JPS63220587A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS63220587A
JPS63220587A JP5296487A JP5296487A JPS63220587A JP S63220587 A JPS63220587 A JP S63220587A JP 5296487 A JP5296487 A JP 5296487A JP 5296487 A JP5296487 A JP 5296487A JP S63220587 A JPS63220587 A JP S63220587A
Authority
JP
Japan
Prior art keywords
type
layer
doped
gaas
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5296487A
Other languages
Japanese (ja)
Inventor
Hiroshi Imamoto
浩史 今本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP5296487A priority Critical patent/JPS63220587A/en
Priority to US07/048,616 priority patent/US4839307A/en
Publication of JPS63220587A publication Critical patent/JPS63220587A/en
Priority to US07/297,025 priority patent/US5010556A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3077Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure plane dependent doping
    • H01S5/3081Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure plane dependent doping using amphoteric doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser without dividing a crystalgrowth process into two, by a method wherein the (n 11) A plane is exposed, Si-doped AlSGaAs on GaAs is grown on it, a double heterojunction whose n-type clad layer is composed of Si-doped AlSGaAs is installed and, futhermore, an n-type cap layer is installed. CONSTITUTION:The (n 11) (where n =1-3) A plane is exposed by making a stripe-shaped groove or a slope on a p-type GaAs substrate 7 of the orientation of plane (100) or on a GaAs substrate whose surface layer is composed of a p-type GaAs layer; Si-doped GaAs or AlGaAs 6 is grown on the assembly by using a molecular beam epitaxial growth method; a double heterojunction structure whose n-type clad layer is composed of an Si-doped AlGaAs layer 3 and whose cap layer is composed of Sn-doped GaAs is installed on the assembly. By this setup, only the 1A plane becomes a p-type and the remaining flat part becomes an n-type; an internal electric-current constriction part is constituted at the groove or at the stepped central part; it is possible to manufacture a semiconductor laser of the internal electric-current constriction type with a single crystal-growth process.

Description

【発明の詳細な説明】 発明の要約 n−1〜3とする(nil)A面を斜面とする溝加工ま
たは段差加工を施した(100)面方位p型GaAs基
板上に、A、gGaAs :Si層。
DETAILED DESCRIPTION OF THE INVENTION Summary of the Invention A, gGaAs is deposited on a (100) plane oriented p-type GaAs substrate which has been subjected to groove processing or step processing with the (nil) A plane as a slope, n-1 to n-3. Si layer.

A、i:GaAs : Beクラッド層、A、gGaA
s活性層、AjqGaAs : S iクラッド層、G
aAs:Snキャップ層を成長さぜる。Siは(100
)面上ではn型、  (nil)面一にではp型として
働くので、Aj7GaAs s S i層は斜面でのみ
p型となり、溝部分または段差加工の中央部は平坦とな
るからn型となり、ここに電流路ができる。このような
内部電流狭搾型半導体レーザを1回の分子線エピタキシ
ャル成長により作製することができる。
A, i: GaAs: Be cladding layer, A, gGaA
s active layer, AjqGaAs: Si cladding layer, G
Grow an aAs:Sn cap layer. Si is (100
) works as n-type on the (nil) plane, and as p-type on the (nil) plane, the Aj7GaAs s Si layer becomes p-type only on the slope, and becomes n-type because the groove part or the central part of the step processing is flat. A current path is created here. Such an internal current narrowing type semiconductor laser can be manufactured by one-time molecular beam epitaxial growth.

発明の背景 この発明は、半導体レーザの製造方法に関し。Background of the invention The present invention relates to a method for manufacturing a semiconductor laser.

とくに、たとえば分子線エピタキシャル成長法を用いて
内部電流狭搾部をもつ半導体レーザを製造する方法に関
する。
In particular, the present invention relates to a method of manufacturing a semiconductor laser having an internal current constriction section using, for example, molecular beam epitaxial growth.

従来の内部電流狭搾機構を有するA、QGaAs/ G
 a A s半導体レーザはまず1回目の結晶成長で基
板」二にそれとは逆の導電型の層を成長させ。
A, QGaAs/G with conventional internal current constriction mechanism
In an aAs semiconductor laser, a first crystal growth process is performed on the substrate, and then a layer of the opposite conductivity type is grown.

その一部をストライプ状にエツチングによって除去し、
ここに電流経路を設けることができるようにし、2回目
の結晶成長においてその基板上に2重異種接合構造を成
長させていた。
A part of it is removed by etching in stripes,
A current path can be provided here, and a double heterojunction structure is grown on the substrate during the second crystal growth.

しかしながらこのような従来の半導体レーザの製造方法
においては、2回の結晶成長工程を必要とする。2回目
の成長時に基板が高温にさらされるため逆バイアス電流
阻止層となるべき1回目と2回目の成長の界面に欠陥を
導入しやすいという問題点がある。
However, such a conventional semiconductor laser manufacturing method requires two crystal growth steps. Since the substrate is exposed to high temperature during the second growth, there is a problem in that defects are likely to be introduced at the interface between the first and second growth, which should serve as a reverse bias current blocking layer.

発明の概要 この発明は、結晶成長工程を2回に分ける必要のない半
導体レーザ、とくに内部電流狭搾型の半導体レーザを製
造する方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor laser, particularly an internal current constriction type semiconductor laser, which does not require dividing the crystal growth process into two steps.

この発明による半導体レーザの製造方法は。A method of manufacturing a semiconductor laser according to the present invention is as follows.

(100)面方位のp型GaAs基板上またはp型Ga
As層を表面層とするG a A s基板上に(nil
)(n−1〜3)A面を露出させるストライブ状の溝ま
たは傾斜加工を施し、その」二に2分子線エピタキシャ
ル成長法によりSiドープのGaAsまたはAj!Ga
Asを成長させ、その上にn型クラット層をSiドープ
AlGaAs層。
(100) p-type GaAs substrate or p-type Ga
On a GaAs substrate with an As layer as a surface layer (nil
) (n-1 to 3) A striped groove or slope processing is performed to expose the A plane, and then Si-doped GaAs or Aj! Ga
As is grown, and an n-type crat layer is formed on top of the Si-doped AlGaAs layer.

キャップ層をSnドープGaAsとする2重異種接合構
造を設けたことを特徴とする。
It is characterized by providing a double heterojunction structure in which the cap layer is made of Sn-doped GaAs.

これによってA面部のみがp型、他の平坦部はn型とな
り、溝部または段差加工中央部に内部電流狭搾部ができ
、1回の結晶成長で内部電流狭搾型半導体レーザをつく
ることができ、ト記問題点が解決される。とくにn型ク
ラッド層においては中央部に狭い平坦な部分ができるの
でここが両側の斜面p型部に挟まれたn型部となり、狭
い電子の電流狭搾部ができる。
As a result, only the A-plane part becomes p-type, and the other flat part becomes n-type, and an internal current narrowing part is created in the groove or the center part of the step process, making it possible to create an internal current narrowing type semiconductor laser with one crystal growth. This will solve the problem mentioned above. In particular, in the n-type cladding layer, a narrow flat portion is formed in the center, which becomes an n-type portion sandwiched between the sloped p-type portions on both sides, creating a narrow electron current constriction portion.

実施例の説明 第1図は、この発明の製造方法によって製造された半導
体レーザの構造を共振方向に垂直な断面として示すもの
である。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows the structure of a semiconductor laser manufactured by the manufacturing method of the present invention as a cross section perpendicular to the resonance direction.

ここで、1はn側電極、2はスズ(S n)をドーパン
トしたn−AJGaAsコンタクx   1−x ト層、3はシリコン(Si)をドーパントとじたn−A
l2 GaAsクラッド層で、これは電x   L−x 子の注入方向からの電流狭搾層として働く。4は活性層
、5はベリリウム(Be)をドーパントしたp−Ai 
Ga   Asクラッド層、6はシリ1−y フン(Si)  ドープのAl2  Ga   As電
流狭z   L−z 搾層、7は(ioo)面方位のp型GaAs基板、8は
n側電極である。
Here, 1 is an n-side electrode, 2 is an n-AJGaAs contact layer doped with tin (S n), and 3 is an n-A contact layer doped with silicon (Si).
l2 GaAs cladding layer, which acts as a current confinement layer from the injection direction of x L-x electrons. 4 is an active layer, 5 is p-Ai doped with beryllium (Be)
A GaAs cladding layer, 6 a Si-doped Al2GaAs current narrowing layer, 7 a p-type GaAs substrate with an (ioo) plane orientation, and 8 an n-side electrode.

この半導体レーザは次のようにして作製される。まず(
100)面方位のp型GaAs基板上7に(010)方
位にストライブ状の窓をあけたエツチング・マスクを設
け、リン酸−過酸化水素一水等を用いたウェット・ケミ
カル・エツチングやドライ・エツチングによりSl、S
2で示すような(nil)n=1〜3A面が露出するよ
うな溝加工を施す。
This semiconductor laser is manufactured as follows. first(
100) An etching mask with striped windows in the (010) orientation is provided on a p-type GaAs substrate with a plane orientation of 7, and wet chemical etching using phosphoric acid-hydrogen peroxide, etc. or dry etching is performed.・Sl, S by etching
Groove processing is performed to expose the (nil)n=1 to 3A surface as shown in 2.

エツチング・マスクを除去したのち1分子線エピタキシ
ャル成長(MBE)法により、SiドープAj!GaA
s層6.BeドープAj!GaAs層5、Aj!GaA
s系活性層4.SiドープA(GaAs層およびn型G
aAs層2を連続的に成長させる。最後に電極1,8を
設ける。
After removing the etching mask, Si-doped Aj! GaA
s layer 6. Be dope Aj! GaAs layer 5, Aj! GaA
s-based active layer 4. Si-doped A (GaAs layer and n-type G
The aAs layer 2 is grown continuously. Finally, electrodes 1 and 8 are provided.

電流狭搾層6およびn型クラッド層3の成長時にSiを
ドーピング制として用いると、良く知られているように
Siは(1(10)面上ではn型。
When Si is used as a doping system during the growth of the current confinement layer 6 and the n-type cladding layer 3, as is well known, Si becomes n-type on the (1(10) plane).

(n 11)面上ではp型として働く。このため、電流
狭搾層6についていえば、エツチングによって形成され
た溝の内部ではほとんどの部分が斜面となっているので
p型となり、溝外の平坦部ではn型となる。p型部を斜
線で示す。nuクラッド層3は層6上に形成された層5
.41につくられるので、このクラッド層3における溝
部中央(Rで示す)では平坦性が増し、ここがn型とな
り、その両側の斜面部がp型となり(ハツチングで示す
)、さらにその両側の平坦部ではn型となる。
It acts as p-type on the (n 11) plane. For this reason, regarding the current confinement layer 6, most of the inside of the groove formed by etching is sloped, so it becomes p-type, and the flat part outside the groove becomes n-type. The p-type part is indicated by diagonal lines. nu cladding layer 3 is layer 5 formed on layer 6
.. 41, the flatness increases at the center of the groove (indicated by R) in this cladding layer 3, which becomes n-type, and the slopes on both sides thereof become p-type (indicated by hatching), and the flatness on both sides increases. In this case, it becomes n-type.

したがって2層5と6との界面においては両側の平坦部
が正孔に対する逆バイアス電流阻止層となる。また2層
2と3との界面においては、中央の平坦部Rの両側の斜
面部が電子に対する逆バイアス電流阻止層となる。第1
図ではpn逆バイアス接合面を太く示しである。
Therefore, at the interface between the two layers 5 and 6, the flat portions on both sides serve as reverse bias current blocking layers for holes. Further, at the interface between the two layers 2 and 3, the sloped portions on both sides of the central flat portion R serve as reverse bias current blocking layers for electrons. 1st
In the figure, the pn reverse bias junction surface is shown in bold.

n型コンタクト層2では、逆にこの導電性の反転効果を
避けるためn型ドーパントとしてSnを用いている。
In the n-type contact layer 2, Sn is used as an n-type dopant to avoid this conductivity inversion effect.

以」二の構成において、n側電極8からn側電極1に向
って電流(正孔)を流すと、電極8からの正孔は、実線
の矢印で示すように1層6の斜面部を通って活性層4の
中央部に向い、電極1からの電子は、破線の矢印で示す
ように1層3の中央の平旦1部Rのみを通って活性層4
の中央部に向って、正孔と再結合し、レーザ発振が起こ
る。このようにして、電流は活性層4の中央部へ効率よ
く集中し、内部電流狭搾型半導体レーザとして動作する
In the second configuration below, when a current (holes) is passed from the n-side electrode 8 to the n-side electrode 1, the holes from the electrode 8 move along the slope of the first layer 6 as shown by the solid arrow. The electrons from the electrode 1 pass through only the center part R of the first layer 3 and reach the active layer 4, as shown by the dashed arrow.
towards the center of the hole, it recombines with the hole and laser oscillation occurs. In this way, the current is efficiently concentrated in the center of the active layer 4, and the semiconductor laser operates as an internal current constriction type semiconductor laser.

第2図から第4図は他の実施例を示している。2 to 4 show other embodiments.

第2図では、エツチングによって溝加工の底部を平坦に
残すことによって製造された半導体レーザを示し、第3
図は上に凸状にエツチングを行ない製造された半導体レ
ーザを、第4図は、凸部の頂部に(100)の平坦な面
を残すように加工されることによって製造された半導体
レーザをそれぞれ示している。これらの図において第1
図に示すものと同一物には同一符号がつけられている。
FIG. 2 shows a semiconductor laser manufactured by leaving the bottom of the grooved flat by etching, and the third
The figure shows a semiconductor laser manufactured by etching it into a convex shape, and Figure 4 shows a semiconductor laser manufactured by etching it so that a (100) flat surface is left on the top of the convex part. It shows. In these figures, the first
Components that are the same as those shown in the figures are given the same reference numerals.

たたし電極1,8の図示か省略されている。これらの実
施例では、 (100)面方位p型GaAs基板7に(
nil)A面(n−1〜3)を斜面とするテラス状のエ
ツチング加工を施し、その後その」−に各層6.5,4
,3.2を成長させている。
The drawing electrodes 1 and 8 are omitted. In these embodiments, the (100)-oriented p-type GaAs substrate 7 has (
nil) A terrace-like etching process is performed with the A side (n-1 to 3) as the slope, and then each layer 6.5, 4
, 3.2 is growing.

以上のようにしてこの発明によるとドーパントを適宜選
択することにより1回の結晶成長で内部電流狭搾型半導
体レーザを作製することができる。
As described above, according to the present invention, by appropriately selecting a dopant, an internal current narrowing type semiconductor laser can be manufactured by one crystal growth.

上記実施例では活性層について特記しなかったが、活性
層は単なるA、g  Ga   As単一層でw   
1−w も、多重量子井戸構造でも、いわゆるGRIN−8CI
I−8Qw構造でもよい。
In the above embodiments, no special mention was made of the active layer, but the active layer was simply a single layer of A, g Ga As.
1-w also has a multi-quantum well structure, so-called GRIN-8CI.
An I-8Qw structure may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による製造方法によって作製された半
導体レーザを示す断面図であり、第2図、第3図、第4
図はこの発明による他の製造方法によって作製された半
導体レーザを示す断面図である。 1・・・n側電極。 2−−−S n ドープn−Aj?  Ga、−x A
sコンタクト層。 3−・−S i  ドープn−A、j:   Ga1−
x Asクラッド層。 4・・・活性層。 5−−− B e ドープp−AA   G a 1−
y A sクラッド層。 6−−− S i  ドープA J   G a 1−
z A s電流狭搾層。 7・・・p型GaAs基板。 8・・・p側電極。 以  上 特許出願人  立石電機株式会社 代 理 人  弁理士 牛久 健司 (外1名)1:n
側電極 2:3nトープn−Aj’xGa、−、As:17タク
ト層3:Sr ドープn−A/、Ga、−、Asクラツ
1ζ層4:ン舌性R号 5:Be  ド゛−プp−A!yGal□ASクラッド
、層6:Si  ドープA!、Ga、−zAs電!*F
J7:p堅GaAS基収 8:p側を奴 第2図 第1図 第4図 第3図 [
FIG. 1 is a cross-sectional view showing a semiconductor laser manufactured by the manufacturing method according to the present invention, and FIGS.
The figure is a sectional view showing a semiconductor laser manufactured by another manufacturing method according to the present invention. 1... n-side electrode. 2---S n doped n-Aj? Ga, -x A
s contact layer. 3-.-S i doped n-A,j: Ga1-
x As cladding layer. 4...Active layer. 5--- B e doped p-AA Ga 1-
y As cladding layer. 6--- S i dope A J Ga 1-
z A s current constriction layer. 7...p-type GaAs substrate. 8...p side electrode. Patent applicant Tateishi Electric Co., Ltd. Representative Patent attorney Kenji Ushiku (1 other person) 1:n
Side electrode 2: 3n doped n-Aj'xGa, -, As: 17 tact layer 3: Sr doped n-A/, Ga, -, As crystal 1ζ layer 4: Tongue R No. 5: Be doped p-A! yGal□AS cladding, layer 6: Si doped A! , Ga, -zAs electric! *F
J7: p-side GaAS group 8: p-side side Figure 2 Figure 1 Figure 4 Figure 3 [

Claims (1)

【特許請求の範囲】[Claims] (100)面方位のp型GaAs基板上、またはp型G
aAs層を表面層とするGaAs基板上に、n=1〜3
とする(n11)A面を露出させる溝加工または段差加
工を施し、その上にSiドープAlGaAsまたはGa
Asを成長させ、その上にn型クラッド層をSiドープ
AlGaAsとする2重異種接合を設け、さらにn型キ
ャップ層を設けたことを特徴とする内部電流狭搾部をも
つ半導体レーザの製造方法。
On a p-type GaAs substrate with (100) plane orientation, or on a p-type G
On a GaAs substrate with an aAs layer as a surface layer, n=1 to 3
(n11) Perform groove processing or step processing to expose the A side, and then Si-doped AlGaAs or Ga
A method for manufacturing a semiconductor laser having an internal current constriction portion, characterized in that a double heterojunction is grown on which As is grown, an n-type cladding layer is made of Si-doped AlGaAs, and an n-type cap layer is further provided. .
JP5296487A 1986-05-14 1987-03-10 Manufacture of semiconductor laser Pending JPS63220587A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5296487A JPS63220587A (en) 1987-03-10 1987-03-10 Manufacture of semiconductor laser
US07/048,616 US4839307A (en) 1986-05-14 1987-05-11 Method of manufacturing a stripe-shaped heterojunction laser with unique current confinement
US07/297,025 US5010556A (en) 1986-05-14 1989-01-13 A stripe-shaped heterojunction laser with unique current confinement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5296487A JPS63220587A (en) 1987-03-10 1987-03-10 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63220587A true JPS63220587A (en) 1988-09-13

Family

ID=12929572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5296487A Pending JPS63220587A (en) 1986-05-14 1987-03-10 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63220587A (en)

Similar Documents

Publication Publication Date Title
US4839307A (en) Method of manufacturing a stripe-shaped heterojunction laser with unique current confinement
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPH03208388A (en) Semiconductor laser, manufacture thereof and diffusion of impurity
JPH07183618A (en) Semiconductor laser device, and manufacture of semiconductor laser device, and integrated semiconductor laser device
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
US5173913A (en) Semiconductor laser
JPS62200785A (en) Semiconductor laser device and manufacture thereof
JPS63220587A (en) Manufacture of semiconductor laser
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JPH07112092B2 (en) Semiconductor laser and manufacturing method thereof
JP3146501B2 (en) Semiconductor laser and method of manufacturing the same
JP3472739B2 (en) Manufacturing method of semiconductor laser
JP3451818B2 (en) Semiconductor laser
JPS6124839B2 (en)
US5559821A (en) Semiconductor laser
JP2554192B2 (en) Semiconductor laser manufacturing method
JPH05145182A (en) Manufacture of semiconductor laser device with end plane window construction
JPH11284276A (en) Semiconductor laser device and its manufacture
JPS6344784A (en) Semiconductor light emitting device
JP3005998B2 (en) Manufacturing method of semiconductor laser
JPH1140885A (en) Semiconductor laser device
JPS61171185A (en) Semiconductor laser device
JPH0559594B2 (en)
JPH08204277A (en) Semiconductor laser
JPH04296081A (en) Visible beam semiconductor laser