JPH09171963A - Manufacture of minute semiconductor structure - Google Patents

Manufacture of minute semiconductor structure

Info

Publication number
JPH09171963A
JPH09171963A JP33006395A JP33006395A JPH09171963A JP H09171963 A JPH09171963 A JP H09171963A JP 33006395 A JP33006395 A JP 33006395A JP 33006395 A JP33006395 A JP 33006395A JP H09171963 A JPH09171963 A JP H09171963A
Authority
JP
Japan
Prior art keywords
semiconductor
fine structure
substrate
grown
quantum box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33006395A
Other languages
Japanese (ja)
Other versions
JP3340899B2 (en
Inventor
Hideki Goto
秀樹 後藤
Hiroaki Ando
弘明 安藤
Hiroshi Kanbe
宏 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP33006395A priority Critical patent/JP3340899B2/en
Publication of JPH09171963A publication Critical patent/JPH09171963A/en
Application granted granted Critical
Publication of JP3340899B2 publication Critical patent/JP3340899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control the position of a self-formed quantum box accurately by forming an opening part and a dent in the main surface of the first semiconductor substrate, growing the second semiconductor having the larger lattice constant than the first semiconductor on the substrate and forming the minute semiconductor structure comprising the semiconductor grown in the indentation. SOLUTION: A dent 4, whose position is controlled, is formed in the first semiconductor substrate by the means such as lithography and etching. The depth of the dent 4 is made shallower than the height of a quantum box 3 to be manufactured. The size of the opening part of the dent at the substrate surface is made smaller than the bottom surface of the quantum box 3 to be manufactured. Then, by growing the second semiconductor having the larger lattice constant than the first semiconductor on the substrate, the quantum box 3 having the uniform size is manufactured accurately at the position of the dent. Furthermore, this dent 4 or the groove is constituted of the plane, wherein at least one of integers (l), (m) and (n) expressing the high-order exponents (l, m and n) is larger than 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、量子効果を利用し
た電気素子または光素子の高性能化に重要な量子箱およ
び量子細線を、製作するための半導体微細構造の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor fine structure for manufacturing quantum boxes and quantum wires, which are important for improving the performance of electric devices or optical devices utilizing the quantum effect.

【0002】[0002]

【従来の技術】本発明に関連した量子箱の作製方法は、
従来、自然形成量子箱作製法といわれ、以下図8に示す
ようなものである。まず、第1の半導体基板1に分子線
エピタキシー法や有機金属気相成長法などで、緩衝層と
して第1の半導体と同じ半導体2を(b)のように成長
させる。その後、第1の半導体より大きな格子定数を持
った第2の半導体層を同じ方法で成長させる。第2の半
導体層は成長当初基板に一様に成長するが、数原子層
(通常1〜3原子層)成長すると原子の再配列が起こり
島状の原子団3になり、そのまま成長を継続する。これ
は成長層の形状によってきまる過剰エネルギー、すなわ
ち(第1の半導体と第2の半導体の界面のエネルギー)
+(第1および第2の半導体の表面のエネルギー)+
(成長層の内部の歪みのエネルギー)が小さくなるよう
に、原子が移動し結合を組み直すためである。つまり、
成長中は高温であるため、ある範囲で成長層を構成する
原子は移動可能である。この際、第2の半導体の原子が
凝集すると、界面の面積と表面の面積の和は大きくな
り、界面および表面のエネルギーの和を大きくする要因
として働くが、凝縮された島状の第2の半導体の内側で
は格子不整合による歪みが緩和されるため、成長層内部
の歪みのエネルギーに対しては小さくする要因として働
く。島内部に存在する原子と表面または界面に存在する
原子の比は、島の大きさが大きくなるほど大きくなるの
で、島が大きくなるほど結晶内部の歪みの緩和の効果は
優勢になる。すなわち、成長が進み第2の半導体の原子
数が増えると、第2の半導体は島状に凝集した方が過剰
エネルギーが小さくなくなる。従って第2の半導体の成
長が進むとある時点から、結晶成長の態様が層状から島
状に遷移する。この過程は原子の結合エネルギーによっ
て規定されるので、島状部の大きさは揃ったものとな
る。
2. Description of the Related Art A method of manufacturing a quantum box related to the present invention is as follows.
Conventionally, it is called a naturally formed quantum box manufacturing method, and is as shown in FIG. 8 below. First, the same semiconductor 2 as the first semiconductor is grown as a buffer layer on the first semiconductor substrate 1 by a molecular beam epitaxy method, a metal organic chemical vapor deposition method, or the like as shown in (b). Then, a second semiconductor layer having a larger lattice constant than that of the first semiconductor is grown by the same method. The second semiconductor layer grows uniformly on the substrate at the beginning of growth, but when several atomic layers (usually 1 to 3 atomic layers) grow, atoms are rearranged to form island-shaped atomic groups 3, and the growth continues as it is. . This is an excess energy determined by the shape of the growth layer, that is, (energy of the interface between the first semiconductor and the second semiconductor).
+ (Energy of the surface of the first and second semiconductors) +
This is because atoms move and rearrange bonds so that (energy of strain inside the growth layer) becomes small. That is,
Since the temperature is high during the growth, the atoms forming the growth layer can move within a certain range. At this time, when the atoms of the second semiconductor agglomerate, the sum of the area of the interface and the area of the surface increases, which acts as a factor for increasing the sum of the energy of the interface and the surface. Since strain due to lattice mismatch is relaxed inside the semiconductor, it works as a factor for reducing the strain energy inside the growth layer. The ratio of the atoms existing inside the island to the atoms existing on the surface or the interface becomes larger as the size of the island becomes larger, so that the larger the island becomes, the more the effect of relaxing strain inside the crystal becomes dominant. That is, as the growth progresses and the number of atoms of the second semiconductor increases, the excess energy becomes smaller when the second semiconductor aggregates in an island shape. Therefore, when the growth of the second semiconductor progresses, the crystal growth mode changes from the layered state to the islanded state from a certain point. Since this process is defined by the binding energy of atoms, the islands have the same size.

【0003】例えばGaAs上にInAsを1〜3原子層成
長するInAsが島状に凝集し、その大きさは量子箱に適
した10〜100nmになる。この原理を応用して、量
子箱を自己形成的に製作する方法が種々報告されてい
る。
For example, InAs which grows 1 to 3 atomic layers of InAs on GaAs aggregates in an island shape, and the size thereof becomes 10 to 100 nm suitable for a quantum box. Various methods have been reported for applying this principle to self-assemble quantum boxes.

【0004】[0004]

【発明が解決しようとする課題】従来の方法で作られた
自己形成量子箱構造は個々の量子箱の大きさは揃ってい
るが、それが第1の半導体上のどこに形成されるかは制
御不能であった。そこでつぎのような方法が提案され
た。一つ目は第42回応用物理学関係連合講演会予稿集
No.3,1212,28a‐SZK‐17に掲載されて
いる方法である(図9)。まず、微傾斜GaAs基板を熱
処理し原子層ステップ21を形成する。その後、先と同
様にInAsを数原子層成長させるとステップ端に選択的
に量子箱3が形成される。しかし、この方法は個々のス
テップ端の量子箱の位置は制御不能である。二つ目は第
56回応用物理学会学術講演会予稿集No.3,105
7,29p‐ZM‐4に掲載されている方法である(図
10)。これはGaAs基板に予めSiO231でパターニ
ングを行いInAsを成長させるものである。この方法は
パターンの中に量子箱3を1個あるいは2個形成するこ
とは可能だが、個々のパターンのどの位置に形成される
かは制御不能である。また、この方法でパターンを量子
箱と同程度に小さくすると、再配列によって凝集する原
子の数が限られてくるので、凝集によって低下するエネ
ルギーが減少し、自己形成的に量子箱を形成することが
困難になる。三つ目は、第56回応用物理学会学術講演
会予稿集No.3,1058,27p‐ZM‐7に掲載
されているもので、GaAs基板に予めエッチングでV溝
(図11)やピラミッド型(図12)の凹み52を形成
して自己形成量子箱を作製する方法である。この方法に
おいて、V溝のものは個々の斜面での量子箱の位置の制
御が困難である。また、ピラミッド型のものはV溝のも
のと同様な問題が存在するのと同時に、拡大図(b)に
示されるピラミッドの頂上に形成される第2の半導体5
3は層状でなく、最初から表面または界面の面積が小さ
い三角錘状なので、量子箱の自己形成機構は働かない。
したがって、個々の量子箱の大きさを制御するのが困難
となる。
In the self-assembled quantum box structure produced by the conventional method, the individual quantum boxes have the same size, but it is controlled where they are formed on the first semiconductor. It was impossible. Therefore, the following method was proposed. The first is Proceedings of the 42nd Joint Lecture on Applied Physics No. 3, 1212, 28a-SZK-17 (Fig. 9). First, the vicinal GaAs substrate is heat-treated to form the atomic layer step 21. After that, when a few atomic layers of InAs are grown in the same manner as described above, the quantum boxes 3 are selectively formed at the step ends. However, this method cannot control the position of the quantum box at each step end. The second is Proceedings of the 56th Academic Meeting of the Japan Society of Applied Physics No. 3,105
This is the method described in 7,29p-ZM-4 (Fig. 10). This is what growing InAs was patterned beforehand with SiO 2 31 to the GaAs substrate. Although this method can form one or two quantum boxes 3 in a pattern, it is not possible to control which position in each pattern is formed. Also, if the pattern is made as small as a quantum box by this method, the number of atoms that agglomerate due to rearrangement will be limited, so the energy reduced by aggregation will decrease, and the quantum box will be formed self-formingly. Becomes difficult. The third is Proceedings of the 56th JSAP Academic Lecture No. No. 3,1058,27p-ZM-7, in which a V-groove (FIG. 11) and a pyramid-shaped recess (FIG. 12) are formed in advance on a GaAs substrate to fabricate a self-assembled quantum box. Is the way. In this method, it is difficult to control the position of the quantum box on each slope in the V-groove type. Further, the pyramid type has the same problem as that of the V groove, and at the same time, the second semiconductor 5 formed on the top of the pyramid shown in the enlarged view (b).
Since 3 is not layered but has a triangular pyramid shape with a small surface or interface area from the beginning, the self-formation mechanism of the quantum box does not work.
Therefore, it is difficult to control the size of each quantum box.

【0005】本発明は自己形成量子箱の位置を正確に制
御し、大きさ、空間的位置の均一な半導体量子箱を得る
ことを目的とする。
An object of the present invention is to accurately control the position of a self-assembled quantum box and obtain a semiconductor quantum box having a uniform size and spatial position.

【0006】[0006]

【課題を解決するための手段】上記目的は第1半導体よ
りなる基板の主面上に、製造を予定した半導体微細構造
の底面に覆われる大きさをもつ開口部と、上記半導体微
細構造の高さより浅い深さをもつ窪みを形成する工程
と、上記基板上に上記第1半導体より格子定数が大きい
第2半導体を成長し、上記半導体微細構造の上記窪みの
中に成長した半導体よりなる半導体微細構造を形成する
工程とから得られる。
The above object is to provide an opening on the main surface of a substrate made of a first semiconductor, the opening having a size to be covered by the bottom surface of the semiconductor fine structure to be manufactured, and the height of the semiconductor fine structure. A step of forming a recess having a shallower depth, a second semiconductor having a lattice constant larger than that of the first semiconductor grown on the substrate, and a semiconductor microstructure made of a semiconductor grown in the recess of the semiconductor microstructure. And forming the structure.

【0007】さらに、第1半導体よりなる基板の主面上
に、製造を予定した細線状の半導体微細構造の幅より狭
い幅と、上記細線状の半導体微細構造の高さより浅い深
さをもつ溝を形成する工程と、上記基板上に上記第1半
導体より格子定数が大きい第2半導体を成長し、上記細
線状の半導体微細構造と上記溝の中に成長した半導体よ
りなる半導体微細構造を形成する工程とから得られる。
Further, on the main surface of the substrate made of the first semiconductor, a groove having a width narrower than the width of the fine line-shaped semiconductor fine structure to be manufactured and a depth shallower than the height of the fine line-shaped semiconductor fine structure. And forming a second semiconductor having a lattice constant larger than that of the first semiconductor on the substrate to form a semiconductor fine structure having the fine line-shaped semiconductor fine structure and the semiconductor grown in the groove. Obtained from the process.

【0008】上記第1半導体上に成長させる第2半導体
の格子定数が、第1半導体より小さいことにより、それ
ぞれ目的が達成される。
When the lattice constant of the second semiconductor grown on the first semiconductor is smaller than that of the first semiconductor, the respective objects are achieved.

【0009】また、面指数(lmn)を表す整数l,
m,nのうち、少なくても1つが1より大きい面を備え
た窪み、または溝を上記窪みまたは溝とすることによ
り、それぞれの目的が達成される。
Further, an integer l representing the surface index (lmn),
When at least one of m and n is provided with a surface having a surface larger than 1, each of the objects is achieved by using the above-mentioned recess or groove as the recess or groove.

【0010】すなわち、本発明は第1半導体基板に、図
1(a)のように予めリソグラフィとエッチングなどの
手段により、位置制御された凹み4を作り、その凹み4
の深さを作製しようとする量子箱3の高さより浅く、か
つ基板表面での窪みの開口部の大きさを作製しようとす
る量子箱の底面より小さくすることを特徴とするもので
ある。その基板に第1半導体より格子定数の異なる第2
の半導体を成長させることにより、正確に窪みの位置に
大きさの均一な量子箱(図1(b))のように作製する
ことができる。また、上記窪みを溝にすることにより位
置の制御された量子線を自己形成的に形成することも可
能である。さらに、この窪みまたは溝を高次の指数面
(面指数(lmn))を表す整数l,m,nのうち、少
なくても1つが1より大きい面で構成することにより、
前記の量子箱または量子細線の形成が容易になる。
That is, according to the present invention, as shown in FIG. 1A, the position-controlled recess 4 is formed in advance on the first semiconductor substrate by means such as lithography and etching, and the recess 4 is formed.
The depth is smaller than the height of the quantum box 3 to be manufactured, and the size of the opening of the recess on the substrate surface is smaller than the bottom surface of the quantum box to be manufactured. The substrate has a second semiconductor having a lattice constant different from that of the first semiconductor.
By growing the semiconductor of (1), it is possible to manufacture a quantum box (FIG. 1 (b)) having a uniform size at the exact position of the depression. It is also possible to self-form a quantum wire whose position is controlled by forming the depression as a groove. Further, by forming the depression or groove with a surface having at least one of the integers l, m, and n representing a higher-order index surface (surface index (lmn)) larger than 1,
It facilitates the formation of the quantum box or quantum wire.

【0011】[0011]

【発明の実施の形態】図2に本願発明による量子箱の形
成過程を示す。ここでは第2半導体は基板を構成する第
1半導体の格子定数より大きい場合を示している。半導
体基板72の上に窪み71を形成し、基板と格子定数が
異なる第2半導体73を成長すると当初は層状に成長す
るが、数原子層成長すると成長層内部の歪みエネルギー
が増大する。窪みが原子ステップを有しない低次の指数
面から構成されている場合(図2(d))は、低指数面
同士の交線に原子ステップが存在する。このような原子
ステップを有する溝に第2半導体を成長すると、1原子
あたりの異種原子との結合手の数は原子ステップで最も
高くなる。従って、格子不整合による歪みエネルギー
(界面エネルギーおよび内部の歪みエネルギー)は、こ
の原子ステップに最も集中しているので、この原子ステ
ップより第2半導体の原子の再配列が始まる。すなわ
ち、溝内部の原子ステップで再配列をした原子の集団を
核として、原子の再配列が進行する。この再配列は第2
半導体層の変形をもたらし、これによって歪みが緩和さ
れ(図2(e))、最終的には量子箱3が形成されて終
了する。その後の成長では、供給された原子はこの量子
箱に吸収され量子箱は成長して行く(図2(f))。図
2は第2半導体の格子定数が大きい場合を示したが、格
子定数が小さくても同様にして量子箱は形成される。こ
の時は成長膜に加わる歪みは伸張性歪みとなる。また、
窪みが図2(g)のように高次の指数面で構成される場
合は、この指数面状に最初から原子ステップが存在する
ので、核が容易に形成され再配列が進行しやすい。
FIG. 2 shows a process of forming a quantum box according to the present invention. Here, the case where the second semiconductor is larger than the lattice constant of the first semiconductor forming the substrate is shown. When the recess 71 is formed on the semiconductor substrate 72 and the second semiconductor 73 having a lattice constant different from that of the substrate is grown, the layer initially grows, but when several atomic layers grow, the strain energy inside the growth layer increases. When the depression is composed of low-order index planes that do not have atomic steps (FIG. 2D), atomic steps are present at the intersections between the low-index planes. When the second semiconductor is grown in the groove having such an atomic step, the number of bonds with a different atom per atom becomes the highest in the atomic step. Therefore, the strain energy due to the lattice mismatch (interface energy and internal strain energy) is most concentrated in this atomic step, so that the rearrangement of the atoms of the second semiconductor starts from this atomic step. That is, the rearrangement of atoms proceeds with the group of atoms rearranged at the atomic step inside the groove as a nucleus. This rearrangement is second
This causes deformation of the semiconductor layer, which relaxes the strain (FIG. 2E), and finally the quantum box 3 is formed and ends. In the subsequent growth, the supplied atoms are absorbed in this quantum box and the quantum box grows (FIG. 2 (f)). Although FIG. 2 shows the case where the second semiconductor has a large lattice constant, the quantum box is similarly formed even if the lattice constant is small. At this time, the strain applied to the growth film becomes tensile strain. Also,
When the depression is composed of a higher-order exponential plane as shown in FIG. 2 (g), atomic steps exist from the beginning in this exponential plane, so that a nucleus is easily formed and rearrangement easily proceeds.

【0012】また、前記の窪みを溝にすると、細線状の
微細構造すなわち量子細線を形成することも、既に述べ
たことから容易に判るように可能である。
Further, if the above-mentioned depression is made into a groove, it is possible to form a fine line-shaped fine structure, that is, a quantum fine line, as can be easily understood from the above description.

【0013】[0013]

【実施例】【Example】

第1実施例 本発明の第1実施例を図3に示す。まず、GaAs(10
0)基板1に分子線エピタキシー装置で、通常の条件に
より図3(a)のようにGaAs単一膜を0.1μm程度
成長させ、量子箱形成のための基板とする。この様にし
て形成した基板を分子線エピタキシー装置から取り出
し、ZEPレジスト(ZEP520)5を塗布し、EB
リソグラフィーでパターニングを行う。つぎに現像液
(ZED‐N50)で現像し、大きさ10nm×10n
m、深さ2μm、ピッチ30nmのパターニング基板図
3(c)を作製する。つぎに硫酸:過酸化水素水:水=
4:1:4で2秒間エッチングする。このエッチングで
はGaAsのファセット面は形成されず、図3(d)に示
すような微小な原子層ステップの集まった浅い凹みとな
る。この基板をつぎにZEP溶剤(ノルマルメチルピロ
リジン)に浸してZEPレジストを取り除き、図3
(e)のように微細なパターンが並んだ基板を作製す
る。この基板を再び分子線エピタキシー装置に入れ、基
板温度が530℃でInAsを約2原子層成長させると、
図2(f)のようなInAsの量子箱が図3(f)に示す
ように形成される。つぎにGaAsを連続的に成長させる
と、このInAs量子箱3をGaAs88で図3(g)のよ
うに埋め込むことができる。でき上がった量子箱の寸法
は、幅約20nm、高さ約6nmであった。
First Embodiment A first embodiment of the present invention is shown in FIG. First, GaAs (10
0) Using a molecular beam epitaxy apparatus on a substrate 1, a GaAs single film is grown to a thickness of about 0.1 μm under normal conditions as shown in FIG. The substrate thus formed is taken out from the molecular beam epitaxy apparatus, ZEP resist (ZEP520) 5 is applied, and EB is applied.
Patterning is performed by lithography. Next, it is developed with a developing solution (ZED-N50), and the size is 10 nm × 10 n.
A patterned substrate of FIG. 3C with m, depth of 2 μm and pitch of 30 nm is prepared. Next, sulfuric acid: hydrogen peroxide water: water =
Etch for 2 seconds at 4: 1: 4. In this etching, the facet surface of GaAs is not formed, and it becomes a shallow depression in which minute atomic layer steps are gathered as shown in FIG. This substrate is then dipped in a ZEP solvent (normal methylpyrrolidine) to remove the ZEP resist.
A substrate having fine patterns arranged as shown in (e) is prepared. When this substrate is put into the molecular beam epitaxy apparatus again, and the substrate temperature is 530 ° C., and about 2 atomic layers of InAs are grown,
An InAs quantum box as shown in FIG. 2 (f) is formed as shown in FIG. 3 (f). Next, when GaAs is continuously grown, this InAs quantum box 3 can be embedded with GaAs 88 as shown in FIG. The dimensions of the completed quantum box were about 20 nm in width and about 6 nm in height.

【0014】第2実施例 本発明の第2実施例を図4に示す。この例ではSTM
(走査トンネル顕微鏡)を用いて、第1の半導体基板9
2上に等間隔の凹み93を形成している。STMのトン
ネル電流は凹み93を形成させるために、通常の像観察
の時より大きくしている。
Second Embodiment A second embodiment of the present invention is shown in FIG. In this example STM
Using a (scanning tunneling microscope), the first semiconductor substrate 9
The recesses 93 are formed on the surface 2 at equal intervals. The tunnel current of the STM is made larger than that during normal image observation in order to form the depression 93.

【0015】第3実施例 本発明の第3実施例を図5に示す。この例では活性層で
ある量子箱と障壁層のエネルギー差を大きくするため
に、GaAs(100)基板1につづいてGaAs101、
さらにAlGaAs102を成長させ、第1実施例と同様
なリソグラフィー、エッチングの工程ののち、InAs3
を2原子層の厚さ成長し、再びAlGaAs102を成長
させる。結果としてAlGaAsに囲まれた均一な量子箱
3ができることになる。
Third Embodiment A third embodiment of the present invention is shown in FIG. In this example, in order to increase the energy difference between the quantum box which is the active layer and the barrier layer, the GaAs (100) substrate 1 is followed by the GaAs 101,
Further, AlGaAs 102 is grown, and after the same lithography and etching steps as those in the first embodiment, InAs3 is used.
Is grown to a thickness of 2 atomic layers, and AlGaAs 102 is grown again. As a result, a uniform quantum box 3 surrounded by AlGaAs is formed.

【0016】第4実施例 本発明の第4実施例を図6に示す。本実施例では障壁層
のGaAs層にSiをドーピングして、n型変調ドープ構
造111としたものである。また、Beをドーピングす
るとp型変調ドープ構造が作製できる。
Fourth Embodiment A fourth embodiment of the present invention is shown in FIG. In this embodiment, the GaAs layer of the barrier layer is doped with Si to form the n-type modulation doping structure 111. Moreover, a p-type modulation doping structure can be produced by doping Be.

【0017】第5実施例 本発明の第5実施例を図7に示す。本実施例ではn型G
aAs基板1を用いて、まずn型のGaAs121を成長さ
せ、つぎにノンドープのGaAs122を成長させたのち
に、InAs3を成長させて自己形成量子箱を作る。その
後、ノンドープGaAs122、p型GaAs123を成長
させてp‐i‐n接合を形成する。これにより空間的位
置、大きさの揃った量子箱を活性層にもつp‐i‐nダ
イオードが出来る。また、窪みを形成するにあたり、B
rメタノール溶液を用いると低指数面{111}A面よ
りなる窪みが形成されるが、この場合にも量子箱を形成
することができた。
Fifth Embodiment FIG. 7 shows a fifth embodiment of the present invention. In this embodiment, n-type G
Using the aAs substrate 1, first an n-type GaAs 121 is grown, then an undoped GaAs 122 is grown, and then an InAs 3 is grown to form a self-assembled quantum box. Then, undoped GaAs122 and p-type GaAs123 are grown to form a pin junction. As a result, a pin diode having a quantum box with uniform spatial position and size in the active layer can be formed. Also, when forming the depression, B
When the r-methanol solution was used, a depression having a low index plane {111} A plane was formed, and a quantum box could be formed also in this case.

【0018】以上の例では第2半導体の格子定数が第1
半導体の格子定数より大きいが、第2半導体としてはG
aAsを、第1半導体としてはInPを選択すると格子定
数の大小関係は逆になる。この場合にも、量子箱を形成
することができた。また、窪みの代わりに幅10nm長
さ100nm深さ2nmからなる溝を基板上に形成する
と、幅20nm長さ110nm深さ2nmの量子細線を形
成することができた。
In the above example, the lattice constant of the second semiconductor is the first.
It is larger than the lattice constant of the semiconductor, but G as the second semiconductor.
When aAs is selected and InP is selected as the first semiconductor, the magnitude relation of the lattice constants is reversed. Also in this case, the quantum box could be formed. When a groove having a width of 10 nm, a length of 100 nm and a depth of 2 nm was formed on the substrate instead of the depression, a quantum wire having a width of 20 nm, a length of 110 nm and a depth of 2 nm could be formed.

【0019】[0019]

【発明の効果】上記のように本発明による半導体微細構
造の製造方法は、第1半導体よりなる基板の主面上に、
製造を予定した半導体微細構造の底面に覆われる大きさ
をもつ開口部と、上記半導体微細構造の高さより浅い深
さをもつ窪みを形成する工程と、上記基板上に上記第1
半導体より格子定数が大きい第2半導体を成長し、上記
半導体微細構造の上記窪みの中に成長した半導体よりな
る半導体微細構造を形成する工程とからなることによ
り、第1半導体にあらかじめ位置制御された窪みまたは
溝を形成しておくことにより、第2半導体を成長した際
に形成される自己形成量子箱の位置を制御できるため、
互いの大きさ、空間的位置の揃った量子箱または量子細
線を作製することができる。
As described above, the method of manufacturing a semiconductor fine structure according to the present invention comprises:
A step of forming an opening having a size to be covered by the bottom surface of the semiconductor fine structure to be manufactured, and forming a recess having a depth shallower than the height of the semiconductor fine structure;
The second semiconductor having a lattice constant larger than that of the semiconductor is grown, and a semiconductor fine structure made of the grown semiconductor is formed in the depression of the semiconductor fine structure. By forming the depression or groove, it is possible to control the position of the self-forming quantum box formed when the second semiconductor is grown,
Quantum boxes or quantum wires having the same size and spatial position as each other can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による半導体微細構造の構成を示す図
で、(a)は位置制御された窪み、(b)は上記窪みの
位置に形成した量子箱を示す図である。
FIG. 1 is a diagram showing a structure of a semiconductor fine structure according to the present invention, in which (a) is a position-controlled recess and (b) is a quantum box formed at the position of the recess.

【図2】本発明の基本的作用を説明する図で、(a)〜
(g)はそれぞれの段階を説明する図である。
FIG. 2 is a diagram for explaining the basic operation of the present invention, in which (a)-
(G) is a figure explaining each step.

【図3】本発明の第1実施例を説明する図で、(a)〜
(g)はそれぞれの工程を説明する図である。
FIG. 3 is a diagram for explaining the first embodiment of the present invention, in which (a)-
(G) is a figure explaining each process.

【図4】本発明の第2実施例を説明する図で、(a)は
走査型トンネル顕微鏡による窪みを形成する図、(b)
は形成された窪みを示す図である。
4A and 4B are diagrams illustrating a second embodiment of the present invention, in which FIG. 4A is a diagram in which a depression is formed by a scanning tunneling microscope, and FIG.
[Fig. 6] is a view showing a formed depression.

【図5】本発明の第3実施例を説明する図である。FIG. 5 is a diagram illustrating a third embodiment of the present invention.

【図6】本発明の第4実施例を説明する図である。FIG. 6 is a diagram illustrating a fourth embodiment of the present invention.

【図7】本発明の第5実施例を説明する図である。FIG. 7 is a diagram illustrating a fifth embodiment of the present invention.

【図8】従来技術を説明する図で、(a)〜(c)は半
導体微細構造の形成工程を示す図である。
FIG. 8 is a diagram illustrating a conventional technique, and FIGS. 8A to 8C are diagrams showing a process of forming a semiconductor fine structure.

【図9】従来技術の例を説明する図で、(a)および
(b)はそれぞれの工程を示す図である。
FIG. 9 is a diagram illustrating an example of a conventional technique, and (a) and (b) are diagrams showing respective steps.

【図10】従来技術の例を説明する図で、(a)および
(b)はそれぞれの工程を示す図である。
FIG. 10 is a diagram illustrating an example of a conventional technique, and (a) and (b) are diagrams showing respective steps.

【図11】従来技術の例を説明する図で、(a)および
(b)はそれぞれの工程を示す図である。
FIG. 11 is a diagram illustrating an example of a conventional technique, and (a) and (b) are diagrams showing respective steps.

【図12】従来技術の例を説明する図で、(a)はその
斜視図、(b)は逆ピラミッド状の窪みの拡大図であ
る。
12A and 12B are diagrams illustrating an example of a conventional technique, FIG. 12A is a perspective view thereof, and FIG. 12B is an enlarged view of an inverted pyramid-shaped depression.

【符号の説明】[Explanation of symbols]

1…基板 3…半導体微細構造 4,93…窪み 1 ... Substrate 3 ... Semiconductor microstructure 4, 93 ... Dimple

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第1半導体よりなる基板の主面上に、製造
を予定した半導体微細構造の底面に覆われる大きさをも
つ開口部と、上記半導体微細構造の高さより浅い深さを
もつ窪みを形成する工程と、上記基板上に上記第1半導
体より格子定数が大きい第2半導体を成長し、上記半導
体微細構造の上記窪みの中に成長した半導体よりなる半
導体微細構造を形成する工程とからなる半導体微細構造
の製造方法。
1. An opening on the main surface of a substrate made of a first semiconductor, the opening having a size to be covered by a bottom surface of a semiconductor fine structure to be manufactured, and a recess having a depth shallower than the height of the semiconductor fine structure. And a step of growing a second semiconductor having a lattice constant larger than that of the first semiconductor on the substrate and forming a semiconductor fine structure made of the semiconductor grown in the depression of the semiconductor fine structure. Method for manufacturing a semiconductor fine structure.
【請求項2】第1半導体よりなる基板の主面上に、製造
を予定した細線状の半導体微細構造の幅より狭い幅と、
上記細線状の半導体微細構造の高さより浅い深さをもつ
溝を形成する工程と、上記基板上に上記第1半導体より
格子定数が大きい第2半導体を成長し、上記細線状の半
導体微細構造と上記溝の中に成長した半導体よりなる半
導体微細構造を形成する工程とからなる細線状の半導体
微細構造の製造方法。
2. A width narrower than a width of a fine line-shaped semiconductor fine structure to be manufactured, on a main surface of a substrate made of a first semiconductor,
Forming a groove having a depth shallower than the height of the fine line-shaped semiconductor fine structure, and growing a second semiconductor having a lattice constant larger than that of the first semiconductor on the substrate to form the fine line-shaped semiconductor fine structure. A method of manufacturing a fine line-shaped semiconductor fine structure, which comprises a step of forming a semiconductor fine structure made of a semiconductor grown in the groove.
【請求項3】第1半導体よりなる基板の主面上に、製造
を予定した半導体微細構造の底面に覆われる大きさをも
つ開口部と、上記半導体微細構造の高さより浅い深さを
もつ窪みを形成する工程と、上記基板上に上記第1半導
体より格子定数が小さい第2半導体を成長し、上記半導
体微細構造と上記の窪みの中に成長した半導体よりなる
半導体微細構造を形成する工程とからなる半導体微細構
造の製造方法。
3. An opening having a size large enough to cover the bottom surface of the semiconductor microstructure to be manufactured and a recess having a depth shallower than the height of the semiconductor microstructure, on the main surface of the substrate made of the first semiconductor. And a step of growing a second semiconductor having a lattice constant smaller than that of the first semiconductor on the substrate to form a semiconductor fine structure composed of the semiconductor fine structure and the semiconductor grown in the recess. A method for manufacturing a semiconductor fine structure comprising.
【請求項4】第1半導体よりなる基板の主面上に、製造
を予定した細線状の半導体微細構造の幅より狭い幅と、
上記細線状の半導体微細構造の高さより浅い深さをもつ
溝を形成する工程と、上記基板上に上記第1半導体より
格子定数が小さい第2半導体を成長し、上記細線状の半
導体微細構造と上記窪みの中に成長した半導体よりなる
半導体微細構造を形成する工程とからなる半導体微細構
造の製造方法。
4. A width narrower than a width of a fine line-shaped semiconductor fine structure to be manufactured on a main surface of a substrate made of a first semiconductor,
Forming a groove having a depth shallower than the height of the fine line-shaped semiconductor fine structure, and growing a second semiconductor having a lattice constant smaller than that of the first semiconductor on the substrate to form the fine line-shaped semiconductor fine structure. A method of manufacturing a semiconductor fine structure, comprising the step of forming a semiconductor fine structure made of a semiconductor grown in the depression.
【請求項5】面指数(lmn)を表す整数l,m,nの
うち、少なくても1つが1より大きい面を備えた窪みま
たは溝を、上記窪みまたは溝とする請求項1から請求項
4の、いずれかに記載の半導体微細構造の製造方法。
5. A depression or groove provided with at least one of the integers l, m, and n representing the surface index (lmn) having a surface greater than 1, as the depression or groove. 4. The method for manufacturing a semiconductor fine structure according to any one of 4 above.
JP33006395A 1995-12-19 1995-12-19 Manufacturing method of semiconductor fine structure Expired - Fee Related JP3340899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33006395A JP3340899B2 (en) 1995-12-19 1995-12-19 Manufacturing method of semiconductor fine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33006395A JP3340899B2 (en) 1995-12-19 1995-12-19 Manufacturing method of semiconductor fine structure

Publications (2)

Publication Number Publication Date
JPH09171963A true JPH09171963A (en) 1997-06-30
JP3340899B2 JP3340899B2 (en) 2002-11-05

Family

ID=18228373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33006395A Expired - Fee Related JP3340899B2 (en) 1995-12-19 1995-12-19 Manufacturing method of semiconductor fine structure

Country Status (1)

Country Link
JP (1) JP3340899B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098697A1 (en) * 2002-05-22 2003-11-27 Fujitsu Limited Method for forming quantum dot, quantum semiconductor device, and its manufacturing method
WO2008023821A1 (en) * 2006-08-25 2008-02-28 National Institute For Materials Science Semiconductor and method for producing the same
JP2012030340A (en) * 2010-08-03 2012-02-16 Tokyo Institute Of Technology Method for forming nanodot

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098697A1 (en) * 2002-05-22 2003-11-27 Fujitsu Limited Method for forming quantum dot, quantum semiconductor device, and its manufacturing method
US7307030B2 (en) 2002-05-22 2007-12-11 Fujitsu Limited Method for forming quantum dot, and quantum semiconductor device and method for fabricating the same
US7755080B2 (en) 2002-05-22 2010-07-13 Fujitsu Limited Method for forming quantum dot, and quantum semiconductor device and method for fabricating the same
WO2008023821A1 (en) * 2006-08-25 2008-02-28 National Institute For Materials Science Semiconductor and method for producing the same
GB2455464A (en) * 2006-08-25 2009-06-17 Nat Inst For Materials Science Semiconductor and method for producing the same
GB2455464B (en) * 2006-08-25 2011-06-29 Nat Inst For Materials Science Semiconductor and method for producing the same
US7989843B2 (en) 2006-08-25 2011-08-02 National Institute For Materials Science Semiconductor and method for producing the same
JP5187761B2 (en) * 2006-08-25 2013-04-24 独立行政法人物質・材料研究機構 Semiconductor and its manufacturing method
JP2012030340A (en) * 2010-08-03 2012-02-16 Tokyo Institute Of Technology Method for forming nanodot

Also Published As

Publication number Publication date
JP3340899B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
JP3149030B2 (en) Semiconductor quantum box device and method of manufacturing the same
US5543354A (en) Method of fabricating a quantum dot structure on a (n11) substrate
US11404624B2 (en) Fabrication of a quantum device
JPH07221392A (en) Quantum thin wire and its manufacture, quantum thin wire laser and its manufacture, manufacture of diffraction grating, and distributed feedback semiconductor laser
AU2020209450A1 (en) Fabrication of a device
JP2001093837A (en) Structure of semiconductor thin film and manufacturing method therefor
US20050189315A1 (en) Method for manufacturing gratings in semiconductor materials
US5258326A (en) Quantum device fabrication method
JP3340899B2 (en) Manufacturing method of semiconductor fine structure
US20020119680A1 (en) Method of fabricating a semiconductor structure having quantum wires and a seminconductor device including such structure
JPS61222216A (en) Manufacture of superlattice semiconductor device
JP3443803B2 (en) Semiconductor structure and method of manufacturing the same
JP2624450B2 (en) Manufacturing method of quantum wire structure
KR100238452B1 (en) Hyperfine structure batch growing method
KR100267261B1 (en) Forming method of quantum structure
JPS60113488A (en) Manufacture of element having effect of one-dimensional quantum size
JPH04280629A (en) Manufacturing method of film stepwise structure and semiconductor device using the same
KR20010054538A (en) fabrication method of semiconductor device for growth of self-aligned array of self-assembled quantum dots and current blocking structure
JP2682414B2 (en) Method for forming semiconductor quantum fine structure
JP3642659B2 (en) Semiconductor quantum structure manufacturing method and semiconductor quantum structure
JP2000183327A (en) Formation of quantum dots, quantum dot structure formed thereby and semiconductor quantum dot laser
KR20000037777A (en) Heavily doped quantum wire and method for manufacturing the same
JP2000124441A (en) Preparation of semiconductor quantum dot
JP2004281954A (en) Method of manufacturing quantum dot
JPH09283737A (en) Quantum dot array structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20070816

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080816

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090816

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100816

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees