜方法は、下地21の凹凸構造2
1xを転写し易い成膜方法が好ましい。例えば分子線成
長法(MBE法)は好ましい成膜方法の1つとして挙げ
られる。
In this way, GaA having a concavo-convex structure on its surface
On the s substrate 21, AlAs thin film 13 and GaAs thin film 1
5 and 5 are laminated alternately so that the respective film thicknesses are equal to or substantially equal to the step H (FIG. 3B).
FIG. 4 (A)). The number of laminations of these thin films 13 and 15 is such that a refractive index periodic structure having a desired thickness can be manufactured. The method of forming these thin films 13 and 15 uses the uneven structure 2 of the base 21.
A film forming method in which 1x is easily transferred is preferable. For example, the molecular beam growth method (MBE method) is mentioned as one of preferable film forming methods.

【0019】各薄膜13、15の形成工程においてAl
As薄膜13およびGaAs薄膜15それぞれは、凹部
21b内の成長部分と凸部21a上の成長部分とが凹凸
の段差分ずれた状態で、成長する。そのため交互積層が
済んだ試料では、GaAs基板21表面に平行な二方向
(X,Y方向)それぞれに沿う方向においても、基板2
1表面に垂直な方向においても、GaAs薄膜とAlA
s薄膜とが交互にかつ周期的に存在する構造が作製され
るので、屈折率三次元周期構造23が作製できる(図4
(B))。
In the process of forming the thin films 13 and 15, Al
Each of the As thin film 13 and the GaAs thin film 15 grows in a state in which the growing portion in the concave portion 21b and the growing portion on the convex portion 21a are deviated by the step difference of the concave and convex portions. Therefore, in the sample that has been subjected to the alternate lamination, the substrate 2 is also formed in each of the two directions (X and Y directions) parallel to the surface of the GaAs substrate 21.
GaAs thin film and AlA even in the direction perpendicular to the surface.
Since a structure in which s thin films are present alternately and periodically is produced, the refractive index three-dimensional periodic structure 23 can be produced (FIG. 4).
(B)).

【0020】3.第1の実施の形態 次に、周期的な凹凸構造を表面に有した下地上に、後処
理により互いに異なる屈折率となるような2種類の薄膜
を交互に所定の膜厚で積層し、そして当該後処理をする
発明について説明する。ただし、ここでは、この技術思
想を屈折率二次元周期構造の作製例で説明した方法にさ
らに適用する例を説明する。上述の屈折率二次元周期構
造の作製例では所定のGaAs下地11上に、AlAs
薄膜13およびGaAs薄膜15を交互に積層して所望
の屈折率多次元周期構造を作製する例を説明した。この
場合はGaAsの屈折率が約3.5、AlAsの屈折率
が約2.9であるので、屈折率差が約0.6となってい
る屈折率多次元周期構造が得られる。しかし、さらに大
きな屈折率差を有した屈折率多次元周期構造が作製でき
れば、そのような用途の屈折率多次元周期構造を容易に
作製できるので好ましい。そこで、この第1の実施の形
態では以下の様な手順をとる。この説明を図5を主に参
照して説明する。
3. First Embodiment Next, two kinds of thin films having different refractive indexes by post-treatment are alternately laminated with a predetermined film thickness on a base having a periodic uneven structure on the surface, and The invention that performs the post-processing will be described. However, here, an example will be described in which this technical idea is further applied to the method described in the manufacturing example of the refractive index two-dimensional periodic structure. In the fabrication example of the above-mentioned two-dimensional periodic structure of refractive index, AlAs is formed on a predetermined GaAs underlayer 11.
An example in which the thin film 13 and the GaAs thin film 15 are alternately laminated to form a desired refractive index multidimensional periodic structure has been described. In this case, since the refractive index of GaAs is about 3.5 and the refractive index of AlAs is about 2.9, a refractive index multidimensional periodic structure with a refractive index difference of about 0.6 can be obtained. However, if a refractive index multidimensional periodic structure having a larger refractive index difference can be manufactured, a refractive index multidimensional periodic structure for such an application can be easily manufactured, which is preferable. Therefore, in the first embodiment, the following procedure is taken. This description will be described mainly with reference to FIG.

【0021】まず屈折率二次元周期構造の作製例におい
て説明した手順により屈折率二次元周期構造17を作成
する(図5(A))。次に、屈折率二次元周期構造17
中のAlAs各層の一部が外部にそれぞれ露出されるよ
うに適正な加工をこの屈折率二次元周期構造に対し実施
する。この加工は例えば劈開により行なえる。もちろ
ん、AlAs各層の一部が外部に既に露出されている場
合は、この加工は無用である。
First, the refractive index two-dimensional periodic structure 17 is created by the procedure described in the manufacturing example of the refractive index two-dimensional periodic structure (FIG. 5A). Next, the refractive index two-dimensional periodic structure 17
Appropriate processing is performed on this two-dimensional periodic structure of refractive index so that a part of each layer of AlAs in the inside is exposed to the outside. This processing can be performed by cleavage, for example. Of course, if a part of each AlAs layer is already exposed to the outside, this processing is unnecessary.

【0022】次に、この試料を酸化促進雰囲気例えば水
蒸気雰囲気でかつ高温(例えば400℃程度の温度)の
雰囲気の中に数時間入れる。この処理では、それぞれの
GaAs薄膜15は変化しないが各AlAs薄膜13は
酸化されて屈折率が1.5程度の酸化膜13xに変わる
(図5(B))。そのため、GaAs(基板11および
GaAs薄膜15双方)と酸化膜13xとで構成される
屈折率二次元周期構造17xが作製できる。この構造の
場合は、GaAsの屈折率が約3.5、酸化膜13xの
屈折率が約1.5であるので、屈折率差が約2.0とな
っている屈折率二次元周期構造になり、屈折率二次元周
期構造の作製例の場合より屈折率差が大きい屈折率二次
元周期構造が得られる。なお、上記の熱酸化プロセスの
詳細については、例えば文献IV(Applied Physics Lett
ers(アフ゜ライト゛ フィシ゛ックス レタース゛),1990,Vol.57,pp.2844〜28
46)に開示されている。
Next, the sample is placed in an atmosphere that promotes oxidation such as a water vapor atmosphere and has a high temperature (for example, a temperature of about 400 ° C.) for several hours. In this process, each GaAs thin film 15 does not change, but each AlAs thin film 13 is oxidized to be an oxide film 13x having a refractive index of about 1.5 (FIG. 5 (B)). Therefore, the refractive index two-dimensional periodic structure 17x composed of GaAs (both the substrate 11 and the GaAs thin film 15) and the oxide film 13x can be manufactured. In the case of this structure, since the refractive index of GaAs is about 3.5 and the refractive index of the oxide film 13x is about 1.5, a two-dimensional periodic structure with a refractive index difference of about 2.0 is obtained. Therefore, a refractive index two-dimensional periodic structure having a larger difference in refractive index than in the case of manufacturing the refractive index two-dimensional periodic structure is obtained. For details of the above thermal oxidation process, see, for example, Document IV (Applied Physics Lett).
ers (Available Physics Letters), 1990, Vol.57, pp.2844 ~ 28
46).

【0023】なお、上述の説明では、屈折率二次元周期
構造に対し酸化処理をする例を説明したが、例えば図4
(B)に示した屈折率三次元周期構造に対して酸化処理
をしてAlAs薄膜13を酸化膜に変えることも可能と
考える。ただしその場合は、図6に示したように、被酸
化膜であるAlAs薄膜13の膜厚Dを意図的に凹凸に
おける段差Hよりも僅かに厚くしてAlAs薄膜13が
二次元的に繋がった状態にしておく。ただし、AlAs
薄膜における段差Hより厚くなっている部分の膜厚t
は、光学的に無視出来る程度の膜厚である必要がある。
たとえば、段差Hが0.5μmであるとしたなら、膜厚
tは厚くとも数百Å程度と考える。したがって、AlA
s薄膜の膜厚Dは厚くとも0.5μm+数百Å程度の膜
厚にすれば良いと考える。こうしておけば、屈折率三次
元周期構造の場合でも後の酸化処理によりAlAs薄膜
13の酸化が可能と考える。
In the above description, an example of oxidizing the refractive index two-dimensional periodic structure has been described.
It is considered possible to convert the AlAs thin film 13 into an oxide film by subjecting the refractive index three-dimensional periodic structure shown in FIG. However, in that case, as shown in FIG. 6, the AlAs thin film 13 is two-dimensionally connected by intentionally making the film thickness D of the AlAs thin film 13 which is an oxidized film slightly thicker than the step H in the unevenness. Leave it in a state. However, AlAs
The thickness t of the portion of the thin film that is thicker than the step H
Must have a film thickness that can be optically ignored.
For example, if the step H is 0.5 μm, the film thickness t is considered to be about several hundred Å at most. Therefore, AlA
It is considered that the film thickness D of the s thin film should be at least 0.5 μm + several hundred Å. By doing so, it is considered that the AlAs thin film 13 can be oxidized by the subsequent oxidation treatment even in the case of the refractive index three-dimensional periodic structure.

【0024】また、この第1の実施の形態においては、
第一の薄膜および第2の薄膜それぞれが最初から屈折率
が異なったものである例を説明したが、後処理を行なう
前まで第一及び第二の薄膜の屈折率が同じであり後処理
で少なくとも一方の薄膜の屈折率が変化するような構成
も、この発明は含む。
Further, in the first embodiment,
Although the first thin film and the second thin film have different refractive indexes from the beginning, the first and second thin films have the same refractive index until after the post-treatment, and the post-treatment has the same refractive index. The present invention also includes a configuration in which the refractive index of at least one of the thin films changes.

【0025】4.第2の実施の形態 次に、周期的な凹凸構造が表面に形成されている下地上
に、後に行なうエッチング方法によってエッチングされ
る第1の薄膜と該エッチング方法によってはエッチング
されないか実質的にエッチングされない第2の薄膜と
を、交互にかつ所定の膜厚となるように積層し、そして
この試料に対し当該エッチングを行なう発明について説
明する。この説明を図7を主に参照して説明する。
4. Second Embodiment Next, a first thin film that is etched by an etching method that will be performed later and a film that is not or is not substantially etched by the etching method on a base on which a periodic uneven structure is formed on the surface. An invention will be described in which the second thin film that is not formed is alternately laminated to have a predetermined film thickness, and the etching is performed on this sample. This explanation will be given mainly with reference to FIG. 7.

【0026】まず屈折率二次元周期構造の作製例におい
て説明した手順により屈折率二次元周期構造17を作成
する(図7(A))。次に、屈折率二次元周期構造17
中のAlAs各層の一部が外部にそれぞれ露出されるよ
うに適正な加工をこの屈折率二次元周期構造に対し実施
する。この加工は例えば劈開により行なえる。もちろ
ん、AlAs各層の一部が外部に既に露出されている場
合は、この加工は無用である。
First, the refractive index two-dimensional periodic structure 17 is created by the procedure described in the manufacturing example of the refractive index two-dimensional periodic structure (FIG. 7A). Next, the refractive index two-dimensional periodic structure 17
Appropriate processing is performed on this two-dimensional periodic structure of refractive index so that a part of each layer of AlAs in the inside is exposed to the outside. This processing can be performed by cleavage, for example. Of course, if a part of each AlAs layer is already exposed to the outside, this processing is unnecessary.

【0027】次に、この試料を、AlAsを溶解するが
GaAsは溶解しない(実質的に溶解しない場合も含
む)エッチング方法によりエッチングする。これは例え
ばふっ酸中に試料を浸漬することで行なえる。この処理
では、各AlAs薄膜13はその露出部から除去されて
ゆくので、試料のAlAs薄膜が存在していた部分は最
終的には空孔31になる(図7(B))。そのため、G
aAs(基板11およびGaAs薄膜15双方)と空孔
31とで構成される屈折率二次元周期構造17yが作製
できる。この構造の場合は、GaAsの屈折率が約3.
5、空孔の屈折率が約1であるので、屈折率差が約2.
5となっている屈折率二次元周期構造が得られる。この
第2の実施の形態では、屈折率二次元周期構造の作製
例、第1の実施の形態いずれの場合より屈折率差が大き
い屈折率二次元周期構造が得られる。
Next, this sample is etched by an etching method which dissolves AlAs but does not dissolve GaAs (including the case where it does not substantially dissolve). This can be done, for example, by immersing the sample in hydrofluoric acid. In this process, since each AlAs thin film 13 is removed from its exposed portion, the portion of the sample where the AlAs thin film was present finally becomes the void 31 (FIG. 7 (B)). Therefore, G
A refractive index two-dimensional periodic structure 17y composed of aAs (both substrate 11 and GaAs thin film 15) and holes 31 can be produced. In the case of this structure, the refractive index of GaAs is about 3.
5. Since the refractive index of the holes is about 1, the difference in refractive index is about 2.
A two-dimensional periodic structure with a refractive index of 5 is obtained. In the second embodiment, a refractive index two-dimensional periodic structure having a larger difference in refractive index than the manufacturing examples of the refractive index two-dimensional periodic structure and the first embodiment can be obtained.

【0028】上述においてはこの発明のいくつかの実施
の形態について説明した。しかしこの発明は上述の実施
の形態に限られない。
In the above, some embodiments of the present invention have been described. However, the present invention is not limited to the above embodiment.

【0029】例えば上述の屈折率二次元周期構造の作製
例、屈折率三次元周期構造の作製例それぞれでは下地を
GaAs基板とし、屈折率が異なる2種類の薄膜をAl
As薄膜およびGaAs薄膜とした例を説明した。ま
た、第1の実施の形態では下地をGaAs基板とし、後
処理により少なくとも一方の屈折率が変化する2種類の
薄膜をAlAs薄膜およびGaAs薄膜とした例を説明
した。また、第2の実施の形態では、下地をGaAs基
板とし、後のエッチング方法によりエッチングされる薄
膜およびされない薄膜をAlAs薄膜およびGaAs薄
膜とした例を説明した。しかし、これら材料はこの発明
の目的を達成し得る他の好適な材料に置換出来る。例え
ば、第1の実施の形態において屈折率が異なる2種類の
薄膜をAlAs薄膜およびAlGaAs薄膜としたり、
組成が異なる2種類のAlGaAs薄膜とした場合も第
1の実施の形態と同様な効果が得られると考える。その
場合は、両者が酸化されることになるがその程度が違う
ので屈折率周期構造が確保されると考える。
For example, in each of the above-described fabrication examples of the two-dimensional periodic structure of refractive index and the three-dimensional periodic structure of refractive index, a base is a GaAs substrate and two kinds of thin films having different refractive indices are made of Al.
The example using the As thin film and the GaAs thin film has been described. Further, in the first embodiment, an example has been described in which the underlayer is a GaAs substrate, and two types of thin films whose refractive index changes by post-treatment are AlAs thin films and GaAs thin films. Further, in the second embodiment, an example has been described in which the underlayer is a GaAs substrate, and the thin film that is etched by a later etching method and the thin film that is not etched are AlAs thin films and GaAs thin films. However, these materials can be replaced with other suitable materials that can achieve the objects of this invention. For example, in the first embodiment, two types of thin films having different refractive indexes are AlAs thin film and AlGaAs thin film,
It is considered that the same effect as that of the first embodiment can be obtained when two types of AlGaAs thin films having different compositions are used. In that case, both are oxidized, but the degree is different, so it is considered that the refractive index periodic structure is secured.

【0030】また、上述の実施の形態であって屈折率三
次元周期構造を作製する例においては、基板表面に平行
な二方向が互いに直交する2方向(図3(A)中にX、
Yで示す各方向)である例を説明した。しかし、該二方
向は直交する方向でなくとも良く、互いが鋭角をなす方
向や鈍角をなす方向でも良い。その場合は、凸部21
a、凹部21bの平面形状を平行四辺形状にする等の手
当をすれば良い。
Further, in the above embodiment, in the example of manufacturing the three-dimensional refractive index structure, two directions parallel to the substrate surface are orthogonal to each other (X in FIG. 3A,
(Each direction indicated by Y). However, the two directions do not have to be orthogonal to each other, and may be directions that form an acute angle or an obtuse angle with each other. In that case, the convex portion 21
It is only necessary to take measures such as making the planar shape of the a and the concave portion 21b into a parallelogram shape.

【0031】[0031]

【発明の効果】上述した説明から明らかなように、この
発明の屈折率多次元周期構造の作製方法によれば、周期
的な凹凸構造を表面に有した下地を用意し、該下地の前
記表面上に、後処理により少なくとも一方の屈折率が変
化するような2種類の薄膜を、交互にかつそれぞれの膜
厚が前記凹凸における段差と等しいか実質的に等しい膜
厚となるように積層し、該積層の済んだ試料に対し当該
後処理を行なう。この方法の場合、凹凸構造を有した下
地を形成する際にドライエッチングを使用する場合もあ
り得るがそのエッチング深さは浅くて済む。また、その
後は、2種類の薄膜を交互に所定の膜厚で積層し、後処
理により屈折率を変化させるのみで良い。したがって、
所望の厚さを有した屈折率多次元周期構造を簡易に作製
でき、然も、光素子作製用の代表的な材料である化合物
半導体材料を用いる場合も所望の屈折率多次元周期構造
を簡易に作製できる。また、従来より高い信頼性および
高い再現性で屈折率多次元周期構造を作製出来る。
As is apparent from the above description, according to the method of manufacturing a refractive index multi-dimensional periodic structure of the present invention, an underlayer having a periodic uneven structure is prepared, and the surface of the underlayer is prepared. Two kinds of thin films whose refractive index is changed by post-treatment are alternately laminated on each other so that the respective film thicknesses are equal to or substantially equal to the step in the unevenness, The post-treatment is performed on the laminated sample. In the case of this method, dry etching may be used when forming a base having a concavo-convex structure, but the etching depth may be shallow. After that, it is only necessary to alternately stack two types of thin films with a predetermined film thickness and change the refractive index by post-treatment. Therefore,
A refractive index multi-dimensional periodic structure having a desired thickness can be easily manufactured, and even when a compound semiconductor material, which is a typical material for manufacturing an optical element, is used, a desired refractive index multi-dimensional periodic structure can be easily manufactured. Can be made. In addition, a refractive index multidimensional periodic structure can be manufactured with higher reliability and higher reproducibility than ever before.

【図面の簡単な説明】[Brief description of drawings]

【図1】屈折率二次元周期構造の作製例の説明図(その
1)である。
FIG. 1 is an explanatory view (No. 1) of a production example of a two-dimensional periodic structure of refractive index.

【図2】屈折率二次元周期構造の作製例の説明図(その
2)である。
FIG. 2 is an explanatory view (No. 2) of an example of manufacturing a two-dimensional periodic structure of refractive index.

【図3】屈折率三次元周期構造の作製例の説明図(その
1)である。
FIG. 3 is an explanatory view (No. 1) of an example of manufacturing a three-dimensional refractive index periodic structure.

【図4】屈折率三次元周期構造の作製例の説明図(その
2)である。
FIG. 4 is an explanatory view (No. 2) of an example of manufacturing a three-dimensional periodic structure of refractive index.

【図5】第1の実施の形態の説明図である。FIG. 5 is an explanatory diagram of the first embodiment.

【図6】第1の実施の形態の他の例の説明図である。FIG. 6 is an explanatory diagram of another example of the first embodiment.

【図7】第2の実施の形態の説明図である。FIG. 7 is an explanatory diagram of the second embodiment.

【符号の説明】[Explanation of symbols]

11:一次元周期構造を有した下地(GaAs基板) 11a:凸部(リッジ状の凸部) 11b:凹部 13:第1の薄膜(AlAs薄膜) 13x:酸化膜(AlAsを酸化した膜) 15:第2の薄膜(GaAs薄膜) 17,17x、17y:屈折率二次元周期構造 21:二次元周期構造を有した下地 21a:凸部(例えば立方形状の凸部) 21b:凹部(例えば立方形状の凹部) 23:屈折率三次元周期構造 31:空孔 11: Base (GaAs substrate) having a one-dimensional periodic structure 11a: convex portion (ridge-shaped convex portion) 11b: concave portion 13: First thin film (AlAs thin film) 13x: oxide film (a film obtained by oxidizing AlAs) 15: Second thin film (GaAs thin film) 17, 17x, 17y: Two-dimensional periodic structure of refractive index 21: Base having a two-dimensional periodic structure 21a: convex portion (for example, cubic convex portion) 21b: concave portion (for example, a cubic concave portion) 23: Refractive index three-dimensional periodic structure 31: Hole

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−180283(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 5/18 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-4-180283 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 5/18

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 周期的な凹凸構造を表面に有した下地を
用意し、 該下地の前記表面上に、後処理により少なくとも一方の
屈折率が変化するような2種類の薄膜を、交互にかつそ
れぞれの膜厚が前記凹凸における段差と等しいか実質的
に等しい膜厚となるように積層し、 該積層の済んだ試料に対し当該後処理を行なうことを特
徴とする屈折率多次元周期構造の作製方法。
1. A base having a periodic concavo-convex structure on its surface is prepared, and two kinds of thin films whose refractive index is changed by post-treatment are alternately and alternately formed on the surface of the base. Laminates are formed so that the respective film thicknesses are equal to or substantially the same as the step difference in the unevenness, and the post-treatment is performed on the laminated sample, and the post-treatment is performed. Manufacturing method.
【請求項2】 周期的な凹凸構造が表面に形成されてい
る下地を用意し、 該下地の前記表面上に、後に行なう酸化処理によって酸
化される第1の薄膜と該第1の薄膜に比べ酸化の程度が
少ないか実質的に酸化されない第2の薄膜とを、交互に
かつそれぞれの膜厚が前記凹凸における段差と等しいか
実質的に等しい膜厚となるように積層し、 該積層の済んだ試料に対し当該酸化処理を行なうことを
特徴とする屈折率多次元周期構造の作製方法。
2. A base having a periodic concavo-convex structure formed on the surface thereof is prepared, and a first thin film oxidized on the surface of the base by an oxidation treatment performed later is compared with the first thin film. Second thin films that are less oxidized or are not substantially oxidized are laminated alternately and so that their respective film thicknesses are equal to or substantially equal to the step difference in the unevenness. A method for producing a refractive index multi-dimensional periodic structure, which comprises subjecting a sample to the oxidation treatment.
【請求項3】 請求項1〜2のいずれか1項に記載の屈
折率多次元周期構造の作製方法において、 前記下地として、前記周期的な凹凸構造が下地表面に平
行な一方向に沿って繰り返されている下地を用い屈折率
二次元周期構造を作製することを特徴とする屈折率多次
元周期構造の作製方法。
3. The method for producing a refractive index multidimensional periodic structure according to claim 1, wherein the periodic uneven structure is provided as the base along one direction parallel to the surface of the base. A method of manufacturing a refractive index multi-dimensional periodic structure, which comprises manufacturing a refractive index two-dimensional periodic structure using a repeating base.
【請求項4】 請求項1〜2のいずれか1項に記載の屈
折率多次元周期構造の作製方法において、 前記下地として、前記周期的な凹凸構造が下地表面に平
行な二方向それぞれに沿って繰り返されている下地を用
い屈折率三次元周期構造を作製することを特徴とする屈
折率多次元周期構造の作製方法(ただし、前記二方向と
は、互いが180°反対向きである場合を除く。)。
4. The method of manufacturing a refractive index multi-dimensional periodic structure according to claim 1, wherein the base has the periodic concavo-convex structure along two directions parallel to the surface of the base. A method for producing a refractive index multi-dimensional periodic structure, which is characterized in that a three-dimensional periodic structure of refractive index is produced using an underlayer which is repeated (however, when the two directions are opposite to each other by 180 °, except.).
【請求項5】 周期的な凹凸構造が表面に形成されてい
る下地であって該凹凸構造が該下地表面に平行な一方向
に沿って繰り返されている下地を用意し、 該下地の前記表面上に、後に行なうエッチング方法によ
ってエッチングされる第1の薄膜と該エッチング方法に
よってはエッチングされないか実質的にエッチングされ
ない第2の薄膜とを、交互にかつそれぞれの膜厚が前記
凹凸における段差と等しいか実質的に等しい膜厚となる
ように積層し、 該積層の済んだ試料に対し当該エッチングを行なうこと
を特徴とする屈折率多次元周期構造の作製方法。
5. A base having a periodic concavo-convex structure formed on the surface thereof, wherein the concavo-convex structure is repeated along one direction parallel to the surface of the base, is prepared. First thin films that are etched by an etching method to be performed later and second thin films that are not or not substantially etched by the etching method are alternately and each have a film thickness equal to the step in the unevenness. Or a method of manufacturing a refractive index multi-dimensional periodic structure, which comprises laminating so that the film thicknesses are substantially equal and performing the etching on the laminated sample.
【請求項6】 請求項1〜5のいずれか1項に記載の屈
折率多次元周期構造の作製方法において、 前記凹凸構造の凹凸が繰り返される方向における凹部の
幅、凸部の幅、該凹凸における段差の各寸法を制御する
ことにより、屈折率多次元周期構造における各次元の周
期を制御することを特徴とする屈折率多次元周期構造の
作製方法。
6. The method for manufacturing a refractive index multi-dimensional periodic structure according to claim 1, wherein the width of the concave portion, the width of the convex portion, and the unevenness in the direction in which the unevenness of the uneven structure is repeated. A method for producing a refractive index multi-dimensional periodic structure, characterized in that the period of each dimension in the refractive index multi-dimensional periodic structure is controlled by controlling each dimension of the step in.
JP11509796A 1996-05-09 1996-05-09 Fabrication method of refractive index multidimensional periodic structure Expired - Fee Related JP3369399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11509796A JP3369399B2 (en) 1996-05-09 1996-05-09 Fabrication method of refractive index multidimensional periodic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11509796A JP3369399B2 (en) 1996-05-09 1996-05-09 Fabrication method of refractive index multidimensional periodic structure

Publications (2)

Publication Number Publication Date
JPH09304611A JPH09304611A (en) 1997-11-28
JP3369399B2 true JP3369399B2 (en) 2003-01-20

Family

ID=14654142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11509796A Expired - Fee Related JP3369399B2 (en) 1996-05-09 1996-05-09 Fabrication method of refractive index multidimensional periodic structure

Country Status (1)

Country Link
JP (1) JP3369399B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288976B2 (en) * 1998-08-07 2002-06-04 彰二郎 川上 Polarizer and its manufacturing method
JP2004062148A (en) * 2002-06-04 2004-02-26 Canon Inc Optical component and manufacturing method therefor
FR2864252B1 (en) * 2003-12-23 2006-04-07 Jobin Yvon Sas ALTERNATE MULTILAYER STACKING DIFFRACTION NETWORK AND METHOD FOR MANUFACTURING SAME AND SPECTROSCOPIC DEVICES HAVING THESE NETWORKS
DE102004040535A1 (en) * 2004-08-20 2006-02-23 Carl Zeiss Ag Polarization selective blazed diffractive optical element
JP2016184705A (en) * 2015-03-26 2016-10-20 富士通株式会社 Semiconductor optical element and manufacturing method of the same

Also Published As

Publication number Publication date
JPH09304611A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
US7129183B2 (en) Method of forming grating microstrutures by anodic oxidation
Cheng et al. New fabrication techniques for high quality photonic crystals
JP3369399B2 (en) Fabrication method of refractive index multidimensional periodic structure
JP2001074954A (en) Production of three dimensional photonic crystal structure
CN111146320A (en) Silicon-based substrate, substrate base plate and manufacturing method thereof, and photoelectric device
US7674573B2 (en) Method for manufacturing layered periodic structures
JP2001272566A (en) Method for manufacturing photonic crystal
JP2605640B2 (en) Semiconductor optical device and method of manufacturing the same
JP2806333B2 (en) Surface emitting device and method of manufacturing the same
JP3449698B2 (en) Photonic crystal structure and fabrication method
JP2595779B2 (en) Surface emitting laser and method of manufacturing the same
JP3440306B2 (en) Method for manufacturing three-dimensional semiconductor photonic crystal device
JPH03225985A (en) Semiconductor laser device of refractive-index waveguide type
US20120142170A1 (en) Method of forming photonic crystals
JPH06326409A (en) Surface emission element
JP3047049B2 (en) Method of manufacturing buried semiconductor laser
JP2004134501A (en) Light emitting device and its manufacturing method
JP2546153B2 (en) Surface emitting device and manufacturing method thereof
JPH0473286B2 (en)
US6242275B1 (en) Method for manufacturing quantum wires
JPS6329989A (en) Manufacture of two-dimensional multiple quantum well structure
JPH09171963A (en) Manufacture of minute semiconductor structure
KR0141254B1 (en) A method of manufacturing semiconductor laser device
JPS62273791A (en) Manufacture of semiconductor quantum well laser
JPH06104189A (en) Semiconductor substrate for selective growth of iii-v compound semiconductor thin-film and forming method for its substrate and thin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees