JPS61271886A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS61271886A
JPS61271886A JP11223785A JP11223785A JPS61271886A JP S61271886 A JPS61271886 A JP S61271886A JP 11223785 A JP11223785 A JP 11223785A JP 11223785 A JP11223785 A JP 11223785A JP S61271886 A JPS61271886 A JP S61271886A
Authority
JP
Japan
Prior art keywords
layer
type
substrate
semiconductor laser
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11223785A
Other languages
Japanese (ja)
Inventor
Yoshinori Nakano
中野 好典
Junichi Yoshida
淳一 吉田
Shingo Uehara
上原 信吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11223785A priority Critical patent/JPS61271886A/en
Publication of JPS61271886A publication Critical patent/JPS61271886A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a device characterized by easy manufacture and a high speed switching function, by providing a PNP multilayer structure comprising three or more growing layers on a P-type semiconductor substrate, providing electrodes on the substrate, the uppermost N-type layer and the P-type layer immediately beneath the N-type layer, and using one of the N- and P-type growing layers wherein a junction part is present as an active region. CONSTITUTION:On a P-InP substrate 1, a P-InP buffer layer 2, an Sn doped InGaAsP active layer 3 and an N-InP clad layer 4 are formed. Thereafter, with an SiO2 having a width of 1.5mum as a mask, proton is projected on both sides of the growing layers, and a high-resistance current limiting region 5 is formed. After the SiO2 film is removed, a P-InP layer 6 and an N-InP layer 7 are sequentially grown. With an SiO2 film as a mask, e.g., Be ions are implanted so as to reach at least the layer 6, and a P<+> regions 8 are formed. Then electrode metal is evaporated on the substrate and N and P regions on the side of the growing layers. By using electrode isolating layers 9 of an SiO2 film, independent electrodes 10, 11 and 12 are formed. An element, which has a resonator with a length of about 250mum, is obtained by cleavage.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスイッチング機能を有する半導体レーザ装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device having a switching function.

[開示の概要] 本発明は、半導体レーザ装置において、半導体レーザと
電気素子とを成長積層中に構成することにより、製作が
容易で高速なスイッチング機能を有する半導体レーザを
実現する技術を開示するものである。
[Summary of the Disclosure] The present invention discloses a technology for realizing a semiconductor laser that is easy to manufacture and has a high-speed switching function by configuring a semiconductor laser and an electric element during growth and lamination in a semiconductor laser device. It is.

なお、この概要はあくまでも本発明の技術内容に迅速に
アクセスするためにのみ供されるものであって、本発明
の技術的範囲および権利解釈に対しては伺の影響も及ぼ
さないものである。
This summary is provided solely for the purpose of quickly accessing the technical content of the present invention, and does not have any influence on the technical scope of the present invention or the interpretation of rights.

[従来の技術] 光フアイバ伝送方式における光信号は、半導体レーザと
、これに電気信号を供給し、駆動するための電気回路と
で構成されていることが多い、ところが、レーザと駆動
回路をモノリシックに集積することは、光フアイバ伝送
方式における信頼性、コストの面で魅力があるばかりで
なく、変調周波数を上げていく上で非常に有利である。
[Prior Art] Optical signals in optical fiber transmission systems are often composed of a semiconductor laser and an electrical circuit for supplying electrical signals to and driving the laser. However, the laser and drive circuit are not monolithic. Integration into the optical fiber transmission system is not only attractive in terms of reliability and cost, but also very advantageous in increasing the modulation frequency.

同一基板上に形成する電気素子としてはFET、)ラン
ジスタ等が考えられる。しかし、従来、これらの素子は
半導体レーザとは独立に分離して形成されるため、集積
化にあたっては、製作プロセスは極めて複雑であるばか
りでなく、相互の特性の歩留りが影響し、特性のそろっ
た集積化素子を得るのには非常に高度な製作技術が必要
であった。
FETs, transistors, etc. can be considered as electric elements formed on the same substrate. However, conventionally, these elements are formed separately from the semiconductor laser, so when integrating them, not only is the manufacturing process extremely complicated, but the yield of each other's characteristics is affected, making it difficult to match the characteristics. Very advanced manufacturing techniques were required to obtain such integrated devices.

[発明が解決しようとする問題点] 本発明はこのような従来の欠点を解決するためになされ
たもので、単一の半導体装置内に半導体レーザと電気素
子とを構成し、製作が容易で高速なスイッチング機能を
有する半導体レーザ装置を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention has been made to solve these conventional drawbacks, and it is possible to configure a semiconductor laser and an electric element in a single semiconductor device, which is easy to manufacture. An object of the present invention is to provide a semiconductor laser device having a high-speed switching function.

[問題点を解決するための手段] 本発明においては、p型半導体基板上に、少なくとも3
層の成長層からなるpnpn多層構造を有し、基板、最
上層のn型層および最上層のn型層直下のp型層にそれ
ぞれ電極が設けられ、接合の介在するn型およびplJ
成長層のいずれか一方を活性領域としている。
[Means for solving the problem] In the present invention, at least three
It has a pnpn multilayer structure consisting of growth layers, and electrodes are provided on the substrate, the uppermost n-type layer, and the p-type layer directly below the uppermost n-type layer, and the n-type and plJ
Either one of the growth layers is used as an active region.

[作 用] このような構成をもっているので、p◆領領域設けた電
極への印加電圧によって、高速スイッチングを行わせる
ことができる。
[Function] With such a configuration, high-speed switching can be performed by applying a voltage to the electrode provided with the p◆ region.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例である0図において、lはp 
−1nP基板、2はp −Ir+Pバ”/ 77層、3
はn −InGaAsP活性層、4はn −1nPクラ
ツド層、5は高抵抗層、6はp −1nP N、7はn
 −1nP層、8はp −1nP層へ電流を注入するた
めのp+望域、9は5i02膜、lOはn −InP層
7上の電極、 11はp◆領域8上の電極、12は基板
1の電極である。これを形成するには次のように行う。
FIG. 1 is an embodiment of the present invention in FIG. 0, where l is p
-1nP substrate, 2 is p-Ir+P bar''/77 layers, 3
is n-InGaAsP active layer, 4 is n-1nP clad layer, 5 is high resistance layer, 6 is p-1nP N, 7 is n
-1nP layer, 8 is a p+ desired region for injecting current into the p-1nP layer, 9 is a 5i02 film, IO is an electrode on the n-InP layer 7, 11 is an electrode on the p◆ region 8, 12 is a substrate This is the first electrode. To form this, proceed as follows.

p −1nP基板1上にp −1nPのバッファ層2(
厚さ3ILm、Znドープ、 5 X 10’ cm−
’ )、組成波長1.34m  、キャリア濃度10”
 ctg−”のSnドープのInGaAsP活性層3(
厚さ0.15#Lm)、 n −1nPクラツド層4(
厚さ0.2gm、Snドープ、 1G” cm−3)を
形成したのちに、巾1.57zmの5iOz Illを
マスクとして、成長層の両側にプロトン照射を行い、高
抵抗な電流制限領域5を形成する。
A p -1nP buffer layer 2 (
Thickness 3ILm, Zn doped, 5 X 10' cm-
), composition wavelength 1.34m, carrier concentration 10"
ctg-” Sn-doped InGaAsP active layer 3 (
thickness 0.15#Lm), n-1nP cladding layer 4 (
After forming a 0.2 gm thick, Sn-doped, 1G" cm-3) growth layer, proton irradiation was performed on both sides of the growth layer using a 5iOz Ill with a width of 1.57 zm as a mask to form a high-resistance current limiting region 5. Form.

5i02膜を除去したのち、p −1nP層6(厚さ 
1.OILm、Znドープ、 5 X 10” cm−
3)およびn−1nPFJ7(厚さ 1.01h m、
Snドープ、lXl0”cm−’)を順次成長させる。
After removing the 5i02 film, a p-1nP layer 6 (thickness
1. OILm, Zn doped, 5 X 10” cm-
3) and n-1nPFJ7 (thickness 1.01h m,
Sn-doped, lXl0''cm-') are sequentially grown.

さらに5i02 WAをマスクとして、少なくとも第6
層に達するように例えばBeイオン注入を行いp十領域
8を形成する。然る後、基板側および成長層側のnおよ
びP領域にそれぞれの電極用金属を蒸着し、5i02膜
の電極分離M9を用いて、独立な電極10,11.12
を形成する。そしてへき開によって共振器長的250#
L■の素子とする。
Furthermore, using 5i02 WA as a mask, at least the 6th
For example, Be ions are implanted so as to reach the layer to form a p+ region 8. After that, metals for electrodes are deposited on the n and p regions on the substrate side and the growth layer side, and independent electrodes 10, 11, 12 are formed using the electrode separation M9 of the 5i02 film.
form. And by cleavage, the resonator length is 250#
It is assumed that the element is L■.

第2図に示した本発明の実施例における電流−電圧特性
は、第3図に示すように、負性抵抗領域を有する。した
がって、電極11を介して、正の電圧(> 0.5V)
を印加すると、前述の素子はON状態になり、レーザ発
振する。この時の電極10.12間の電圧は約2.5v
であり、ON状態での電流は100ss。
The current-voltage characteristics in the embodiment of the present invention shown in FIG. 2 have a negative resistance region, as shown in FIG. Therefore, via electrode 11, a positive voltage (>0.5V)
When the voltage is applied, the above-mentioned element turns on and oscillates as a laser. At this time, the voltage between electrodes 10 and 12 is approximately 2.5V.
The current in the ON state is 100ss.

光出力は15+swが実現できる。A light output of 15+sw can be achieved.

第4図は本発明の別の実施例であり、第1図のp −1
nP層6に代えて、活性層3よりも組成波長が長いp 
−1nGaAsP F713(厚さ 1.OJL m、
Znドープ、 5 X 10110l6’ 、組成波長
1.32gm )を成長させた。レーザ発振状態におけ
る自然放出光の一部は層13により吸収されるため、電
極11の正電圧をOFFとしても、レーザ発振は保持さ
れ、光メモリが実現できた。なお、レーザ発振を止める
ためには、電極11に負電圧を印加すればよい、第5図
は、第4図の素子を用いた光応答波形の一例である。
FIG. 4 is another embodiment of the present invention, in which p -1 of FIG.
Instead of the nP layer 6, a p layer whose composition wavelength is longer than that of the active layer 3 is used.
-1nGaAsP F713 (thickness 1.OJL m,
Zn-doped, 5×10110l6', composition wavelength 1.32 gm) was grown. Since a part of the spontaneously emitted light in the laser oscillation state is absorbed by the layer 13, the laser oscillation is maintained even when the positive voltage of the electrode 11 is turned off, making it possible to realize an optical memory. Note that in order to stop laser oscillation, it is sufficient to apply a negative voltage to the electrode 11. FIG. 5 shows an example of a photoresponse waveform using the device shown in FIG. 4.

第6図は、本発明の別の実施例の中央部共振器方向に沿
う断面図であり、表面に2次の回折格子14(ピッチル
4800人、深さ1000人)を形成した基板を用いて
製作した。この回折格子によって、レーザ光の一部は、
垂直方向に取出され、暦13での吸収光量は、第4図の
素子の場合に比べて、約100倍に増加している。した
がって、愛用によって生成されるキャリア数を同じにす
るとすれば、第6図の913は0.2gm厚に薄くする
ことができ、スイッチング時間は約172.5に短縮で
きる。
FIG. 6 is a cross-sectional view along the central resonator direction of another embodiment of the present invention, using a substrate on which a second-order diffraction grating 14 (4800 pitches, 1000 pitches) is formed on the surface. Manufactured. This diffraction grating allows part of the laser light to
The amount of light taken out in the vertical direction and absorbed by the calendar 13 is approximately 100 times greater than in the case of the element shown in FIG. Therefore, assuming that the number of carriers generated by regular use is the same, the thickness of 913 in FIG. 6 can be reduced to 0.2 gm, and the switching time can be shortened to about 172.5 gm.

2次の回折格子は基板lの表面でなく、バッファ層2内
に設けてもよい。
The second-order diffraction grating may be provided within the buffer layer 2 instead of on the surface of the substrate l.

なお、電流制限領域5は、プロトン照射によって形成す
る場合について述べたが、この他に、高純度成長層およ
びFeドープ等の半絶縁層の結晶成長で形成することは
十分可能である。
Although the current limiting region 5 has been described as being formed by proton irradiation, it is also possible to form it by crystal growth of a high-purity growth layer and a semi-insulating layer such as Fe-doped.

また、以上の実施例は、InP系半導体材料を用いて説
明したが、GaAa系半導系材導体材料ても適用できる
ことは明らかである。
Furthermore, although the above embodiments have been explained using InP-based semiconductor materials, it is clear that GaAa-based semiconductor materials and conductive materials can also be applied.

〔発明の効果] 以上説明したように、半導体レーザと電気素子とを成長
積層中に構成させるため、製作が容易で、高速なスイッ
チング機能を有する半導体レーザが実現できる利点があ
る。
[Effects of the Invention] As described above, since the semiconductor laser and the electric element are formed during growth and lamination, there is an advantage that the semiconductor laser is easy to manufacture and can have a high-speed switching function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の断面図、 第2図は実施例の駆動方法を示す図、 第3図は本発明の半導体レーザ装置の電圧−電流特性を
示す図、 第4図は本発明の他の実施例の断面図、第5図は本発明
の実施例の応答波形を示す図、 第6図は本発明のさらに他の実施例の共振器方向におけ
る断面図である。 1・・・p−1nP基板、 2・・・p−夏nPバッファ層、 3−・・n −1nGaAsP活性層、4・・・n −
1nPクラッド層、 5・・・高抵抗領域、 6・・・p −1nP層、 7・・・n −1nP層、 8・・・p十領域、 9・・・5i07膜、 10・・・n盟電極、 11・・・p盟電極。 12・・・p型電極。 13・−p −InGaAsP 層、 14・・・回折格子。 特許出願人  日本電信電話株式会社 代  理  人   弁理士  谷   義  −第1
図 第2図 電圧〔力 第3図 第4図
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a diagram showing the driving method of the embodiment, FIG. 3 is a diagram showing the voltage-current characteristics of the semiconductor laser device of the present invention, and FIG. 4 is a diagram showing the present invention. FIG. 5 is a sectional view of another embodiment of the invention. FIG. 5 is a diagram showing a response waveform of the embodiment of the invention. FIG. 6 is a sectional view of still another embodiment of the invention in the resonator direction. 1...p-1nP substrate, 2...p-nP buffer layer, 3-...n-1nGaAsP active layer, 4...n-
1nP cladding layer, 5...high resistance region, 6...p-1nP layer, 7...n-1nP layer, 8...p10 region, 9...5i07 film, 10...n Alliance electrode, 11...p alliance electrode. 12...p-type electrode. 13.-p-InGaAsP layer, 14... Diffraction grating. Patent applicant Nippon Telegraph and Telephone Corporation Representative Patent attorney Yoshi Tani - 1st
Figure 2 Voltage [Power Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1)p型半導体基板上に、少なくとも3層の成長層から
なるpnpn多層構造を有し、前記基板、最上層のn型
層および前記最上層のn型層直下のp型層にそれぞれ電
極が設けられ、前記接合の介在するn型およびp型成長
層のいずれか一方が活性領域であることを特徴とする半
導体レーザ装置。 2)前記pnpn多層構造が、p型バッファ層、n型活
性層、n型クラッド層、p型層、n型層からなる多層構
造であることを特徴とする特許請求の範囲第1項記載の
半導体レーザ装置。 3)前記p型層の組成波長が前記n型活性層の組成波長
より長いことを特徴とする特許請求の範囲第1項および
第2項記載の半導体レーザ装置。 4)前記基板または前記成長層が2次の回折格子を有す
ることを特徴とする特許請求の範囲第1項ないし第3項
記載の半導体レーザ装置。 5)前記活性領域が両側面を高抵抗な半導体領域で挟ま
れた帯状であることを特徴とする特許請求の範囲第1項
ないし第4項記載の半導体レーザ装置。
[Scope of Claims] 1) A pnpn multilayer structure consisting of at least three grown layers on a p-type semiconductor substrate, the substrate, an uppermost n-type layer, and a pnpn layer immediately below the uppermost n-type layer. 1. A semiconductor laser device, wherein each of the type layers is provided with an electrode, and either one of the n-type and p-type growth layers interposed in the junction is an active region. 2) The pnpn multilayer structure is a multilayer structure consisting of a p-type buffer layer, an n-type active layer, an n-type cladding layer, a p-type layer, and an n-type layer. Semiconductor laser equipment. 3) The semiconductor laser device according to claims 1 and 2, wherein the compositional wavelength of the p-type layer is longer than the compositional wavelength of the n-type active layer. 4) The semiconductor laser device according to any one of claims 1 to 3, wherein the substrate or the growth layer has a second-order diffraction grating. 5) The semiconductor laser device according to any one of claims 1 to 4, wherein the active region has a band shape with both sides sandwiched between high-resistance semiconductor regions.
JP11223785A 1985-05-27 1985-05-27 Semiconductor laser device Pending JPS61271886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11223785A JPS61271886A (en) 1985-05-27 1985-05-27 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11223785A JPS61271886A (en) 1985-05-27 1985-05-27 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS61271886A true JPS61271886A (en) 1986-12-02

Family

ID=14581676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11223785A Pending JPS61271886A (en) 1985-05-27 1985-05-27 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS61271886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330384A (en) * 1989-06-27 1991-02-08 Mitsubishi Electric Corp Semiconductor laser
WO1995002910A1 (en) * 1993-07-12 1995-01-26 British Telecommunications Public Limited Company Electrical barrier structure for semiconductor device
JPH0730205A (en) * 1993-07-08 1995-01-31 Nec Corp Surface light emitting element and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853871A (en) * 1981-09-25 1983-03-30 Nippon Telegr & Teleph Corp <Ntt> Solid state optical switch element
JPS6059791A (en) * 1983-09-13 1985-04-06 Toyota Central Res & Dev Lab Inc Integrated opticalsemiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853871A (en) * 1981-09-25 1983-03-30 Nippon Telegr & Teleph Corp <Ntt> Solid state optical switch element
JPS6059791A (en) * 1983-09-13 1985-04-06 Toyota Central Res & Dev Lab Inc Integrated opticalsemiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330384A (en) * 1989-06-27 1991-02-08 Mitsubishi Electric Corp Semiconductor laser
JPH0730205A (en) * 1993-07-08 1995-01-31 Nec Corp Surface light emitting element and its manufacture
WO1995002910A1 (en) * 1993-07-12 1995-01-26 British Telecommunications Public Limited Company Electrical barrier structure for semiconductor device
EP0639875A1 (en) * 1993-07-12 1995-02-22 BRITISH TELECOMMUNICATIONS public limited company Electrical barrier structure for semiconductor device
US5838025A (en) * 1993-07-12 1998-11-17 British Telecommunications Public Limited Company Electrical barrier structure for semiconductor device doped with chromium and/or titanium

Similar Documents

Publication Publication Date Title
CA1138561A (en) Semiconductor light emitting element and method for producing the same
JP3540925B2 (en) Optoelectronic devices
EP0390061B1 (en) Method for the production of monolithically integrated optoelectronic modules
GB2124024A (en) Semiconductor laser and manufacturing method therefor
JPS61271886A (en) Semiconductor laser device
US5610095A (en) Monolithically integrated circuits having dielectrically isolated, electrically controlled optical devices and process for fabricating the same
JPS6179287A (en) Laser diode apparatus
JPH05102615A (en) Semiconductor device and manufacture thereof
JPH01186693A (en) Semiconductor device and manufacture thereof
JP2742358B2 (en) Semiconductor photodetector and method of manufacturing the same
JPH0715089A (en) Semiconductor light emission device and fabrication thereof
JPS6037192A (en) Semiconductor light emitting element
JPH02202084A (en) Optical semiconductor device
JPS60150681A (en) Buried type semiconductor laser
JPS6062175A (en) Manufacture of semiconductor device
JPH05102616A (en) Semiconductor laser array and manufacture thereof
JPS6062173A (en) Semiconductor laser device
JPH0389567A (en) Manufacture of optoelectronic ic
JPS62165386A (en) Optoelectronic integrated circuit device
JPH04307986A (en) Manufacture of semiconductor light emitting element
JPH0152909B2 (en)
JPS62189750A (en) Semiconductor light emitting device
JPH05273607A (en) Waveguide type optical switch
JPS61256783A (en) Optical and electronic integrated circuit
JPH06140658A (en) Semiconductor photodetector and its manufacture