JPH0433387A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPH0433387A
JPH0433387A JP14108590A JP14108590A JPH0433387A JP H0433387 A JPH0433387 A JP H0433387A JP 14108590 A JP14108590 A JP 14108590A JP 14108590 A JP14108590 A JP 14108590A JP H0433387 A JPH0433387 A JP H0433387A
Authority
JP
Japan
Prior art keywords
layer
region
inp
stripe
mesa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14108590A
Other languages
Japanese (ja)
Inventor
Masato Ishino
正人 石野
Kiyoshi Fujiwara
潔 冨士原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14108590A priority Critical patent/JPH0433387A/en
Publication of JPH0433387A publication Critical patent/JPH0433387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To narrow the width of an active layer under satisfactory controllability, and to suppress a decrease in the yield due to step cut in the case of a buried epitaxial layer, a buried leakage, etc., due to narrowing by forming the outside of a double channel in a forward mesa and an inside, i.e., a mesa stripe to become a light emitting unit vertically or in a reverse mesa shape. CONSTITUTION:A mesa stripe 9 including an active layer 3 and double channels 100 at both sides of the stripe are formed by etching to a part underneath the layer 3 with mixture solution of HCI:H2O2:CH3COOH. Here, an SiN film 21 to become a mask is deposited directly on a P-type InP clad 4 at the stripe 9 disposed at the center of the channel 100, while an SiN film mask 21 exists on a P-type InGaAsP cap layer 20 outside the double channel. Here, the close contact of an InP/SiN with etchant of (chloric acid + hydrogen peroxide) is excellent, side etching is small, and the stripe 9 at the center becomes a reverse mesa shape, but since a region formed through the region 20 has a higher etching speed of InGaAsP than that of InP, the side surface outside the channel becomes a forward taper.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は長距離光フアイバー通信における光源として必
須である長波長帯大出力半導体レーザに関すも 従来の技術 光通信の長距離化にともない大出力・高温特性の良好な
半導体レーザの開発か重要となってき旭光通信に用いら
れる半導体レーザは光ファイバーの低損失領域に適合す
る発振波長を有するInGaAsP/InP系が主に用
いられている。この系での半導体レーザζよ 基本横モ
ード発振 低しきい4L  高効率発振が容易に得られ
る埋め込み構造が主に用いられている力(この中で第3
図に示す構造はDC−PBH(Double Chan
nel−Plarar Burried Hetero
)型LD(Laser Diode)と呼ばれ高温・高
出力動作の点で有利な構造である(例えば0QE82−
98)。ここで1はn−InP基板、 2はn−Ir+
Pバッファ# 3はInGaAsP活性層(バンドギャ
ップ波長λg=1.3μm)、 4はP−InPクラッ
ド恩 5はP−InP埋込恩 6は7l−I71P埋込
凰 7はP−InP埋込恩 8はP−InGaAsPD
ンタクト層(2g−1,3μm)である。この構造の特
徴は通常の埋込型LDが発光部となるメサストライプ9
以外の活性層3をすべて除去したのち埋込層(5〜8)
を形成するのに対し メサストライプ9に隣接したダブ
ルチャンネル領域10のみの活性層3を除去してその外
側の埋込領域に活性層3と同じ四元層を残しておく点で
ある。この結果電流挟挿領域を構成するPnPn型サイ
リスタ構造のベース層の一部がInGaAsPで構成さ
れるためにブレーク・オーバー電圧が高く、ベーカ電流
に対する電流増幅率も1nPのみで構成されるサイリス
タよりも小さいので、大電流を流してもサイリスタ動作
を起こしにくく、埋込リーク電流による光出力飽和が小
さし見従って大出力動作および高温動作が可能となもこ
のレーザを作製するには通常n−InP基板l上にnI
nPバッファ層2、InGaAsP活性層3、およびP
−InPクラッド層を順次エピタキシャル成長したのち
ダブルチャンネル領域10以外をマスクして、この領域
を活性層3の下までエツチングしたの板 マスク材を除
去したのち液相エピタキシャル成長法によりP−InF
3. n−InF3. n−InF3. P−InGa
AsP8を成長させも 液相成長の場合メサストライプ
幅が細く (5μm以下)、メサの段差が十分高い(2
μm以上)場合はメサストライプの上には成長層は積層
しないので、埋込第1層であるP−InP埋込層5、第
2層であるn−InP埋込層はメサストライプ上には成
長しないので自動的に電流挟挿構造が形成され第3図に
示す構造を得ることができる。ところでここで問題とな
るのはこのタプルチャンネルのエツチングの方法である
カミ ストライプ方向を<011>方向とし マスク材
としてネガレジストを用いエツチング液としてBr−メ
タノールを用いた時は第3図に示すようにダブルチャン
ネルの側面は主面(100)面に対して鈍角をなすいわ
ゆる順メサ形状となる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to long-wavelength band high-output semiconductor lasers, which are essential as light sources in long-distance optical fiber communications. The development of semiconductor lasers with good high-temperature characteristics has become important, and the semiconductor lasers used in Asahi Optical Communications are mainly InGaAsP/InP-based semiconductor lasers that have an oscillation wavelength suitable for the low-loss region of optical fibers. Semiconductor laser ζ in this system Fundamental transverse mode oscillation Low threshold 4L The power (in this
The structure shown in the figure is a DC-PBH (Double Chan
nel-Plarar Burried Hetero
) type LD (Laser Diode), and has an advantageous structure in terms of high temperature and high output operation (for example, 0QE82-
98). Here, 1 is n-InP substrate, 2 is n-Ir+
P buffer #3 is an InGaAsP active layer (band gap wavelength λg = 1.3 μm), 4 is a P-InP clad layer, 5 is a P-InP embedded layer, 6 is a 7l-I71P embedded layer, and 7 is a P-InP embedded layer. 8 is P-InGaAsPD
contact layer (2g-1.3μm). The feature of this structure is that the mesa stripe 9 uses a normal embedded LD as the light emitting part.
After removing all the active layers 3 except for the buried layers (5 to 8)
In contrast, the active layer 3 only in the double channel region 10 adjacent to the mesa stripe 9 is removed, and the same quaternary layer as the active layer 3 is left in the buried region outside the mesa stripe 9. As a result, a part of the base layer of the PnPn type thyristor structure that constitutes the current sandwiching region is made of InGaAsP, so the breakover voltage is higher and the current amplification factor for Baker current is higher than that of a thyristor made of only 1nP. Since it is small, it is difficult to cause thyristor operation even when a large current is passed through it, and optical output saturation due to embedded leakage current is small, so high output operation and high temperature operation are possible. nI on substrate l
nP buffer layer 2, InGaAsP active layer 3, and P
- A plate in which the InP cladding layer was epitaxially grown in sequence, then the area other than the double channel region 10 was masked, and this region was etched to below the active layer 3. After the mask material was removed, P-InF was grown by liquid phase epitaxial growth.
3. n-InF3. n-InF3. P-InGa
Even when AsP8 is grown, in the case of liquid phase growth, the mesa stripe width is narrow (5 μm or less) and the mesa step is sufficiently high (2
μm or more), the growth layer is not stacked on the mesa stripe, so the P-InP buried layer 5, which is the first buried layer, and the n-InP buried layer, which is the second layer, are not stacked on the mesa stripe. Since no growth occurs, a current interpolation structure is automatically formed and the structure shown in FIG. 3 can be obtained. By the way, the problem here is the method of etching this tuple channel. When the stripe direction is set to the <011> direction, a negative resist is used as the mask material, and Br-methanol is used as the etching solution, the etching method is as shown in Figure 3. In this case, the side surfaces of the double channel form a so-called normal mesa shape, forming an obtuse angle with respect to the main surface (100).

これはレジストマスクの場合半導体層との密着が悪いた
めにサイドエッチが大きいために順メサ形状になるもの
である。しかしながら活性層を含むメサストライプが順
メサの場合、活性層3の幅を1μm程度に制御するのは
難しい。というのはこの場合メサストライプの上辺の幅
は0.5〜0.7μm程度となりマスクのはがれや制御
性の点で問題となってくム 一方マスク材として5iO
aを用uX、エツチング液としてBrメタノールを用い
た場合は第4図に示すようにメサ側面と主面となす角度
は鋭角すなわち逆メサ形状となる。この場合マスク材と
半導体層との密着も良好であり活性層幅を制御性良く挟
挿化することに関しては問題はないカミ ダブルチャン
ネルの外側の側面も鋭角となるために2回目の埋込成長
の際この部分でP−InP埋込層5、n−1nP埋込層
6が薄くなったり段切れをおこしたりすも この様な段
切れや薄層化はこの領域での埋込リーク電流の原因とな
り、 LDのしきい値電流の上昇の原因となるものであ
る。
This is because in the case of a resist mask, the side etch is large due to poor adhesion with the semiconductor layer, resulting in a mesa shape. However, if the mesa stripe including the active layer is a regular mesa, it is difficult to control the width of the active layer 3 to about 1 μm. In this case, the width of the upper side of the mesa stripe is about 0.5 to 0.7 μm, which causes problems in terms of mask peeling and controllability.
When uX is used as a and Br methanol is used as the etching liquid, the angle between the mesa side surface and the main surface becomes an acute angle, that is, an inverted mesa shape, as shown in FIG. In this case, the adhesion between the mask material and the semiconductor layer is good, and there is no problem in sandwiching the active layer width with good control.Since the outer side of the double channel also has an acute angle, the second buried growth is necessary. At this time, the P-InP buried layer 5 and the n-1nP buried layer 6 become thinner or break off in this area. This causes an increase in the threshold current of the LD.

発明が解決しようとする課題 以上述べてきたように 従来の作製法においてはダブル
チャンネルの形状が順メサの場合 活性層幅の挟挿化・
制御性ということで問題があり、また逆メサ形状にした
場合はチャンネル外側の段差領域での埋込ブロック層の
段切れや薄層化か生じやすくなり、ひいては埋込り〜り
によるLD特性の劣化を来たすことになるという問題が
あっ九課題を解決するための手段 上述の問題点を克服すべく、本発明はダブルチャンネル
の外側の側面は順メサであり、内側すなわち発光部とな
るメサストライプは垂直もしくは逆メサ形状であるダブ
ルチャンネル埋込型半導体レーザであり、ダブルチャン
ネルを形成すべく領域の外側の領域ではInGaAsP
キャップ層上に 内側の領域すなわち発生メサストライ
プにおいてはInPクラッド層上に絶縁膜マスクを形成
し ダブルチャンネル領域を塩酸と過酸化水素水を含む
混合液でエツチングすることを特徴とする半導体レーザ
の製造方法である。
Problems to be Solved by the Invention As mentioned above, in the conventional manufacturing method, when the shape of the double channel is a normal mesa, it is difficult to sandwich the width of the active layer.
There is a problem with controllability, and when an inverted mesa shape is used, the buried block layer is likely to break or become thinner in the stepped region outside the channel, and the LD characteristics may deteriorate due to the buried block layer. Means for Solving the Problems In order to overcome the above-mentioned problems, the present invention provides that the outer side of the double channel is a regular mesa, and the inner side, that is, the mesa stripe that becomes the light emitting part. is a double-channel buried semiconductor laser with a vertical or inverted mesa shape, and InGaAsP is used in the outer region to form a double channel.
Manufacturing of a semiconductor laser characterized by forming an insulating film mask on the InP cladding layer in the inner region, that is, the generation mesa stripe, on the cap layer, and etching the double channel region with a mixed solution containing hydrochloric acid and hydrogen peroxide solution. It's a method.

作用 上記手段により、発光メサストライプは垂直もしくは逆
メサ形状であるので活性層幅の挟挿化や制御性が良好と
なり、外側の領域は順メサであるので埋込エピの際 リ
ーク電流の原因となるブロッキング層の段切れや薄層化
は生じなしも また塩酸と過酸化水素を含むエツチング
液はInPに直接絶縁膜をマスクした時は逆メサ形状と
なるのに対しInGaAsP層を最上層とする場合は順
テーパとなるためこのような非対象ダブルチャンネル構
造を1回のエツチングで形成できるものである。
Effect: By the above means, the light-emitting mesa stripes have a vertical or inverted mesa shape, making it possible to sandwich and control the width of the active layer, and since the outer region is a normal mesa, it is possible to prevent leakage current during buried epitaxial layering. Also, when the etching solution containing hydrochloric acid and hydrogen peroxide masks the insulating film directly on InP, it forms an inverted mesa shape, but when the InGaAsP layer is the top layer, In this case, since it becomes a forward taper, such an asymmetric double channel structure can be formed by one etching.

実施例 以下本発明の実施例について記載する。第1図は本発明
による半導体レーザの埋込断面構造図である。ここで第
3図と同じく、 lはn−InP基板、 2はn−In
PバッフyM!、3はInGaAsP活性N、4はP−
InPクラッド[5はP−InP埋込JiiL6はP−
InP埋込服 7はP−InP埋込恩 8はP−InG
aAsP:+ >タクト層であム 従来例(第3図・4
図)との違いはダブルチャンネル100の側面形状が内
側すなわちメサストライプ9側では逆テーパ形状である
のに対し外側は順テーパという非対称構造である点であ
ム発光領域となるメサストライプは逆メサ形状であるの
で横モード単一化に必要な1μm程度の活性層幅を制御
性良好に形成することができも また外側の側面が順テ
ーパであるので埋込エピタキシャル層5,6の段切れや
細りが生じにくく、この領域での埋込リークは生じにく
く、高歩留で低しきい値単一横モード発振を得ることが
できも また従来例と同じくダブルチャンネル100の
外側の電流ブロッキング領域には活性層3と同じInG
aAsP層が存在するのでサイリスタのターン・オーバ
ーによるリーク電流が生じにくく大出力動作・高温動作
が可能であることは本実施例でも同様であム 次に本実
施例の構造方法について第2図に記載す4まず第1のエ
ピタキシャル成長においてn−InP基板l上にn−I
nPバッファ層(厚さd=5μm)2、 InGaAs
P活性層(d=0.1 μm) 3、P−InPクラッ
ド層(d=1μm)4、P−InGaAsPキャップ層
(d=0.1μm)20を成長しタッチ〈011〉方向
への幅12μmのストライプ状領域を除いてマスキング
し この領域のP−1nGaAsPキャップ層をH2S
O4:H2O2:H20= 1 : l : 5のエツ
チング液を用いて除去したのちマスク材をとり除き第2
図(a)の構造を得る。次に全面にSiN膜21を堆積
したのち通常のフォトリソグラフィーにより、P−In
GaAsP20を除去した領域に幅5μm間隔2μmの
1対のストライプ拡きパターンを形成したの&  CF
−系のドライエツチングによりSiN膜21を除去した
のちレジストを除去し第2図(b)に示す構造を得る。
Examples Examples of the present invention will be described below. FIG. 1 is a diagram of a buried cross-sectional structure of a semiconductor laser according to the present invention. Here, as in Fig. 3, 1 is the n-InP substrate, 2 is the n-InP substrate, and 2 is the n-InP substrate.
P buffy M! , 3 is InGaAsP activity N, 4 is P-
InP clad [5 is P-InP embedded JiiL6 is P-
InP implantation clothing 7 is P-InP implantation 8 is P-InG
aAsP: + > Tact layer Conventional example (Fig. 3 and 4)
The difference from the double channel 100 is that the side shape of the double channel 100 is an asymmetrical structure in which the inner side, that is, the side of the mesa stripe 9, has a reverse taper shape, while the outer side has a forward taper. Because of this shape, it is possible to form an active layer width of about 1 μm, which is necessary for singleizing the transverse mode, with good controllability.Also, since the outer side surface is forward tapered, it is possible to avoid step breaks in the buried epitaxial layers 5 and 6. Thinness is less likely to occur, embedded leakage is less likely to occur in this region, and low threshold single transverse mode oscillation can be obtained with high yield. is the same InG as active layer 3
The presence of the aAsP layer prevents the occurrence of leakage current due to thyristor turnover and enables high-output operation and high-temperature operation, which is the same in this embodiment. 4 First, in the first epitaxial growth, n-I is grown on the n-InP substrate l.
nP buffer layer (thickness d=5 μm) 2, InGaAs
P active layer (d=0.1 μm) 3, P-InP cladding layer (d=1 μm) 4, P-InGaAsP cap layer (d=0.1 μm) 20 are grown to have a width of 12 μm in the touch <011> direction. The P-1nGaAsP cap layer in this area was masked using H2S.
After removing the mask material using an etching solution of O4:H2O2:H20=1:1:5, the second
The structure shown in Figure (a) is obtained. Next, after depositing a SiN film 21 on the entire surface, P-In is deposited by ordinary photolithography.
A pair of striped patterns with a width of 5 μm and an interval of 2 μm was formed in the area where GaAsP20 was removed
After removing the SiN film 21 by - type dry etching, the resist is removed to obtain the structure shown in FIG. 2(b).

次にHCI・H2O2:ChCOOH= 3 : l 
:36の混合液で活性層3の下3μmまでエツチングし
 第2図(C)に示すように幅1μmの活性層を含むメ
サストライプ9とその両側にダブルチャンネル100が
形成される。
Next, HCI・H2O2:ChCOOH=3:l
Etching is performed to a depth of 3 .mu.m below the active layer 3 using a mixed solution of: 36 to form a mesa stripe 9 having a width of 1 .mu.m including the active layer and double channels 100 on both sides thereof, as shown in FIG. 2(C).

ここでダブルチャンネル100の中央に位置するメサス
トライプ9はP−InPクラッド4上に直接マスクとな
る5iN21が堆積しているのに対し ダブルチャンネ
ルの外側ではP−InGaAsPキャップ層20上にS
iN膜マスク21が存在す4 ここで塩酸士過酸化水素
系のエツチング液に対しInP/SiNの密着は良好で
サイドエッチは少なく中央のメサストライプ9は逆メサ
形状となる力<、  InGaAsP層20を介してい
る領域はInGaAsPのエツチング速度がInPに対
して速いためダブルチャンネルの外側の側面は順テーパ
とな4次にSiN膜21とInGaAsPキャップ層2
0を除去したのち埋込エピタキシャル成長を行な1.<
  P−InP埋込層5、n−InP埋込層6、P−I
nP埋込層7、P−1nGaAsPコンタクト層8を形
成し第1図の構造を得ることができも このように本発
明の半導体レーザの製造方法においては1回のダブルチ
ャンネルエツチングという簡単な方法により第1図に示
すよう非対称な構造のチャンネルを得ることができ、プ
ロセスの複雑化による歩留の低下、特性の劣化はほとん
ど無L%  k  本実施例において活性層の上下はI
nP層クワクラッドるカミ 活性層/クラッド層間にI
nGaAsP光導波層が介する構造でも同様であり、活
性層の上もしくは下に回折格子を内含するDFB形LD
にも適用することができも さらにダブルチャンネルの
工・ソチングはHC1+H20a+CHsCOOH系と
したがHC1+H2(h+H3PO4等でも良(HC1
+H2O1!を含むエツチング液であればこれに限定さ
れることはなく、エツチング液組成もこれに限定される
ものでなしも 発明の効果 以上本発明の半導体レーザ(友 内側が逆テーパで外側
が順テーパという非対称構造の溝から成るダブルチャン
ネル埋込型半導体レーザであり、活性層幅を制御良く挟
挿することができ、また埋込エピ層の際の段切れや細り
等による埋込リーク等による歩留低下を抑えることがで
きる大出力 高温動作型半導体レーザを提供できるもの
である。
Here, in the mesa stripe 9 located at the center of the double channel 100, 5iN21 is deposited directly on the P-InP cladding 4 as a mask, whereas on the outside of the double channel, S is deposited on the P-InGaAsP cap layer 20.
An iN film mask 21 exists 4. Here, the adhesion of InP/SiN to a hydrochloric acid/hydrogen peroxide based etching solution is good, there is little side etching, and the mesa stripe 9 in the center has an inverted mesa shape. Since the etching rate of InGaAsP is faster than that of InP, the outer side surface of the double channel has a forward taper.
After removing 0, buried epitaxial growth is performed.1. <
P-InP buried layer 5, n-InP buried layer 6, P-I
Although it is possible to form the nP buried layer 7 and the P-1nGaAsP contact layer 8 to obtain the structure shown in FIG. As shown in Fig. 1, a channel with an asymmetric structure can be obtained, and there is almost no decrease in yield or deterioration of characteristics due to complication of the process.
Between the active layer and the cladding layer I
The same applies to the structure in which the nGaAsP optical waveguide layer is interposed, and the DFB type LD includes a diffraction grating above or below the active layer.
In addition, double channel machining/soching is based on the HC1+H20a+CHsCOOH system, but HC1+H2 (h+H3PO4, etc.) may also be used (HC1+H20a+CHsCOOH).
+H2O1! The composition of the etching solution is not limited to this, and the composition of the etching solution is not limited to this. This is a double-channel buried semiconductor laser consisting of a groove with an asymmetric structure, and the active layer width can be sandwiched with good control, and the yield can be reduced due to buried leakage due to step cutting or thinning in the buried epitaxial layer. This makes it possible to provide a high-output, high-temperature operation semiconductor laser that can suppress deterioration.

また本発明の半導体レーザの製造法はダブルチャンネル
の内側はInPFL  外側はInGaAsP層を最上
層として絶縁膜でマスクし 塩酸と過酸化水素を含むエ
ツチング液でエツチングすることにより、このような非
対称構造を非常に容易なプロセスで安定に得ることがで
きるものである。
In addition, the method for manufacturing the semiconductor laser of the present invention is to mask the double channel with an insulating film, with InPFL on the inside and InGaAsP on the outside as the top layer, and then etching with an etching solution containing hydrochloric acid and hydrogen peroxide to eliminate such an asymmetric structure. It can be stably obtained through a very easy process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のレーザの構造は第2図(a
)〜(c)は第1図のレーザの製造工程医第3図、第4
図は従来のレーザの構造図であも1・・・・n−1nP
基楓 2・・・・n−1nPバツフア[3=InGaA
sP活性#4−・・P−InPクラッド# 5.7・・
・・P−InP埋込層、 6・・・・n−InP埋込#
 8・・・・P−InGaAsPコンタクト# 9・・
・・メサストライプ100・・・・ダブルチャンネル、
20・・・・InGaAsPキャップ#21・・・・S
iN風 代理人の氏名 弁理士 粟野重孝 はか1名菓!図 第20 (の) ZりIfLkAsf’やイノ71層 / C′b) zH・〜榎 / lθθダブルテインキ)V
FIG. 1 shows the structure of a laser according to an embodiment of the present invention, and FIG.
) to (c) are the manufacturing process diagrams of the laser shown in Fig. 1, Fig. 3 and 4.
The figure shows the structure of a conventional laser.
Base maple 2...n-1nP buffer [3=InGaA
sP activity #4-...P-InP cladding #5.7...
...P-InP buried layer, 6...n-InP buried layer #
8...P-InGaAsP contact #9...
...Mesa stripe 100...double channel,
20...InGaAsP cap #21...S
iN style agent's name Patent attorney Shigetaka Awano Haka 1 Meika! Figure 20 (of) ZriIfLkAsf' and Inno71 layer/C'b) zH・~Enoki/lθθ double stain)V

Claims (2)

【特許請求の範囲】[Claims] (1)第1の導電型の半導体基板上もしくは第1の導電
型の半導体層を有する半導体基板上に活性層および第2
の導電型のクラッド層を含むストライプ状の第1の領域
、前記第1の領域の両側に隣接して形成された前記基板
もしくは前記第1の導電型の半導体層に達するストライ
プ状溝内に異種導電型層より成る電流ブロッキング層を
含む一対のストライプ状の第2の領域、および前記第2
の領域の両側に位置し前記活性層および電流ブロッキン
グ層を含む第3の領域を備え、前記第2の領域内に有す
る溝側面の形状が前記第1の領域境界においては垂直も
しくは逆テーパであり、第3の領域境界側においては順
テーパであることを特徴とする半導体レーザ。
(1) An active layer and a second conductive layer are formed on a semiconductor substrate of a first conductivity type or a semiconductor substrate having a semiconductor layer of a first conductivity type.
a striped first region including a cladding layer of a conductivity type, a striped groove formed adjacent to both sides of the first region or a striped groove reaching the semiconductor layer of the first conductivity type; a pair of striped second regions including a current blocking layer made of a conductivity type layer;
a third region located on both sides of the region and including the active layer and the current blocking layer, the shape of the side surface of the groove in the second region is vertical or inversely tapered at the boundary of the first region; , a semiconductor laser having a forward taper on the third region boundary side.
(2)(100)面を主面とするInP基板上にInG
aAsP活性層、InPクラッド層および最上層にIn
GaAsPキャップ層を積層する工程と、<011>方
向へのストライプ状の第1の領域と前記第1の領域の両
側に隣接する<011>方向への1対のストライプの第
2の領域の前記InGaAsPキャップ層を除去する工
程と、前記第1の領域と、前記第2の領域の外側に位置
する第3の領域を絶縁膜でマスクして第2の領域の半導
体層を塩酸と過酸化水素水を含む混合液でエッチングす
る工程と、前記絶縁膜を除去した後に前記第2・第3の
領域に異種導電型から成る電流ブロック層を積層する工
程を含むことを特徴とする半導体レーザの製造方法。
(2) InG on an InP substrate whose main surface is the (100) plane.
aAsP active layer, InP cladding layer and top layer
a step of laminating a GaAsP cap layer; and a step of laminating a first region in a stripe shape in the <011> direction and a second region in a pair of stripes in the <011> direction adjacent to both sides of the first region. A step of removing the InGaAsP cap layer, masking the first region and a third region located outside the second region with an insulating film, and removing the semiconductor layer in the second region with hydrochloric acid and hydrogen peroxide. Manufacturing a semiconductor laser comprising the steps of: etching with a mixed solution containing water; and stacking current blocking layers of different conductivity types on the second and third regions after removing the insulating film. Method.
JP14108590A 1990-05-29 1990-05-29 Semiconductor laser and manufacture thereof Pending JPH0433387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14108590A JPH0433387A (en) 1990-05-29 1990-05-29 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14108590A JPH0433387A (en) 1990-05-29 1990-05-29 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0433387A true JPH0433387A (en) 1992-02-04

Family

ID=15283859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14108590A Pending JPH0433387A (en) 1990-05-29 1990-05-29 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0433387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283800A (en) * 1993-03-25 1994-10-07 Nec Corp Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283800A (en) * 1993-03-25 1994-10-07 Nec Corp Semiconductor laser

Similar Documents

Publication Publication Date Title
JPH07106685A (en) Semiconductor laser
JP2001044566A (en) Semiconductor laser and manufacture thereof
JPH0433387A (en) Semiconductor laser and manufacture thereof
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device
JP2000353849A (en) Optical semiconductor device and its manufacture
JPH06104527A (en) Fabrication of semiconductor laser
JP2685499B2 (en) Semiconductor laser device
JP2840833B2 (en) Semiconductor laser manufacturing method
JP2973215B2 (en) Semiconductor laser device
JPH04229682A (en) Manufacture of semiconductor laser
JPH05226774A (en) Semiconductor laser element and its production
JPS596588A (en) Semiconductor laser
JPS6318874B2 (en)
JPH01309393A (en) Semiconductor laser device and its manufacture
JPS6354234B2 (en)
JPS595688A (en) Semiconductor laser
JPH06188507A (en) Quantum fine line semiconductor laser and fabrication thereof
JPH0697603A (en) Semiconductor laser and its manufacture
JPH04151888A (en) Manufacture of semiconductor laser device
JPH03263890A (en) Semiconductor laser device and manufacture thereof
JPH01124280A (en) Semiconductor laser
JPH02156591A (en) Semiconductor laser
JPH04206985A (en) Manufacture of optical semiconductor element
JPS58223393A (en) Semiconductor laser
JPS641073B2 (en)