JP2546153B2 - Surface emitting device and manufacturing method thereof - Google Patents
Surface emitting device and manufacturing method thereofInfo
- Publication number
- JP2546153B2 JP2546153B2 JP16909593A JP16909593A JP2546153B2 JP 2546153 B2 JP2546153 B2 JP 2546153B2 JP 16909593 A JP16909593 A JP 16909593A JP 16909593 A JP16909593 A JP 16909593A JP 2546153 B2 JP2546153 B2 JP 2546153B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- reflective film
- multilayer reflective
- semiconductor
- active layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/16—Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
- H01S2301/166—Single transverse or lateral mode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2054—Methods of obtaining the confinement
- H01S5/2059—Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は素子抵抗の低減による熱
特性の向上、単一横モードの安定化を実現する面発光素
子およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting device which improves thermal characteristics by reducing device resistance and stabilizes a single transverse mode, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】光のもつ並列性および空間伝播性を情報
処理に応用するためには面方向に素子を二次元に集積化
することが望ましい。こうした素子の高密度集積には個
々の素子の熱特性の向上および単一横モードの安定化が
必要となる。上記の実現のためにこれまで二段メサ形状
に構造することで低抵抗化を図った面発光素子が199
3年発行のフォトニクス・テクノロジー・レターズ(P
hotonics Technology Lette
rs)第5巻 136ページ記載の論文において沼居ら
により報告されているし、また、AlGaAs半導体層
による埋込み構造をとり、それにより電流狭搾、キャリ
ア閉じ込めをin situのドライエッチングプロセ
スを用いて実施した例もある。この文献として1993
年発行のフォトニクス・テクノロジー・レターズ(Ph
otonics Technology Letter
s)第5巻 284ページ記載のケント・ディー・ショ
ケット(Kent D.Choquette)らによる
論文がある。2. Description of the Related Art In order to apply the parallelism and spatial propagation properties of light to information processing, it is desirable to integrate elements two-dimensionally in the plane direction. High-density integration of such devices requires improvement of thermal characteristics of individual devices and stabilization of a single transverse mode. In order to realize the above, a surface emitting device, which has been reduced in resistance by constructing a two-step mesa structure, has been used up to now.
Photonics Technology Letters (P
photonics Technology Lette
rs) Vol. 5, p. 136, reported by Numai et al., and the buried structure of AlGaAs semiconductor layer was adopted, whereby current confinement and carrier confinement were carried out by using an in situ dry etching process. There is also an example. As this document 1993
Photonics Technology Letters (Ph
otonics Technology Letter
s) There is a paper by Kent D. Choquette et al., Volume 5, page 284.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記の報
告においては第一の例では上部の多層反射膜を注入電流
が通過せず上部多層反射膜の抵抗分だけ素子抵抗は低減
されるが、コンタクト抵抗の低減が実現されておらず、
このコンタクト層に高濃度不純物をドーピングするにし
ても同時に共振器内にも高濃度ドープ層が形成されるた
め光吸収が増してしまうなどの不都合が生じるし、加え
て単一横モードの安定化のためには素子サイズの低減が
必要で、それに伴うクリティカルな微細加工が要求され
るといった問題があった。また、第二の例でも素子抵抗
の低減は全く図られておらず、素子の温度特性の改善の
点で問題があった。However, in the above report, in the first example, the injection resistance does not pass through the upper multilayer reflective film and the element resistance is reduced by the resistance of the upper multilayer reflective film, but the contact resistance is reduced. Has not been achieved,
Even if this contact layer is doped with high-concentration impurities, the high-concentration doped layer is simultaneously formed in the resonator, which causes disadvantages such as increased light absorption. In addition, stabilization of the single transverse mode is also caused. Therefore, there is a problem that it is necessary to reduce the element size, and accordingly, critical fine processing is required. Also, in the second example, the element resistance was not reduced at all, and there was a problem in improving the temperature characteristics of the element.
【0004】そこで、本発明においては作製された面発
光素子自体にダメージを残すことなく、コンタクト抵抗
までも含めた素子抵抗の低減、単一横モードの安定化と
いった高密度集積化に不可欠な要素を実現することを目
的とする。Therefore, in the present invention, an element indispensable for high-density integration such as reduction of element resistance including contact resistance and stabilization of a single transverse mode without leaving damage to the surface emitting element itself produced. The purpose is to realize.
【0005】[0005]
【課題を解決するための手段】前述の課題を解決するた
めに本発明が提供する手段は、半導体基板上に第一の多
層反射膜を形成する工程と、その上に活性層を含む中間
層を形成する工程と、その上に第二の多層反射膜を形成
する工程と、上記で形成された第二の多層反射膜の少な
くとも一部を除去する工程と、その除去後残った半導体
柱を発光部とし、その両脇をコンタクト層として高濃度
ドープした半導体層を再成長することにより形成する工
程と、その後活性層の両脇にプロトン注入により高抵抗
層を形成する工程とを具備する面発光素子の製造方法で
ある。[Means for Solving the Problems] The means provided by the present invention for solving the above-mentioned problems include a step of forming a first multilayer reflective film on a semiconductor substrate, and an intermediate layer including an active layer thereon. A step of forming a second multilayer reflective film thereon, a step of removing at least a part of the second multilayer reflective film formed above, and a semiconductor pillar remaining after the removal. A surface comprising a light emitting portion, a step of forming a highly doped semiconductor layer by regrowth on both sides thereof as contact layers, and a step of forming a high resistance layer by proton injection on both sides of the active layer thereafter. It is a manufacturing method of a light emitting element.
【0006】または、半導体基板上に第一の多層反射膜
を形成する工程と、その上に活性層を含む中間層を形成
する工程と、その上に第二の多層反射膜を形成する工程
と、上記で形成された第二の多層反射膜、活性層を含む
中間層の少なくとも一部を除去する工程と、その除去後
残った半導体柱を発光部とし、高抵抗半導体層を活性層
の両脇に結晶成長する工程と、その後斜め入射の分子線
による結晶成長により多層反射膜で構成される上部多層
反射膜部の側面に高濃度ドープした半導体層を形成する
工程とを具備する面発光素子の製造方法である。Alternatively, a step of forming a first multilayer reflective film on a semiconductor substrate, a step of forming an intermediate layer including an active layer thereon, and a step of forming a second multilayer reflective film thereon. , A step of removing at least a part of the intermediate layer including the second multilayer reflective film and the active layer formed above, and the semiconductor pillar remaining after the removal is used as a light emitting portion, and the high resistance semiconductor layer is used as the active layer. A surface emitting device comprising a step of growing a crystal aside and a step of forming a highly-doped semiconductor layer on a side surface of an upper multilayer reflective film portion formed of the multilayer reflective film by crystal growth by a diagonally incident molecular beam. Is a manufacturing method.
【0007】または上記の各々の製造方法により作製さ
れた面発光素子である。Alternatively, the surface emitting element is manufactured by each of the above manufacturing methods.
【0008】[0008]
【作用】本発明によれば、コンタクト層および埋込みに
用いる半導体層の形成に再成長の方法を用いるため、誘
電体膜等によるパッシベイションの必要が全くないとい
う利点がある。そのうえ、高濃度ドープ半導体層をコン
タクト層として用いていること、かつ電流注入の経路が
上部多層膜反射鏡部分を迂回しているため素子抵抗の低
減に伴う素子の温度特性の著しい向上が実現できる。ま
た、素子の上部多層膜反射鏡を埋込み構造とすること
で、単一横モードの安定化をも同時に達成することがで
きる。さらに、請求項4の作製方法においては素子に対
するダメージを全く与えない利点がある。According to the present invention, since the regrowth method is used for forming the contact layer and the semiconductor layer used for burying, there is an advantage that no passivation by a dielectric film or the like is necessary. In addition, since the heavily doped semiconductor layer is used as the contact layer and the current injection path bypasses the upper multilayer film reflection mirror portion, the temperature characteristic of the element can be remarkably improved with the reduction of the element resistance. . In addition, the upper multilayer film reflecting mirror of the device has a buried structure, so that stabilization of a single transverse mode can be achieved at the same time. Further, the manufacturing method according to the fourth aspect has an advantage that the element is not damaged at all.
【0009】[0009]
【実施例】次に本発明の実施例について図面を参照しな
がら詳細に説明する。図1は本発明の一実施例を説明す
るために示す面発光素子の断面図である。図2はその製
作工程を説明するための図である。まず、n型GaAs
基板1上にn型AlAs層およびn型GaAs層を各々
厚さλ/4n(λは発振波長、nは媒質の屈折率)だけ
形成する。この後上記工程を繰り返し、約20周期程度
積層することによりn型半導体多層膜反射鏡2を形成す
る。次にこのn型半導体多層膜反射鏡2の上にn型クラ
ッド層3としてn型Alx Ga1 - x As(x=0.3
〜0.7)層を約50nm〜1μm形成する。このn型
クラッド層3の上に活性層4としてIny Ga1 - y A
s(y=0.05〜0.5)を約10nm〜30nmの
厚さだけ形成する。この活性層4の上にp型クラッド層
5としてp型Alz Ga1 - zAs(z=0.3〜0.
7)層を約50nm〜1μm形成する。このp型クラッ
ド層5の上にp型AlAsとp型GaAs層をn型半導
体多層膜反射鏡と同様に各々厚さλ/4n(nは媒質の
屈折率)だけ形成し、この後上記工程を繰り返すことで
約10〜20周期程度を積層する。これによりp型半導
体多層膜反射鏡6を形成する。Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a sectional view of a surface emitting device shown for explaining an embodiment of the present invention. FIG. 2 is a diagram for explaining the manufacturing process. First, n-type GaAs
An n-type AlAs layer and an n-type GaAs layer are formed on the substrate 1 to have a thickness of λ / 4n (λ is the oscillation wavelength and n is the refractive index of the medium). After that, the above steps are repeated and the n-type semiconductor multilayer film reflecting mirror 2 is formed by stacking the layers for about 20 cycles. Next, n-type Al x Ga 1 -x As (x = 0.3) is formed as an n-type cladding layer 3 on the n-type semiconductor multilayer film reflecting mirror 2.
.About.0.7) layer is formed to a thickness of about 50 nm to 1 .mu.m. On the n-type cladding layer 3, an active layer 4 of In y Ga 1 -y A
s (y = 0.05 to 0.5) is formed to a thickness of about 10 nm to 30 nm. On the active layer 4, p-type Al z Ga 1 -z As (z = 0.3-0.
7) Form a layer of about 50 nm to 1 μm. On the p-type cladding layer 5, p-type AlAs and p-type GaAs layers are respectively formed to a thickness of λ / 4n (n is the refractive index of the medium) as in the case of the n-type semiconductor multilayer film reflecting mirror. By repeating the above, about 10 to 20 cycles are laminated. Thereby, the p-type semiconductor multilayer film reflecting mirror 6 is formed.
【0010】以上のようにして得られた図2(a)のウ
エハに例えばSiO2 7をマスクとして図2(b)のよ
うなエッチングを施し、発光部となる半導体柱を残して
p型半導体多層膜反射鏡6の少なくとも一部を除去して
しまう。その除去部に再成長によりコンタクト層として
高濃度ドープした半導体層8をp型半導体多層膜反射鏡
6を図2(c)のように埋め込むように形成する。この
後SiO2 7上に形成された不要な多結晶(ポリ)半導
体層10をバッファードフッ酸を用いたリフトオフによ
り除去する。このリフトオフを効率的に行うためにはエ
ッチングにおいてアンダーカットができるようなエッチ
ング手法を用いることが望ましい。そして最後に活性層
への電流狭搾のためプロトン(例えばH+ )を活性層4
の両脇に注入して、図2(d)のようにプロトン注入領
域9を形成し、本発明による面発光素子を得る。The wafer of FIG. 2 (a) obtained as described above is subjected to etching as shown in FIG. 2 (b) using, for example, SiO 2 7 as a mask, and the p-type semiconductor is left with the semiconductor pillar to be the light emitting portion. At least a part of the multilayer-film reflective mirror 6 is removed. In the removed portion, a highly doped semiconductor layer 8 is formed as a contact layer by regrowth so that the p-type semiconductor multilayer film reflecting mirror 6 is embedded as shown in FIG. 2C. After that, the unnecessary polycrystalline (poly) semiconductor layer 10 formed on the SiO 2 7 is removed by lift-off using buffered hydrofluoric acid. In order to carry out this lift-off efficiently, it is desirable to use an etching technique that allows undercutting during etching. Finally, protons (for example, H + ) are applied to the active layer 4 for current narrowing to the active layer.
2 (d) to form the proton injection region 9 to obtain the surface emitting device according to the present invention.
【0011】ここで、p型半導体多層膜反射鏡6の周期
数が十分に多ければ(例えば20周期以上)、エッチン
グ終了後、p型半導体多層膜反射鏡6の側面をレジスト
剤でマスクしてSiO2 をバッファードフッ酸で除去し
てしまい、その後再成長によるコンタクト層作製の工程
を施してもよい。また、多層膜反射鏡は半導体に限らな
い。If the number of cycles of the p-type semiconductor multilayer film reflecting mirror 6 is sufficiently large (for example, 20 cycles or more), the side surface of the p-type semiconductor multilayer film reflecting mirror 6 is masked with a resist agent after the etching is completed. SiO 2 may be removed by buffered hydrofluoric acid, and then a step of forming a contact layer by regrowth may be performed. Further, the multilayer film reflecting mirror is not limited to the semiconductor.
【0012】同様にして図3に本発明による他の実施例
を示す。図4はその製造工程を説明するための図であ
る。初めてのウエハ形成の工程までは上述の図1に基づ
く実施例の場合と同様である。その後、図4(b)のよ
うに例えばSiO2 をマスクとしてエッチングを施し、
p型半導体多層膜反射鏡16および活性層14を含む中
間層の少なくとも一部を除去する。この後、SiO2 除
去後、図4(c)のように活性層の両脇を少なくとも埋
め込むように高抵抗層19として例えばノンドープのA
lGaAsを再成長により形成する。続いて図4(d)
のように高濃度ドープの半導体層18を例えば1×10
2 0 cm- 3 のドーピング濃度のBe−GaAsで形成
する。この際、斜め入射の分子線を用いた結晶成長を行
うことで、p型半導体多層膜反射鏡16までの埋込みを
完全なものとすることができる。Similarly, FIG. 3 shows another embodiment according to the present invention. FIG. 4 is a diagram for explaining the manufacturing process. The process up to the first wafer formation is the same as in the case of the embodiment based on FIG. 1 described above. After that, as shown in FIG. 4B, etching is performed using SiO 2 as a mask,
At least a part of the intermediate layer including the p-type semiconductor multilayer film reflecting mirror 16 and the active layer 14 is removed. Thereafter, after removing SiO 2 , as shown in FIG. 4C, a high resistance layer 19 such as non-doped A is formed so as to fill at least both sides of the active layer.
lGaAs is formed by regrowth. Then, FIG. 4 (d)
The heavily doped semiconductor layer 18 is, for example, 1 × 10
It is formed of Be-GaAs with a doping concentration of 20 cm −3 . At this time, by performing crystal growth using obliquely incident molecular beams, the embedding up to the p-type semiconductor multilayer film reflecting mirror 16 can be completed.
【0013】ここで、図1による実施例と同時にSiO
2 の除去する順序は多層膜反射鏡の周期数により自由度
があるし、多層反射鏡は半導体に限らない。また、図4
による製造方法は打ち込みの深さに大きく影響を受け、
プロトンの通過領域を高抵抗領域にしてしまうプロトン
注入の工程を必要としないので、素子とくに高濃度ドー
プ半導体層に与えるダメージおよび深さの制御の必要性
がない点で優れている。さらに、高抵抗層および高濃度
ドープ半導体層を熱伝導係数の高い材料を用いること
で、活性層近傍で発生する熱を効率的に除去できるし、
高密度集積した際の隣接素子間の熱干渉をも防ぐことが
できる点でも優れている。Here, at the same time as the embodiment according to FIG.
The removal order of 2 has a degree of freedom depending on the number of cycles of the multilayer film reflecting mirror, and the multilayer reflecting mirror is not limited to the semiconductor. Also, FIG.
The manufacturing method by is greatly affected by the depth of implantation,
Since it does not require the step of proton injection that makes the proton passage region a high resistance region, it is excellent in that there is no need to control the damage to the element, especially the heavily doped semiconductor layer, and the depth control. Furthermore, by using a material having a high thermal conductivity coefficient for the high resistance layer and the heavily doped semiconductor layer, the heat generated near the active layer can be efficiently removed,
It is also excellent in that it is possible to prevent thermal interference between adjacent elements at the time of high-density integration.
【0014】上記実施例において素子は垂直共振器型の
面発光レーザとしたがこれに限らずpnpn型面発光素
子でも本発明は適用できる。In the above embodiment, the device is a vertical cavity surface emitting laser, but the present invention is not limited to this, and the present invention can be applied to a pnpn surface emitting device.
【0015】[0015]
【発明の効果】以上説明したように、本発明によれば素
子抵抗の低減および単一横モードの安定化を実現した面
発光素子を作製することができる。この結果、素子の温
度特性の向上、安定した光出力が実現でき、面発光素子
の高密度二次元集積化が達成される。As described above, according to the present invention, it is possible to manufacture a surface emitting device which realizes reduction of device resistance and stabilization of a single transverse mode. As a result, the temperature characteristics of the device can be improved, stable light output can be realized, and high-density two-dimensional integration of the surface emitting device can be achieved.
【図1】本発明を説明するための図である。FIG. 1 is a diagram for explaining the present invention.
【図2】本発明による一実施例の製造方法の工程を示す
断面図である。FIG. 2 is a cross-sectional view showing the steps of a manufacturing method according to an embodiment of the present invention.
【図3】本発明を説明するための図である。FIG. 3 is a diagram for explaining the present invention.
【図4】本発明の別の製造方法の工程を示す断面図であ
る。FIG. 4 is a cross-sectional view showing a step of another manufacturing method of the present invention.
1 半導体基板 2 n型半導体多層膜反射鏡 3 n型クラッド層 4 活性層 5 p型クラッド層 6 p型半導体多層膜反射鏡 7 SiO2 8 高濃度ドープ半導体 9 プロトン注入領域 10 ポリ半導体 11 半導体基板 12 n型半導体多層膜反射鏡 13 n型クラッド層 14 活性層 15 p型クラッド層 16 p型半導体多層膜反射鏡 17 SiO2 18 高濃度ドープ半導体 19 高抵抗層 20 ポリ半導体1 Semiconductor Substrate 2 n-type Semiconductor Multilayer Reflector 3 n-type Cladding Layer 4 Active Layer 5 p-type Cladding Layer 6 p-type Semiconductor Multilayer Reflector 7 SiO 2 8 Highly Doped Semiconductor 9 Proton Injection Region 10 Poly Semiconductor 11 Semiconductor Substrate 12 n-type semiconductor multilayer mirror 13 n-type cladding layer 14 active layer 15 p-type cladding layer 16 p-type semiconductor multilayer mirror 17 SiO 2 18 heavily doped semiconductor 19 high resistance layer 20 poly semiconductor
フロントページの続き (56)参考文献 特開 平4−275485(JP,A) 特開 昭63−205979(JP,A) 特開 昭61−271886(JP,A)Continuation of front page (56) Reference JP-A-4-275485 (JP, A) JP-A-63-205979 (JP, A) JP-A-61-271886 (JP, A)
Claims (5)
された第一の多層反射膜と、この第一の多層反射膜の上
に形成された活性層を含む中間層と、その中間層の上に
形成された第二の多層反射膜と、第二の多層反射膜の少
なくとも一部が除去された開口部と、この開口部で囲ま
れる発光部となる半導体柱と、前記開口部に形成された
高濃度不純物を含むコンタクト層と、前記開口部に少な
くとも活性層に到達するようにプロトン注入された高抵
抗層とを具備することを特徴とする面発光素子。1. A semiconductor substrate, a first multilayer reflective film formed on the semiconductor substrate, an intermediate layer including an active layer formed on the first multilayer reflective film, and an intermediate layer of the intermediate layer. A second multilayer reflective film formed on the above, an opening from which at least a part of the second multilayer reflective film is removed, a semiconductor pillar to be a light emitting portion surrounded by the opening, and formed in the opening 2. A surface emitting device comprising: a contact layer containing a high concentration impurity as described above; and a high resistance layer in which protons are injected into the opening so as to reach at least the active layer.
する工程と、その上に活性層を含む中間層を形成する工
程と、その上に第二の多層反射膜を形成する工程と、前
記第二の多層反射膜の少なくとも一部を除去する工程
と、その除去後残った半導体柱を発光部とし、その両脇
をコンタクト層として高濃度ドープした半導体層を再成
長することにより形成する工程と、その後活性層の両脇
にプロトン注入により高抵抗層を形成する工程とを具備
することを特徴とする面発光素子の製造方法。2. A step of forming a first multilayer reflective film on a semiconductor substrate, a step of forming an intermediate layer including an active layer thereon, and a step of forming a second multilayer reflective film thereon. A step of removing at least a part of the second multilayer reflection film, and the semiconductor pillar remaining after the removal is used as a light emitting portion, and both sides of the semiconductor pillar are used as contact layers to re-grow a highly doped semiconductor layer. And a step of forming a high resistance layer on both sides of the active layer by injecting protons thereafter.
された第一の多層反射膜と、この第一の多層反射膜の上
に形成された活性層を含む中間層と、その中間層の上に
形成された第二の多層反射膜と、第二の多層反射膜およ
び活性層を含む中間層の少なくとも一部まで除去された
開口部と、この開口部で囲まれる発光部となる半導体柱
と、前記開口部に形成された活性層の周囲に形成された
高抵抗層と、その高抵抗層の上に形成された高濃度不純
物半導体層とを具備することを特徴とする面発光素子。3. A semiconductor substrate, a first multilayer reflective film formed on the semiconductor substrate, an intermediate layer including an active layer formed on the first multilayer reflective film, and an intermediate layer of the intermediate layer. The second multilayer reflective film formed above, the opening removed to at least a part of the intermediate layer including the second multilayer reflective film and the active layer, and the semiconductor pillar to be a light emitting part surrounded by the opening A surface emitting device comprising: a high resistance layer formed around the active layer formed in the opening; and a high concentration impurity semiconductor layer formed on the high resistance layer.
する工程と、その上に活性層を含む中間層を形成する工
程と、その上に第二の多層反射膜を形成する工程と、前
記第二の多層反射膜、活性層を含む中間層の少なくとも
一部を除去する工程と、その除去後残った半導体柱を発
光部とし、高抵抗半導体層を活性層の両脇に結晶成長す
る工程と、その後斜め入射の分子線による結晶成長によ
り多層反射膜で構成される上部多層反射膜部の側面に高
濃度ドープした半導体層を形成する工程とを具備するこ
とを特徴とする面発光素子の製造方法。4. A step of forming a first multilayer reflective film on a semiconductor substrate, a step of forming an intermediate layer including an active layer thereon, and a step of forming a second multilayer reflective film thereon. A step of removing at least a part of the intermediate layer including the second multilayer reflection film and the active layer, and a semiconductor pillar remaining after the removal is used as a light emitting portion, and a high resistance semiconductor layer is crystal-grown on both sides of the active layer. And a step of forming a highly-doped semiconductor layer on the side surface of the upper multilayer reflective film portion constituted by the multilayer reflective film by crystal growth by obliquely incident molecular beams. Device manufacturing method.
膜と中間層の除去過程においてマスクを使用し、高濃度
不純物半導体層形成後、不要なマスク上の多結晶半導体
をリフトオフにより除去することを特徴とする請求項2
または4記載の面発光素子の製造方法。5. using a mask in the process the removal of the second multilayer reflective film or the second multilayer reflection film and the intermediate layer, after the high concentration impurity semiconductor layer is formed, is removed by the lift-off of polycrystalline semiconductor on the unnecessary mask 3. The method according to claim 2, wherein
Alternatively, the method for manufacturing the surface emitting device according to the item 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16909593A JP2546153B2 (en) | 1993-07-08 | 1993-07-08 | Surface emitting device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16909593A JP2546153B2 (en) | 1993-07-08 | 1993-07-08 | Surface emitting device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0730205A JPH0730205A (en) | 1995-01-31 |
JP2546153B2 true JP2546153B2 (en) | 1996-10-23 |
Family
ID=15880230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16909593A Expired - Lifetime JP2546153B2 (en) | 1993-07-08 | 1993-07-08 | Surface emitting device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2546153B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5181420B2 (en) * | 2006-01-31 | 2013-04-10 | 住友電気工業株式会社 | Surface emitting semiconductor laser |
CN111211488A (en) * | 2020-01-16 | 2020-05-29 | 浙江博升光电科技有限公司 | High contrast grating vertical cavity surface emitting laser and method of manufacture |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61271886A (en) * | 1985-05-27 | 1986-12-02 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor laser device |
JPS63205979A (en) * | 1987-02-23 | 1988-08-25 | Furukawa Electric Co Ltd:The | Semiconductor light-emitting device |
US5063569A (en) * | 1990-12-19 | 1991-11-05 | At&T Bell Laboratories | Vertical-cavity surface-emitting laser with non-epitaxial multilayered dielectric reflectors located on both surfaces |
-
1993
- 1993-07-08 JP JP16909593A patent/JP2546153B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0730205A (en) | 1995-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0609836B1 (en) | Surface emitting laser and method for fabricating the same | |
EP0858137B1 (en) | Surface emitting laser device and its method of manufacture | |
JP3504742B2 (en) | Laser diode | |
US6222866B1 (en) | Surface emitting semiconductor laser, its producing method and surface emitting semiconductor laser array | |
US6052398A (en) | Surface emitting semiconductor laser | |
KR100623406B1 (en) | Vertical cavity surface emitting laser | |
JP2874442B2 (en) | Surface input / output photoelectric fusion device | |
JPH06338654A (en) | Semiconductor laser, manufacture thereof and semiconductor laser array | |
JPH05175615A (en) | Lane light emission integrated element and manufacture thereof | |
JP2546153B2 (en) | Surface emitting device and manufacturing method thereof | |
JP2950028B2 (en) | Method for manufacturing optical semiconductor device | |
JP3777332B2 (en) | Surface emitting semiconductor light emitting device | |
JP3145769B2 (en) | Semiconductor surface emitting device | |
JP3262310B2 (en) | Vertical cavity semiconductor laser device and method of manufacturing the same | |
JP2546150B2 (en) | Three-dimensional cavity surface emitting laser | |
JPH0648742B2 (en) | Method for manufacturing semiconductor laser | |
JP2875929B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP3470282B2 (en) | Surface emitting semiconductor laser and manufacturing method thereof | |
JP2800746B2 (en) | Surface emitting device and method of manufacturing the same | |
JPH05145170A (en) | Plane emission laser | |
JPH09246652A (en) | Semiconductor laser and manufacturing method thereof | |
EP1564855B1 (en) | Surface emitting laser devices and method of manufacture | |
JP2000294877A (en) | High output semiconductor laser and manufacture of the same | |
JP2917695B2 (en) | Method for manufacturing optical semiconductor device | |
JP2855887B2 (en) | Semiconductor laser and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960611 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070808 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100808 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 17 |
|
EXPY | Cancellation because of completion of term |