JPH0330384A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH0330384A
JPH0330384A JP16471489A JP16471489A JPH0330384A JP H0330384 A JPH0330384 A JP H0330384A JP 16471489 A JP16471489 A JP 16471489A JP 16471489 A JP16471489 A JP 16471489A JP H0330384 A JPH0330384 A JP H0330384A
Authority
JP
Japan
Prior art keywords
layer
active layer
semiconductor laser
isolation
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16471489A
Other languages
Japanese (ja)
Other versions
JP2550711B2 (en
Inventor
Katsuhiko Goto
勝彦 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1164714A priority Critical patent/JP2550711B2/en
Publication of JPH0330384A publication Critical patent/JPH0330384A/en
Application granted granted Critical
Publication of JP2550711B2 publication Critical patent/JP2550711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make it possible to reduce an absorption loss due to an impurity and to make possible a low-threshold oscillation by a method wherein diffused regions are formed in isolation from an active layer. CONSTITUTION:A P-type AlGaAs clad layer 2 and an MQW active layer 3 are grown one after the other on a semi-insulative GaAs substrate 1 and thereafter, the layer 3 is formed in a striped form. Subsequently, an N-type AlGaAs clad layer 4 and a GaAs contact layer 5 are grown. Then, Si is selectively diffused in one side of the layer 3, an N-type region 6 is formed in isolation from the layer 3 and moreover, Zn is selectively diffused in the other side of the layer 3, a P-type region 7 is similarly formed in isolation from the layer 3 and electrodes 8 and 9 are respectively formed on the N-type and P-type regions. In such a way, as the diffused regions are formed in isolation from the active layer, an impurity concentration in the active layer and the periphery of the active layer can be reduced. Thereby, an absorption loss due to the absorption of free carriers is reduced and an oscillation in a low threshold current becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は光・電子集積回路の光源等に適した低しきい
値、ブレーナ構造の半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser with a low threshold and Brehner structure suitable as a light source for opto-electronic integrated circuits.

〔従来の技術〕[Conventional technology]

従来のブレーナ型半導体レーザの断面図を第3図に示す
。この半導体レーザは半絶縁性GaAs基板(1)の上
に、p−AlGaAsクラッド層(2)、活性領域とな
る多重量子井戸層(Multi Quantum We
ll、MQW)層(23)、n−AlGaAsクラッド
層(4)、GaAs :Iンタクト層(5)を順次成長
した後、ストライプ状の領域を残して片側にStを、も
う一方の側にZnを選択的に拡散し、さらにコンタクト
層(5)中のPn接合部分をエツチングにより除去し、
Si 拡散領域の表面にn電極(8)を、Zn拡f& 
′6M域の表面にp電極(9)を形成したものである。
A cross-sectional view of a conventional Brehner semiconductor laser is shown in FIG. This semiconductor laser consists of a semi-insulating GaAs substrate (1), a p-AlGaAs cladding layer (2), and a multi-quantum well layer (Multi Quantum Well layer) which becomes the active region.
After sequentially growing the MQW layer (23), the n-AlGaAs cladding layer (4), and the GaAs:I intact layer (5), a striped region was left with St on one side and Zn on the other side. selectively diffused, and further remove the Pn junction part in the contact layer (5) by etching,
An n electrode (8) is placed on the surface of the Si diffusion region, and a Zn expansion f&
A p-electrode (9) is formed on the surface of the '6M region.

MQW活性層(23)のZnt敗領域(27)およびS
t拡散領域(26)中に含まれる部分は量子井戸構造が
無秩序化され、平均的な組成の^lGaAs qになる
。したがって、ストライプ状のMQW活性領域がA l
GaAs中に埋込まれた構造となっている。
Znt failure region (27) of MQW active layer (23) and S
The quantum well structure in the portion included in the t-diffusion region (26) is disordered and has an average composition of ^lGaAs q. Therefore, the striped MQW active region is A l
It has a structure embedded in GaAs.

次に動作について説明する。この半導体レーザにおいて
は、Pn接合はAlGaAs層中に拡散により形成され
たPn接合およびMQW活性層(23)の無秩序化され
ずに残された部分に沿ったPn接合から成っている。こ
の半導体レーザに順方向電圧を印加した場合、前者のP
n接合は後者のPn接合よりも、ポテンシャル障壁が高
いために、電流はMQW活性層に沿ったPn接合を通し
て活性層に注入されレーザ発振を生じる。また、MQW
層が無秩序化された部分の屈折率はMQW層の屈折率よ
りも小さくなるので、活性領域は屈折率導波型導波路と
なり、安定した基本横モード発振が得られる。この半導
体レーザはpおよびn電極が同一面上にあるいわゆるプ
レーナ構造であり、電子デバイス等との集積化に適して
いる。
Next, the operation will be explained. In this semiconductor laser, the Pn junction consists of a Pn junction formed by diffusion into the AlGaAs layer and a Pn junction along the undisordered portion of the MQW active layer (23). When a forward voltage is applied to this semiconductor laser, the former P
Since the n-junction has a higher potential barrier than the latter Pn junction, current is injected into the active layer through the Pn junction along the MQW active layer, causing laser oscillation. Also, MQW
Since the refractive index of the disordered portion of the layer is smaller than the refractive index of the MQW layer, the active region becomes a refractive index waveguide, and stable fundamental transverse mode oscillation is obtained. This semiconductor laser has a so-called planar structure in which the p and n electrodes are on the same plane, and is suitable for integration with electronic devices and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この半導体レーザでは作製プロセスにおいて、MQW層
を無秩序化して導波路を形成するために、SiおよびZ
nを3 ×10 ”cs−3程度以上の高濃度に拡散す
る必要がある。ところが、高濃度不純物が存在すると自
由キャリア吸収が大きくなるため、導波路を伝搬する光
に対して伝搬損失が大きくなる。レーザ発振は利得が伝
搬損失に等しくなるまで増大した時点で起こるので、損
失が大きくなれば発振に必要な電流すなわち、しきい値
電流も大きくなってしまう、特に、量子井戸レーザでは
電流を増しても利得が飽和する傾向が大きいので、しき
い値電流はt4失に大きく依存し、低しきい値を得るた
めには損失を小さくすることが絶対に必要である。
In the manufacturing process of this semiconductor laser, Si and Z are used to disorder the MQW layer and form a waveguide.
It is necessary to diffuse n to a high concentration of about 3 × 10 "cs-3 or higher. However, the presence of high concentration impurities increases free carrier absorption, resulting in a large propagation loss for light propagating through the waveguide. Laser oscillation occurs when the gain increases to equal the propagation loss, so if the loss increases, the current required for oscillation, that is, the threshold current, also increases.In particular, in quantum well lasers, the current Since there is a strong tendency for the gain to saturate even if the gain is increased, the threshold current is highly dependent on the t4 loss, and it is absolutely necessary to reduce the loss in order to obtain a low threshold.

この発明は上記のような問題点を解消するためになされ
たもので、不純物による吸収1員失が低減され、低しき
い値発振が可能な半導体レーザを得ることを目的とする
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a semiconductor laser in which absorption single-member loss due to impurities is reduced and is capable of low threshold oscillation.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザは半絶縁性基板上にp−ク
ラッド層および活性層を成長した後、活性層をエツチン
グにより幅2μ−程度のストライプ状に作製し、2回目
の結晶成長でn−クラッド層およびコンタクト層を成長
し、さらに活性層の片側にp影領域、もう一方の側にn
 Y3’AM域を拡散によって活性層から1〜2μ鴎程
度離して形成し、p、n領域の表面にそれぞれ電極を形
成したものである。
In the semiconductor laser according to the present invention, after growing a p-cladding layer and an active layer on a semi-insulating substrate, the active layer is formed into a stripe shape with a width of about 2μ by etching. and a contact layer, with a p-shaded region on one side of the active layer and an n-shaded region on the other side.
The Y3'AM region is formed by diffusion at a distance of about 1 to 2 μm from the active layer, and electrodes are formed on the surfaces of the p and n regions, respectively.

〔作 用〕[For production]

この発明における半導体レーザでは拡散領域を活性領域
から離して形成したので、活性領域およびその周囲の不
純物濃度が大幅に低減され、その結果吸収損失が小さく
なる。そのため、しきい値電流の低減が可能となり、特
に量子井戸レーザにおいては極低しきい値が実現できる
In the semiconductor laser according to the present invention, since the diffusion region is formed apart from the active region, the impurity concentration in and around the active region is significantly reduced, and as a result, absorption loss is reduced. Therefore, it is possible to reduce the threshold current, and in particular, an extremely low threshold can be achieved in a quantum well laser.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例である半導体レーザを示す断面
図である。この半導体レーザでは半絶縁性GaAs基板
+11上にp−AlGaAsクラッド層(2)、MQW
活性層(3)を順次成長した後、写真製版、エツチング
により活性層(3)を幅2μ−程度のストライブ状に形
成する。続いて、2回目の結晶成長でn−AlGa^3
クランド層(4)、GaAsコンタクト層(5)を成長
する0次に、活性層の片側にSiを選択的に拡散し、n
影領域(61を活性層(3)から1〜2μ−程度離して
形成し、さらにもう一方の側にZnを選択的に拡散しp
影領域(7)を同様に活性層(3)から1〜2μm程度
離して形成する。次に、GaAsコンタクト層中のpn
接合部分をエツチングにより除去し、nおよびp 8N
域上にそれぞれ電極(8)および(9)を形成してこの
半導体レーザが完成する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a sectional view showing a semiconductor laser which is an embodiment of the present invention. This semiconductor laser has a p-AlGaAs cladding layer (2) on a semi-insulating GaAs substrate +11, an MQW
After sequentially growing the active layer (3), the active layer (3) is formed into a stripe shape with a width of about 2 .mu.m by photolithography and etching. Next, in the second crystal growth, n-AlGa^3
Next, Si is selectively diffused on one side of the active layer to grow the ground layer (4) and the GaAs contact layer (5).
A shadow region (61) is formed at a distance of about 1 to 2 μm from the active layer (3), and Zn is selectively diffused to the other side.
The shadow region (7) is similarly formed at a distance of about 1 to 2 μm from the active layer (3). Next, pn in the GaAs contact layer
The joint portion was removed by etching, and n and p 8N
This semiconductor laser is completed by forming electrodes (8) and (9) on the regions, respectively.

次に動作について説明する。活性層(3)はp形または
n形のいずれでもよいが、ここではp形であるものとし
て説明する。この半導体レーザではpn接合は次の4つ
の部分からなっている。すなわち、■n−AlGaAs
クラッド層(4)中のZn拡散領域端、■n−^lGa
Asクラッド層(4)とp−AlGaAsクラッド層(
2)との境界のうち、拡散領域に含まれない活性層(3
)の両脇の部分、■n−AlGaAsクラッド層(4)
と活性層(3)の境界、■p−AlGaAsクラッド層
(2)中のSi 1ylA敗領域端である。この半導体
レーザに順方向電圧を印加した場合、上記のpn接合の
いち、■、■、■はポテンシャル障壁が高いために電流
はほとんど流れず、ポテンシャル障壁の低い■のpn接
合を流れ活性層(3)にキャリアを注入する。
Next, the operation will be explained. Although the active layer (3) may be either p-type or n-type, it will be described here assuming that it is p-type. In this semiconductor laser, the pn junction consists of the following four parts. That is, n-AlGaAs
Zn diffusion region edge in cladding layer (4), ■n-^lGa
As cladding layer (4) and p-AlGaAs cladding layer (
2), the active layer (3) which is not included in the diffusion region
), n-AlGaAs cladding layer (4)
and the boundary between the active layer (3) and the edge of the Si 1ylA failure region in the p-AlGaAs cladding layer (2). When a forward voltage is applied to this semiconductor laser, almost no current flows through the pn junctions (1), (2), (2), and (2) mentioned above because the potential barrier is high, and the current flows through the pn junction (2), which has a low potential barrier, and flows through the active layer ( 3) Inject carrier.

この半導体レーザでは拡ft!2 iil域が活性層(
3)から離れて形成されているので活性層および活性層
周囲の不純物濃度を低減することができ、その結果、自
由キャリア吸収による吸収)置火が小さくなり、低しき
い値電流での発振が可能になる。znやSの拡散では拡
散フロントでの?1度変化は急峻であり、また、活性層
から横方向への光の滲み出しは1μ層程度であるので、
拡散領域は活性層からそれぞれ1μm程度離せば十分で
ある。
With this semiconductor laser, you can expand the ft! The 2 iii region is the active layer (
3) Since it is formed away from the active layer, it is possible to reduce the impurity concentration in and around the active layer, and as a result, the absorption due to free carrier absorption is reduced, and oscillation at a low threshold current is reduced. It becomes possible. What about the diffusion front of zn and S? The 1 degree change is steep, and the lateral seepage of light from the active layer is about 1μ layer, so
It is sufficient that the diffusion regions are separated from the active layer by about 1 μm.

なお、上記実施例では活性層(3)が多重量子井戸構造
である場合について説明したが、単一量子井戸であって
もよく、また、量子井戸でない通常の厚さの活性層であ
っもよい。また、活性層(3)のみをストライプ状に形
成するのではなく、S CH(Sepurate  C
onfinement  Heterostructu
re)  構造あるいはG RI N (Graded
 Index) −S CH構造の閉じ込め層も含めて
ストライブ状に形成してもい。また、上記実施例では活
性層(3)の両側で異なる導電型の不純物を拡散した半
導体レーザについて述べたが、第2図のように下側のク
ラフト層(2)と同一導電型の不純物を活性層(3)の
両側に拡散し拡散領域の表面、および拡散していない領
域の表面にそれぞれ電fi +8) (91を設けても
よい。
In addition, in the above embodiment, the case where the active layer (3) has a multiple quantum well structure has been described, but it may be a single quantum well, or it may be an active layer that is not a quantum well and has a normal thickness. . In addition, instead of forming only the active layer (3) in a stripe shape, SCH (Separate C
onfinement Heterostructure
re) structure or G RI N (Graded
Index) -S It may be formed in a stripe shape including the confinement layer of the CH structure. Furthermore, in the above embodiment, a semiconductor laser was described in which impurities of different conductivity types were diffused on both sides of the active layer (3), but as shown in FIG. Electrodes fi +8) (91) may be provided on both sides of the active layer (3) and on the surface of the diffusion region and the surface of the non-diffused region, respectively.

また、この発明はAlGaAs系の材料を用いた半導体
レーザのみならず、InP系の材料を用いた半導体レー
ザにも適用できる。
Furthermore, the present invention is applicable not only to semiconductor lasers using AlGaAs-based materials but also to semiconductor lasers using InP-based materials.

〔発明の効果〕〔Effect of the invention〕

以上のようにごの発明によれば、拡散領域を活性層から
離して形成したので、不純物による吸収[置火を低減で
き、低しきい値のプレーナー構造の半導体レーザが得ら
れる。
As described above, according to the invention, since the diffusion region is formed apart from the active layer, it is possible to reduce absorption [ignition] due to impurities, and a semiconductor laser having a planar structure with a low threshold value can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である半導体レーザを示す
断面図、第2図はこの発明の他の実施例である半導体レ
ーザを示す断面図、第3図は従来のブレーナ構造の半導
体レーザを示す断面図である。図において、(klは半
絶縁性GaAs fir板、(2)はp−^jGa^3
クラッド層、(3)はMQWffi性層、(4)はn−
AlGaAsクラッド層、(5)はGaAsコンタクト
層、(6)はSi拡散領域、(7)α力はZn拡散領域
、+81 (lIはn1It橿、(9)α憧はp電極を
示す。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a sectional view showing a semiconductor laser which is an embodiment of the present invention, FIG. 2 is a sectional view showing a semiconductor laser which is another embodiment of the invention, and FIG. 3 is a sectional view showing a semiconductor laser having a conventional Brenna structure. FIG. In the figure, (kl is a semi-insulating GaAs fir plate, (2) is p-^jGa^3
cladding layer, (3) is MQWffi layer, (4) is n-
AlGaAs cladding layer, (5) is GaAs contact layer, (6) is Si diffusion region, (7) α is Zn diffusion region, +81 (lI is n1It, (9) α is p electrode. In the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型層上に少なくともストライプ状の活性層およ
び第2導電型層が形成され、拡散またはイオン注入によ
り上記活性層の片側に第1導電型領域、もう一方の側に
第1導電型あるいは第2導電型領域が上記活性層から離
れて形成され、それぞれの導電型領域の表面にそれぞれ
電極が設けられていることを特徴とする半導体レーザ。
At least a striped active layer and a second conductivity type layer are formed on the first conductivity type layer, and a first conductivity type region is formed on one side of the active layer and a first conductivity type region is formed on the other side by diffusion or ion implantation. A semiconductor laser characterized in that a second conductivity type region is formed apart from the active layer, and an electrode is provided on a surface of each conductivity type region.
JP1164714A 1989-06-27 1989-06-27 Semiconductor laser Expired - Lifetime JP2550711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1164714A JP2550711B2 (en) 1989-06-27 1989-06-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1164714A JP2550711B2 (en) 1989-06-27 1989-06-27 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH0330384A true JPH0330384A (en) 1991-02-08
JP2550711B2 JP2550711B2 (en) 1996-11-06

Family

ID=15798492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1164714A Expired - Lifetime JP2550711B2 (en) 1989-06-27 1989-06-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2550711B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104488A (en) * 1980-01-23 1981-08-20 Hitachi Ltd Semiconductor laser element
JPS61271886A (en) * 1985-05-27 1986-12-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS63169086A (en) * 1987-01-06 1988-07-13 Fujikura Ltd Manufacture of buried semiconductor laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104488A (en) * 1980-01-23 1981-08-20 Hitachi Ltd Semiconductor laser element
JPS61271886A (en) * 1985-05-27 1986-12-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS63169086A (en) * 1987-01-06 1988-07-13 Fujikura Ltd Manufacture of buried semiconductor laser

Also Published As

Publication number Publication date
JP2550711B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
JPS62130581A (en) Semiconductor laser
JPS6348888A (en) Semiconductor laser device
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JPH09199791A (en) Optical semiconductor device and its manufacture
JPH0330384A (en) Semiconductor laser
US5360763A (en) Method for fabricating an optical semiconductor device
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device
US20040033044A1 (en) Ridge waveguide device surface passivation by epitaxial regrowth
JPH11354886A (en) Semiconductor laser and its manufacturing method
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
KR20010056977A (en) Fabrication method of self aligned planar buried heterostructure semiconductor laser
JPH1140885A (en) Semiconductor laser device
JP3522151B2 (en) Method for manufacturing compound semiconductor laser
JPS58118184A (en) Buried hetero structural semiconductor laser
JPH06283804A (en) Distributed reflector laser and fabrication thereof
JPH04257284A (en) Buried hetero structured semiconductor laser
JPH01244690A (en) Semiconductor laser device
JPS63104494A (en) Semiconductor laser device
JPH05145176A (en) Semiconductor laser
JPH10335744A (en) Semiconductor laser system and its manufacturing method
JPH04206985A (en) Manufacture of optical semiconductor element
JPH03116991A (en) Semiconductor laser device
JPS63220587A (en) Manufacture of semiconductor laser
JPH0433387A (en) Semiconductor laser and manufacture thereof
JPH01201978A (en) Semiconductor laser device