JP3303224B2 - Soldering method and soldering iron - Google Patents

Soldering method and soldering iron

Info

Publication number
JP3303224B2
JP3303224B2 JP35062295A JP35062295A JP3303224B2 JP 3303224 B2 JP3303224 B2 JP 3303224B2 JP 35062295 A JP35062295 A JP 35062295A JP 35062295 A JP35062295 A JP 35062295A JP 3303224 B2 JP3303224 B2 JP 3303224B2
Authority
JP
Japan
Prior art keywords
nitrogen gas
soldering
temperature
tip
temperature nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35062295A
Other languages
Japanese (ja)
Other versions
JPH09181436A (en
Inventor
賢政 松原
暁男 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KABUSHIKIGAISHA TAISEIKAKEN
Original Assignee
KABUSHIKIGAISHA TAISEIKAKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KABUSHIKIGAISHA TAISEIKAKEN filed Critical KABUSHIKIGAISHA TAISEIKAKEN
Priority to JP35062295A priority Critical patent/JP3303224B2/en
Publication of JPH09181436A publication Critical patent/JPH09181436A/en
Application granted granted Critical
Publication of JP3303224B2 publication Critical patent/JP3303224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半田付け方法に関
し、例えば電子部品の半田付けを高品質に行えるように
した方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for soldering, for example, a method for soldering electronic parts with high quality.

【0002】[0002]

【従来の技術】例えば、電子機器を組立てる場合、電子
基板に各種電子部品や配線を半田付けするのが一般的で
あるが、作業雰囲気中にO2 が存在すると半田付け不良
が懸念される。
2. Description of the Related Art For example, when assembling an electronic device, it is common to solder various electronic components and wirings to an electronic substrate. However, if O 2 is present in the working atmosphere, there is a concern that soldering defects may occur.

【0003】そこで、半田付けの作業雰囲気を高温窒素
ガス雰囲気とし、無酸素状態で半田付けを行う方法が実
用化されている。例えば、半田槽装置をフレーム等で覆
って外部から遮断して高温窒素ガスを供給し、あるいは
リフロー炉内に窒素ガスを供給することなどが行われて
いる。
Therefore, a method of performing soldering in an oxygen-free state by using a high-temperature nitrogen gas atmosphere as a soldering work atmosphere has been put to practical use. For example, the solder bath apparatus is covered with a frame or the like and shut off from the outside to supply high-temperature nitrogen gas, or supply nitrogen gas into a reflow furnace.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の窒素ガ
ス雰囲気における半田付け方法では、電子基板等に付着
させた半田に大気中で行った半田付けよりも大きな巣が
できることがあった。例えば、半田H63Aを250℃
で半田付けする場合、大気中の半田付けでは2〜3μm
の巣であるのに対し、従来の窒素ガス雰囲気における半
田付けでは巣が7〜8μmと大きくなっていた。
However, in the conventional soldering method in a nitrogen gas atmosphere, there is a case where a larger nest is formed on the solder adhered to the electronic substrate or the like than in the air. For example, solder H63A at 250 ° C
When soldering in the air, soldering in the air is 2-3 μm
On the other hand, in the conventional soldering in a nitrogen gas atmosphere, the nest was as large as 7 to 8 μm.

【0005】その結果、半田の巣にフラックスやハロゲ
ン残渣が残留しやすく、ややもすると大気中で行った半
田付けよりも品質が悪いことがあった。また、巣に残留
したハロゲン残渣が経時的に酸化し、半田付け部分の鉛
酸化が生じて品質不良を招来し、特に最近は環境や人体
への悪影響の点からフロンやトルエンを全廃した無洗浄
化の傾向にあり、かかる経時的な品質不良の問題が懸念
される。
[0005] As a result, flux and halogen residues tend to remain in solder nests, and in some cases the quality is lower than that of soldering performed in the air. In addition, halogen residues remaining in the nests oxidize with time, lead oxidation of the soldered parts occurs, leading to poor quality. Particularly recently, from the viewpoint of adverse effects on the environment and the human body, no fluorocarbons and toluene have been completely eliminated. And there is a concern about such a problem of poor quality over time.

【0006】また、従来の窒素ガス雰囲気における半田
付け方法では、半田の盛りも大気中での半田付けに比し
て悪く、見栄えのよい仕上がりとは言えないという問題
もあった。
Further, in the conventional soldering method in a nitrogen gas atmosphere, there is a problem that the height of the solder is poor compared with the soldering in the air, and it cannot be said that the finish has a good appearance.

【0007】さらに、従来の窒素ガス雰囲気における半
田付け方法では製品の完成までを完全な窒素ガス雰囲気
としているわけではなく、半田ごてを用いて実装済みの
電子基板に後付けにて電子部品を半田付けする場合、あ
るいは半田ごてを用いて電子基板の半田付けを修正する
場合、大気中で行わざるを得ず、O2 に起因する品質不
良が懸念されていた。
Further, in the conventional method of soldering in a nitrogen gas atmosphere, a complete nitrogen gas atmosphere is not used until the completion of a product. Instead, an electronic component is soldered to a mounted electronic board using a soldering iron. When soldering or correcting the soldering of the electronic substrate using a soldering iron, the soldering must be performed in the air, and there is a concern about poor quality due to O 2 .

【0008】この発明は、かかる問題点に鑑み、電子部
品等の半田付けを高品質でかつ見栄えよく行えるように
した半田付け方法を提供することを課題とする。
In view of the above problems, an object of the present invention is to provide a soldering method capable of soldering electronic parts and the like with high quality and good appearance.

【0009】[0009]

【課題を解決するための手段】本件発明者は上述の課題
を解決すべく鋭意検討した結果、従来の半田付け方法で
は高温窒素ガス雰囲気が比較的高温、例えば半田H63
Aの場合は250℃〜300℃程度であり、しかも半田
付け装置全体を高温窒素ガス雰囲気としているので、半
田が溶融状態から完全に凝固し、温度が十分に低くなる
までの比較的長時間にわたって高温窒素ガス雰囲気に曝
され、半田が最後までゆっくりと凝固される結果、半田
付けされた半田内部の巣が増大し、又半田が偏平となっ
て盛りが悪くなっていることを知見するに至った。
The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, in the conventional soldering method, a high-temperature nitrogen gas atmosphere has a relatively high temperature, for example, solder H63.
In the case of A, the temperature is about 250 ° C. to 300 ° C., and since the entire soldering apparatus is in a high-temperature nitrogen gas atmosphere, the solder is completely solidified from a molten state, and it takes a relatively long time until the temperature becomes sufficiently low. As a result of being exposed to a high-temperature nitrogen gas atmosphere and slowly solidifying the solder to the end, it was found that nests inside the soldered solder increased, and that the solder was flattened and had a poor height. Was.

【0010】そこで、本発明に係る半田付け方法は、ワ
ークに溶融半田を接触付着させて凝固させ、あるいはワ
ーク表面に形成された半田層を溶融させて凝固させ、半
田付けを行うにあたり、溶融半田が緩冷却されうる温度
の高温窒素ガス雰囲気中で半田付けを行うことにより溶
融半田をその表面張力にてほぼ半球状となし、溶融半田
の凝固開始直前から室温以下の低温窒素ガス雰囲気中で
急冷却することにより溶融半田を指向性凝固させて微細
凝固組織となしたことを特徴とする半田付け方法。
Therefore, the soldering method according to the present invention is characterized in that molten solder is brought into contact with a work to solidify it, or a solder layer formed on the surface of the work is melted and solidified. Soldering in a high-temperature nitrogen gas atmosphere at a temperature at which the molten solder can be slowly cooled makes the molten solder almost hemispherical due to its surface tension. A soldering method, characterized in that molten solder is directionally solidified by cooling to form a fine solidified structure.

【0011】本発明はワークを搬送コンベア等で搬送し
つつ半田付けを行う方法、例えば静止型半田槽装置、噴
流型半田槽装置、ノズル噴流型半田槽装置等の自動半田
付け装置による半田付け方法、リフロー炉による半田付
け方法に適用すれば装置を容易に構築でき、その効果も
大きいが、勿論、ワークを上下させて半田付けを行う方
法、例えば卓上噴流型半田槽装置による半田付け方法、
あるいは半田ごてによる半田付け方法にも適用できる。
According to the present invention, there is provided a method for performing soldering while transferring a work on a transfer conveyor or the like, for example, a soldering method using an automatic soldering device such as a stationary solder bath device, a jet solder bath device, or a nozzle jet solder bath device. If the method is applied to a soldering method using a reflow furnace, the apparatus can be easily constructed, and the effect is great. Of course, a method of performing soldering by raising and lowering a work, for example, a soldering method using a tabletop jet type solder bath apparatus,
Alternatively, the present invention can be applied to a soldering method using a soldering iron.

【0012】緻密でかつ盛りのよい半田付けとする上
で、付着した溶融半田をゆるやかな温度プロファイルで
もって緩冷却しうる高温窒素ガス雰囲気中で半田付けを
行い、凝固開始直前から室温以下の低温窒素ガス雰囲気
で急冷却するのが肝要である。そこで、高温窒素ガス雰
囲気は使用する半田が緩冷却しうる温度、例えば半田H
63Aの場合は半田の融点より20℃程度高い温度から
融点よりも150℃程度低い温度、即ち80℃〜250
℃の温度範囲、好ましくは200℃〜250℃とする
が、他の半田組成の場合にも室温の冷却速度を基準に緩
冷却しうる温度を決定する。この場合、ワークが高温雰
囲気に曝される時間によって溶融半田の挙動が決定され
るので、ワークの搬送速度や高温窒素ガス雰囲気の大き
さによって雰囲気温度を低温側に設定できる。
In order to form a dense and well-soldered solder, the attached molten solder is soldered in a high-temperature nitrogen gas atmosphere that can be slowly cooled with a gentle temperature profile, and immediately before the start of solidification, a low temperature of room temperature or lower. It is important to cool rapidly in a nitrogen gas atmosphere. Therefore, a high-temperature nitrogen gas atmosphere is used at a temperature at which the used solder can be slowly cooled, for example, solder H
In the case of 63A, the temperature is about 20 ° C. higher than the melting point of solder to about 150 ° C. lower than the melting point, that is, 80 ° C. to 250 ° C.
The temperature is in the temperature range of 200C, preferably 200C to 250C. In the case of other solder compositions, the temperature at which the cooling can be performed slowly is determined based on the cooling rate at room temperature. In this case, since the behavior of the molten solder is determined by the time during which the work is exposed to the high-temperature atmosphere, the temperature of the atmosphere can be set to a lower temperature depending on the transfer speed of the work and the size of the high-temperature nitrogen gas atmosphere.

【0013】溶融半田の凝固開始直前からの急冷却は大
気に曝して行ってもよいが、溶融半田が凝固に際して潜
熱を放出し、それと同時に大気中のO2 、H2 、CO等
を溶解し、酸化及び気孔発生の原因となり、又凝固直前
の半田の酸化はブリッジ、ツノ、ツララ発生の最大要因
であるので、窒素ガス雰囲気とする。低温窒素ガス雰囲
気は室温、具体的には25℃以下の温度とするが、急冷
効果を確保する上で氷点以下、例えばー20℃〜ー30
℃としてもよい。また、ワーク表面側を低温窒素ガス雰
囲気に曝すと、溶融半田は表面側から急冷却されるが、
ワーク裏面側に低温窒素ガスを吹き付けてワーク裏面側
からも急冷却すると、急冷効果を促進してより一層微細
な急冷凝固組織が得られるので好ましい。
The rapid cooling immediately before the start of solidification of the molten solder may be performed by exposing it to the atmosphere. However, the molten solder releases latent heat upon solidification and simultaneously dissolves O 2 , H 2 , CO, etc. in the atmosphere. Therefore, a nitrogen gas atmosphere is used because it causes oxidation, porosity, and oxidation of the solder immediately before solidification is the largest cause of bridges, horns, and glares. The low-temperature nitrogen gas atmosphere is at room temperature, specifically, at a temperature of 25 ° C. or lower, but below the freezing point, for example, −20 ° C. to −30 in order to secure the quenching effect.
It is good also as ° C. When the work surface is exposed to a low-temperature nitrogen gas atmosphere, the molten solder is rapidly cooled from the surface,
It is preferable to spray a low-temperature nitrogen gas on the back surface of the work and rapidly cool the work from the back side, because the quenching effect is promoted and a finer rapidly solidified structure can be obtained.

【0014】窒素源はボンベ等を用いてもいが、コスト
高となる。そこで、中空分離膜を内蔵する窒素ガス分離
装置を用い、圧縮空気から窒素ガスを分離し、分離した
窒素ガスを加熱供給機で高温に加熱して供給するのがよ
い。半田ごてを用いる場合、加熱ヒータ等の発熱部位が
ある。そこで、かかる半田ごての発熱を利用して窒素ガ
スを加熱してもよい。
Although a cylinder or the like may be used as the nitrogen source, the cost increases. Therefore, it is preferable to separate the nitrogen gas from the compressed air by using a nitrogen gas separation device having a built-in hollow separation membrane, and to heat the separated nitrogen gas to a high temperature with a heating feeder to supply it. When a soldering iron is used, there is a heat generating portion such as a heater. Therefore, the nitrogen gas may be heated by utilizing the heat generated by the soldering iron.

【0015】また、本発明は既存の半田付け装置にも簡
単に適用できるのが望ましく、さらに半田付け装置以外
の、他の無酸素雰囲気を用いる各種装置にも適用できる
のがよい。そこで、無酸素雰囲気を用いる各種装置に高
温窒素ガスを供給して高温窒素ガス雰囲気を形成する窒
素ガス発生装置であって、中空分離膜を内蔵して圧縮空
気から窒素ガスを分離する窒素ガス分離装置と、窒素ガ
ス分離装置からの窒素ガスを高温に加熱して供給する加
熱供給機とを備えた窒素ガス発生装置を提供するのが好
ましい。
It is desirable that the present invention can be easily applied to an existing soldering apparatus, and it is also preferable that the present invention can be applied to various apparatuses using an oxygen-free atmosphere other than the soldering apparatus. Therefore, a nitrogen gas generator that supplies high-temperature nitrogen gas to various devices that use an oxygen-free atmosphere to form a high-temperature nitrogen gas atmosphere, and has a built-in hollow separation membrane to separate nitrogen gas from compressed air It is preferable to provide a nitrogen gas generator provided with an apparatus and a heating supply device for heating and supplying the nitrogen gas from the nitrogen gas separator to a high temperature.

【0016】圧縮空気は専用のコンプレッサーを用意
し、窒素ガス分離装置に供給してもよいが、工場施設内
には圧縮エアーのパイプが配管されているので、かかる
配管の圧縮エアーを利用して窒素ガスを分離してもよ
い。この場合、圧縮空気は乾燥している方が好ましい。
The compressed air may be supplied to a nitrogen gas separator by preparing a dedicated compressor. However, since a compressed air pipe is provided in the factory facility, the compressed air in the pipe is used. Nitrogen gas may be separated. In this case, the compressed air is preferably dry.

【0017】半田ごてを用いてワークに半田付けする場
合、ワーク半田付け部位を高温窒素ガスで予熱した後、
高温窒素ガス雰囲気中で半田ごてを接触させて半田付け
を行い、溶融半田の凝固開始直前に低温窒素ガスにて急
冷却するのがよい。その場合、ワーク裏面に低温窒素ガ
スを吹き付けてワーク裏面側からも急冷却するのがよ
い。特に、実装済みの電子基板に後付けで電子部品を半
田付けする場合には半田付け部位近傍の実装済み部品が
熱影響を受けないようにするのがよい。即ち、半田ごて
を用いて後付けにてワークを半田付けするにあたり、半
田ごての先端チップの周囲に高温窒素ガスを、その周囲
に低温窒素ガスを噴射させ、ワーク半田付け部位の予熱
時及び半田付け時に半田付け部位近傍のワーク及び素子
を低温窒素ガスにて高温窒素ガスから保護するのが好ま
しい。
When soldering to a work using a soldering iron, after preheating the work soldering site with a high-temperature nitrogen gas,
It is preferable that the soldering is performed by bringing a soldering iron into contact in a high-temperature nitrogen gas atmosphere, and rapid cooling is performed with a low-temperature nitrogen gas immediately before the start of solidification of the molten solder. In this case, low-temperature nitrogen gas is preferably sprayed on the back surface of the work to rapidly cool the work from the back surface. In particular, when an electronic component is soldered later to a mounted electronic board, it is preferable that the mounted component in the vicinity of the soldering site is not affected by heat. In other words, when soldering a work in a retrofit using a soldering iron, high-temperature nitrogen gas is injected around the tip of the soldering iron, and low-temperature nitrogen gas is injected around the tip. At the time of soldering, it is preferable to protect the work and the element near the soldering site from the high-temperature nitrogen gas with the low-temperature nitrogen gas.

【0018】かかる方法に用いる半田ごては下記のよう
に構築するのがよい。即ち、こて部に内蔵されたヒータ
の発熱にて先端チップを加熱可能となした半田ごてにお
いて、ヒータの周囲には第1の保護カバーを気密的に覆
うとともにその先端側を先端チップの周囲に開放して第
1の窒素ガス供給通路を形成し、第1の保護カバーの周
囲には第2の保護カバーを気密的に覆うとともにその先
端を第1の保護カバーの先端開口の周囲に開放して第2
の窒素ガス供給通路を形成し、第1、第2の窒素ガス供
給通路に窒素ガスを供給して先端チップの周囲に高温窒
素ガスを、高温窒素ガスの周囲に低温窒素ガスを供給す
るのがよい。
The soldering iron used in such a method is preferably constructed as follows. That is, in a soldering iron in which the tip can be heated by the heat generated by the heater incorporated in the iron, the first protective cover is hermetically covered around the heater, and the tip side of the tip is covered with the tip. A first nitrogen gas supply passage is formed by opening to the periphery, a second protective cover is hermetically covered around the first protective cover, and its tip is placed around the tip opening of the first protective cover. Open and second
Forming a nitrogen gas supply passage, supplying nitrogen gas to the first and second nitrogen gas supply passages and supplying high-temperature nitrogen gas around the tip chip and low-temperature nitrogen gas around the high-temperature nitrogen gas. Good.

【0019】[0019]

【作用及び発明の効果】本発明によれば、溶融半田が緩
冷却される高温窒素ガス雰囲気中で半田付けを行うよう
にしたので、溶融半田はその表面張力にて好ましい盛り
上がり状態であるほぼ半球状を呈する。また、溶融半田
の凝固開始直前に室温以下の低温窒素ガス雰囲気中で急
冷却するようにしたので、溶融半田にその液相線と固相
線間の間隔が実質的に小さくなった指向性凝固を与える
ことができ、これにより半田を微細凝固組織とできる。
According to the present invention, since the soldering is performed in a high-temperature nitrogen gas atmosphere in which the molten solder is slowly cooled, the molten solder is in a favorable bulging state due to its surface tension. Take the shape. In addition, since the molten solder is rapidly cooled in a low-temperature nitrogen gas atmosphere at room temperature or lower immediately before the solidification of the molten solder, the distance between the liquidus and solidus of the molten solder is substantially reduced. And the solder can be made into a finely solidified structure.

【0020】その結果、半田ボール、ブリッジあるいは
半田の飛び散りがなく、しかも緻密でPb、Snの偏析
や気孔が極めて少なくて耐ヒートショック性に優れ、し
かも盛りのよい高品質の無酸化、無洗浄の半田付けを行
うことができる。
As a result, there is no scatter of solder balls, bridges or solder, and it is dense, has very few segregation of Pb and Sn and has very few pores, has excellent heat shock resistance, and has high quality non-oxidizing and non-cleaning with good build. Can be soldered.

【0021】[0021]

【発明の実施の形態】以下、本発明を図面に示す具体例
に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to specific examples shown in the drawings.

【0022】〔第1の実施形態〕図1は本発明の第1の
実施形態を示し、これはノズル噴流型半田槽装置に適用
した例である。図において、半田槽10には噴流ノズル
11が設けられ、半田槽10内には噴流ポンプPが内蔵
されて半田槽10内の溶融半田(半田H63A)12が
上方に噴流されて電子基板(ワーク)Wに接触付着さ
せ、噴流後の残余の溶融半田12は半田槽10内に回収
されるようになっている。半田槽10の上方には搬送コ
ンベア13が配設されて電子部品を搭載した電子基板W
を搬送できるようになっており、こうしてノズル噴流型
半田槽装置が構成されている。
[First Embodiment] FIG. 1 shows a first embodiment of the present invention, which is an example applied to a nozzle jet type solder bath apparatus. In the figure, a jet nozzle 11 is provided in a solder tank 10, and a jet pump P is built in the solder tank 10, and molten solder (solder H63A) 12 in the solder tank 10 is jetted upward and an electronic substrate (workpiece) is formed. 2) The residual molten solder 12 after the jet flow is brought into contact with and adhered to W to be collected in the solder bath 10. An electronic board W on which a conveyor 13 is disposed above the solder tank 10 and on which electronic components are mounted
Can be conveyed, and thus a nozzle jet type solder bath apparatus is constituted.

【0023】半田槽10と搬送コンベア13との間には
第1の枠体14が半田槽10上面を囲んで設けられ、第
1の枠体14の搬送方向前方には第2の枠体15が設け
られ、両枠体14、15の上端には電子基板Wが搬送可
能な開口又は隙間が設けられており、第1の枠体14に
よって電子基板Wの半田付けが行われるワーク搬送路の
第1の領域Aが、第2の枠体15によってそのワーク搬
送方向前方の第2の領域Bが外部から区画されている。
A first frame 14 is provided between the solder tank 10 and the conveyor 13 so as to surround the upper surface of the solder tank 10, and a second frame 15 is provided in front of the first frame 14 in the conveying direction. An opening or a gap is provided at the upper ends of the two frame members 14 and 15 so that the electronic substrate W can be transported. In the first area A, a second area B in front of the work transport direction is partitioned from the outside by the second frame 15.

【0024】また、16は圧縮空気を供給するドライヤ
ー機能付きコンプレッサ、17は中空分離膜を内蔵して
圧縮空気から窒素ガスを分離する窒素ガス分離装置、1
8は窒素ガス分離装置17からの窒素ガスを200℃〜
250℃に加熱して第1の枠体14内に供給して高温窒
素ガス雰囲気を形成する加熱供給機、19は窒素ガス分
離装置17からの窒素ガスをー20℃〜ー30℃に冷却
して第2の枠体13内に供給して低温窒素ガス雰囲気を
形成する冷却供給機である。
Reference numeral 16 denotes a compressor having a drier function for supplying compressed air, 17 denotes a nitrogen gas separation device having a built-in hollow separation membrane for separating nitrogen gas from compressed air, 1
Reference numeral 8 denotes the temperature of the nitrogen gas from the nitrogen gas separator 17 at 200 ° C.
A heating / supplying machine which is heated to 250 ° C. and supplied into the first frame body 14 to form a high-temperature nitrogen gas atmosphere, and 19 cools the nitrogen gas from the nitrogen gas separator 17 to −20 ° C. to −30 ° C. And a cooling / supplying device for supplying the low-temperature nitrogen gas atmosphere by supplying it into the second frame 13.

【0025】次に、半田付け方法について説明する。電
子部品が搭載された電子基板Wが搬送コンベア13で搬
送され、半田槽10上まで来ると、半田槽10の噴流ノ
ズル11から溶融半田12が噴流されており、電子基板
Wには250℃の高温窒素ガス雰囲気中(図2の温度特
性a参照)で所定の箇所に溶融半田12が接触して付着
される。
Next, a soldering method will be described. When the electronic substrate W on which the electronic components are mounted is transported by the transport conveyor 13 and reaches the solder tank 10, molten solder 12 is jetted from the jet nozzle 11 of the solder tank 10. In a high-temperature nitrogen gas atmosphere (see the temperature characteristic a in FIG. 2), the molten solder 12 contacts and adheres to a predetermined location.

【0026】電子基板Wがさらに搬送され、噴流ノズル
11の溶融半田12の噴流から離れると、電子基板Wは
第1の領域Aの250℃の高温窒素ガス雰囲気内を搬送
される。すると、電子基板Wに付着した溶融半田12は
図2の温度特性bに示すようにほぼ250℃に向けて緩
やかに冷却され、その表面張力によって所望の形状であ
るほぼ半球状となる。
When the electronic substrate W is further conveyed and separated from the jet of the molten solder 12 of the jet nozzle 11, the electronic substrate W is conveyed in the high temperature nitrogen gas atmosphere at 250 ° C. in the first area A. Then, the molten solder 12 attached to the electronic substrate W is gradually cooled to approximately 250 ° C. as shown by the temperature characteristic “b” in FIG. 2, and becomes a substantially hemispherical shape having a desired shape due to its surface tension.

【0027】電子基板Wが第1の領域Aの高温窒素ガス
雰囲気を出ると、次の第2の領域Bのー20℃〜ー30
℃の低温窒素雰囲気内(図2の温度特性c参照)を搬送
される。すると、電子基板Wの溶融半田12は図2の温
度特性dで示すように急冷却される。すると、溶融半田
12には液相線と固相線間の間隔が実質的に小さくなっ
た指向性凝固が与えられ、樹枝状晶(デンドライト)や
自由晶が発達せず、微小なうちに溶融半田12の凝固が
完了する。電子基板Wの半田の凝固が完了し、第2の領
域Bの低温窒素ガス雰囲気を出ると、電子基板Wは室温
雰囲気に曝され、半田は室温まで温度上昇する。
When the electronic substrate W exits the high-temperature nitrogen gas atmosphere in the first region A, the temperature of the next second region B is changed from -20.degree.
It is transported in a low-temperature nitrogen atmosphere at a temperature of ° C. (see temperature characteristic c in FIG. 2). Then, the molten solder 12 of the electronic substrate W is rapidly cooled as shown by the temperature characteristic d in FIG. As a result, the molten solder 12 is given directional solidification in which the distance between the liquidus line and the solidus line is substantially reduced, and dendrites and free crystals do not develop. The solidification of the solder 12 is completed. When the solidification of the solder of the electronic substrate W is completed and the substrate exits the low-temperature nitrogen gas atmosphere in the second region B, the electronic substrate W is exposed to a room temperature atmosphere, and the temperature of the solder rises to room temperature.

【0028】その結果、極めて緻密で盛りのよい高品質
の半田付けが得られ、ハロゲン残渣の残留が少なく、半
田付けの経時的な劣化も防止でき、最近のフロンやトル
エンを全廃した無洗浄化に対応した電子部品実装技術を
提供できることとなる。また、電子基板Wの裏面に付い
ているフラックスも溶融半田12とともに急冷され、大
きく収縮されてべとつかずにパリッとし、あたかもニス
を塗って乾燥させたような仕上がりとなるので、絶縁性
を向上できる。
As a result, very high quality and high quality soldering can be obtained with good quality, little residue of halogens is left, deterioration of soldering with the lapse of time can be prevented, and recent chlorofluorocarbons and toluene are completely eliminated. Electronic component mounting technology can be provided. In addition, the flux attached to the back surface of the electronic substrate W is also rapidly cooled together with the molten solder 12 and shrunk largely to make it crisp without stickiness, as if it were coated with varnish and dried, so that the insulation can be improved. .

【0029】また、電子基板Wに搭載した電子部品は半
田付けの際に、250℃以上の溶融半田12と接触し、
熱伝導による悪影響が懸念されるが、半田付け後、直ち
に急冷しているので、熱影響を和らげることができ、さ
らに高温から低温に急冷することによって温度高低差に
よるエイジング効果が得られ、検査品質の向上が期待で
きる。
The electronic components mounted on the electronic substrate W come into contact with the molten solder 12 at a temperature of 250 ° C. or more during soldering,
Although there is a concern about the adverse effects of heat conduction, rapid cooling immediately after soldering can mitigate the effects of heat, and quenching from high to low temperatures can provide an aging effect due to temperature differences, resulting in inspection quality. Can be expected to improve.

【0030】ところで、半田付け直後に低温窒素雰囲気
で直ちに急冷し、溶融半田12を緻密に凝固させること
が提案されるが、その場合には半田のツララやブリッジ
あるいは半田ボールが形成され、半田付けの品質が悪
い。これに対し、本方法では高温の溶融半田12を緩冷
却して所望の盛り上がりを形成させた状態で急冷してい
るので、かかる半田のツララやブリッジあるいは半田ボ
ールが形成されることはない。
By the way, it is proposed that the molten solder 12 be solidified densely by immediately quenching in a low-temperature nitrogen atmosphere immediately after soldering. In this case, a solder icicle, a bridge or a solder ball is formed, and the soldering is performed. Of poor quality. On the other hand, in the present method, since the high-temperature molten solder 12 is rapidly cooled in a state where a desired bulge is formed by slow cooling, no icing, bridges or solder balls of such solder are formed.

【0031】さらに、半田のツララやブリッジあるいは
半田ボールで出来ず、盛りのよい半田付けができる結
果、半田滓も少なくなり、作業環境及び製造コスト面で
も大きな効果が得られる。
Further, soldering can be performed with good soldering, which cannot be performed by using a solder wringer, a bridge, or a solder ball. As a result, the amount of solder scum is reduced, and a great effect is obtained in terms of working environment and manufacturing cost.

【0032】〔第2の実施形態〕図3は半田ごてに適用
した本発明の第2の実施形態を示し、図1と同一符号は
同一又は相当部分を示す。図において、半田ごて23は
先端にチップが設けられ、半田ごて23には取付ロッド
24によって窒素ガス供給パイプ25が取付けられ、窒
素ガス供給パイプ25は先端チップに向けて低温窒素ガ
スを供給するようになっている。また、半田ごて23の
加熱ヒータ内蔵部分には窒素ガス加熱パイプ27が巻回
され、窒素ガス加熱パイプ27は窒素ガスを加熱して先
端チップに向けて供給するようになっている。窒素ガス
分離装置17からの窒素ガスは切換弁20によって窒素
ガス供給パイプ25と窒素ガス加熱パイプ27とに切り
換えて供給されるようになっている。
[Second Embodiment] FIG. 3 shows a second embodiment of the present invention applied to a soldering iron, and the same reference numerals as those in FIG. 1 denote the same or corresponding parts. In the figure, a tip is provided at a tip of a soldering iron 23, and a nitrogen gas supply pipe 25 is attached to the soldering iron 23 by a mounting rod 24, and the nitrogen gas supply pipe 25 supplies a low-temperature nitrogen gas toward the tip. It is supposed to. A nitrogen gas heating pipe 27 is wound around a portion of the soldering iron 23 with a built-in heater, and the nitrogen gas heating pipe 27 heats the nitrogen gas and supplies it to the tip chip. The nitrogen gas from the nitrogen gas separator 17 is switched by a switching valve 20 to a nitrogen gas supply pipe 25 and a nitrogen gas heating pipe 27 and supplied.

【0033】半田付けを行う場合、通常の如く、半田線
供給パイプを介して半田線を送り、半田ごて23で半田
線を溶融して電子基板Wに半田付けを行う。その際、エ
アーコンプレッサ16を作動して空気を圧縮すると、こ
れが窒素ガス分離装置17に送られて圧縮空気から窒素
ガスが分離され、分離された窒素ガスは切換弁20を介
して窒素ガス加熱パイプ27に供給され、半田ごて23
の加熱部分で所定の温度、例えば200℃〜250℃に
加熱されて半田ごて23の先端チップ近傍に放出され、
半田ごて23の前方に高温窒素ガス雰囲気の小領域Dを
形成し、高温窒素ガス雰囲気D中で半田付けが行われ
る。
In the case of soldering, a solder wire is sent through a solder wire supply pipe as usual, and the solder wire is melted by a soldering iron 23 and soldered to the electronic substrate W. At this time, when the air compressor 16 is operated to compress the air, the air is sent to the nitrogen gas separator 17 to separate the nitrogen gas from the compressed air, and the separated nitrogen gas is passed through the switching valve 20 to the nitrogen gas heating pipe. 27 and the soldering iron 23
Is heated to a predetermined temperature, for example, 200 ° C. to 250 ° C. in the heating portion, and is discharged near the tip of the soldering iron 23;
A small area D of a high-temperature nitrogen gas atmosphere is formed in front of the soldering iron 23, and soldering is performed in the high-temperature nitrogen gas atmosphere D.

【0034】半田ごて23を電子基板Wから離すと、電
子基板Wに付着された溶融半田は高温窒素ガス雰囲気D
にて緩やかに冷却され、その表面張力にてほぼ半球状に
盛り上がる。電子基板Wに付着した溶融半田が凝固開始
直前になると、切換弁20で窒素ガスの供給を窒素ガス
供給パイプ25に切り換える。すると、半球状の溶融半
田は低温の窒素ガス雰囲気に曝されて急冷され、緻密で
盛りのよい高品質の半田付けが行える。
When the soldering iron 23 is separated from the electronic substrate W, the molten solder attached to the electronic substrate W becomes a hot nitrogen gas atmosphere D
And gradually rises in a substantially hemispherical shape due to the surface tension. Immediately before the start of solidification of the molten solder attached to the electronic substrate W, the switching valve 20 switches the supply of the nitrogen gas to the nitrogen gas supply pipe 25. Then, the hemispherical molten solder is exposed to a low-temperature nitrogen gas atmosphere and quenched, so that high-quality soldering that is dense and well-filled can be performed.

【0035】また、半田ごて23のチップ先端側に高温
窒素ガスを放出させているので、半田付け部位を予熱し
た後にチップを接触させて半田付けを行う方法を採用す
ることもできる。
Further, since the high-temperature nitrogen gas is discharged to the tip end side of the soldering iron 23, it is also possible to adopt a method of preheating the soldering site and then contacting the chip to perform soldering.

【0036】その結果、半田フラックスを予熱してフラ
ックスの活性化及び飛散防止を図って円滑で良好な半田
付け作業を行うことができ、又高温の半田ごて23のチ
ップが電子基板Wに接触する前に電子基板Wを予熱し、
電子基板Wの局部的で急激な温度上昇(ヒートショッ
ク)を緩和して電子部品の熱破壊を防止でき、さらには
フラックス、電子基板及び供給される半田線をも予熱で
きる結果、半田層の熱間脆性を予防できる。
As a result, the solder flux can be preheated to activate and prevent the flux from scattering, so that a smooth and good soldering operation can be performed. In addition, the chip of the high-temperature soldering iron 23 contacts the electronic substrate W. Before heating the electronic substrate W,
As a result, it is possible to prevent a local and rapid rise in temperature (heat shock) of the electronic substrate W to prevent thermal destruction of the electronic components, and further to preheat the flux, the electronic substrate, and the supplied solder wires, resulting in the heat of the solder layer. Intermittent brittleness can be prevented.

【0037】また、半田及びフラックスを高温窒素ガス
で予熱できる結果、半田ごて23のチップの蓄熱量は少
なくて済み、チップ先端を極細にしても十分な熱量によ
る半田付けができ、結果的には低温半田付けが達成でき
ることとなる。さらに、半田ごて23のチップが無酸化
雰囲気内にあるので、チップの酸化が防止されて溶融半
田の濡れ性を向上でき、チップ寿命を向上できる。
In addition, since the solder and the flux can be preheated with the high-temperature nitrogen gas, the amount of heat stored in the chip of the soldering iron 23 is small, and even if the tip of the chip is extremely small, the soldering can be performed with a sufficient amount of heat. Means that low-temperature soldering can be achieved. Furthermore, since the chip of the soldering iron 23 is in a non-oxidizing atmosphere, the oxidation of the chip is prevented, the wettability of the molten solder can be improved, and the life of the chip can be improved.

【0039】なお、高温窒素ガス雰囲気を予熱にのみ利
用する場合には窒素ガスに代えてエアー、又は窒素ガス
とエアーの混合気体を用いることもできる。
When a high-temperature nitrogen gas atmosphere is used only for preheating, air or a mixed gas of nitrogen gas and air can be used instead of nitrogen gas.

【0040】〔第3の実施形態〕図4は半田こてに適用
した本発明の第3の実施形態を示す。本実施形態では半
田ごて50はこて部51とグリップ部52とからなり、
こて部51にはヒータ(例えば、丸棒状の窒化アルミナ
ヒータ)53が内蔵され、ヒータ53の先端部はチップ
ホルダー54の穴内に挿入され、チップホルダー54の
先端にはチップ55が固定され、内蔵ヒータ53の発熱
が先端チップ55に伝達されて先端チップ55が加熱さ
れるようになっている。
[Third Embodiment] FIG. 4 shows a third embodiment of the present invention applied to a soldering iron. In the present embodiment, the soldering iron 50 includes a iron part 51 and a grip part 52,
A heater (for example, a round bar-shaped alumina nitride heater) 53 is built in the iron portion 51, a tip of the heater 53 is inserted into a hole of the chip holder 54, and a tip 55 is fixed to a tip of the chip holder 54. The heat generated by the built-in heater 53 is transmitted to the tip chip 55 so that the tip chip 55 is heated.

【0041】ヒータ53の後端部はグリップ部52の先
端に内蔵されたホルダー56の中央穴に挿入して保持さ
れるとともに、図示しない温度センサーが取付けられて
いる。このホルダー56には複数の窒素ガス供給穴57
・・・、58・・・が内外2重の環状に形成され、ホル
ダー56にはグリップ部52内に挿通された窒素ガス供
給パイプ59の先端が接続され、窒素ガス供給パイプ5
9の後端は上述の窒素ガス分離装置に至っている。
The rear end of the heater 53 is inserted and held in a central hole of a holder 56 built in the tip of the grip 52, and a temperature sensor (not shown) is attached. The holder 56 has a plurality of nitrogen gas supply holes 57.
, 58 ... are formed in a double annular shape inside and outside, and the holder 56 is connected to the tip of a nitrogen gas supply pipe 59 inserted into the grip portion 52.
The rear end of 9 leads to the above-mentioned nitrogen gas separator.

【0042】また、グリップ部52の先端には第1の保
護カバー60が気密的に固定され、第1の保護カバー6
0はヒータ53の周囲を覆うとともに、チップホルダー
54との間に所定の隙間、例えば1mmの隙間をあけて
先端側に延び、その先端は先端チップ55の周囲の複数
の連通孔に連通され、こうして第1の窒素ガス供給通路
61が構成されている。
A first protective cover 60 is air-tightly fixed to the tip of the grip portion 52.
0 covers the periphery of the heater 53 and extends to the distal end with a predetermined gap, for example, 1 mm, between the heater 53 and the tip holder. The distal end is communicated with a plurality of communication holes around the distal tip 55, Thus, the first nitrogen gas supply passage 61 is formed.

【0043】さらに、グリップ部52の先端には第1の
保護カバー60の外側にて第2の保護カバー62が固定
され、第2の保護カバー62は第1の保護カバー60の
周囲を所定の隙間、例えば2mmの隙間をあけて気密的
に覆って先端側に延び、その先端は第1の保護カバー6
0の先端部近傍の複数の連通孔に連通され、こうして第
2の窒素ガス供給通路63が構成され、先端チップ55
の周囲に高温窒素ガス65が、高温窒素ガスの周囲に低
温窒素ガス66が供給される。
Further, a second protective cover 62 is fixed to the tip of the grip portion 52 outside the first protective cover 60, and the second protective cover 62 extends around the first protective cover 60 by a predetermined distance. A gap, e.g., a gap of 2 mm, is airtightly covered and extends to the front end side.
0, and a plurality of communication holes near the front end of the first tip 55 are formed.
, And a low-temperature nitrogen gas 66 is supplied around the high-temperature nitrogen gas.

【0044】次に、使用方法について説明する。本例の
半田ごてを用いて後付けにて半田付けを行う場合、まず
半田ごて50のヒータ53に通電して先端チップ55を
280℃〜380℃に加熱する一方、半田ごて50の窒
素ガス供給パイプ59には圧力1.0〜5.0kg/c
2 、流量4リットル/min、純度99〜99.9%
の窒素ガスを供給する。すると、第1の窒素ガス供給通
路61を通過する窒素ガスはヒータ53の発熱にて20
0℃〜250℃に加熱され、体積が2倍近くになり、第
2の窒素ガス供給通路63を通過する窒素ガスは室温の
まま前方に放出される。なお、窒素ガスの流量及び圧力
はホルダー56の窒素ガス供給穴57、58の内径や数
の設定によって調整できる。
Next, the method of use will be described. When soldering is performed afterwards using the soldering iron of the present embodiment, first, the heater 53 of the soldering iron 50 is energized to heat the tip chip 55 to 280 ° C. to 380 ° C., while the nitrogen of the soldering iron 50 is heated. The gas supply pipe 59 has a pressure of 1.0 to 5.0 kg / c.
m 2 , flow rate 4 liter / min, purity 99-99.9%
Of nitrogen gas. Then, the nitrogen gas passing through the first nitrogen gas supply passage 61 generates 20
Heated to 0 ° C. to 250 ° C., the volume is nearly doubled, and the nitrogen gas passing through the second nitrogen gas supply passage 63 is discharged forward at room temperature. The flow rate and pressure of the nitrogen gas can be adjusted by setting the inner diameter and the number of the nitrogen gas supply holes 57 and 58 of the holder 56.

【0045】こうして準備が済むと、まず基板の半田付
け部位に2〜5秒間、高温窒素ガス64を吹き付けて半
田付け部位の予熱(プリヒート)を行い、これにより半
田付け部位の低残渣フラックスを活性化できる。また、
2 濃度5ppm以下の場合はフラックスレス半田付け
を可能である。この場合、半田付け部位の周囲の基板や
電子部品は低温窒素ガス65の雰囲気中に曝されるの
で、周囲の基板や電子部品が熱影響を受けることはな
い。
When the preparation is completed, high-temperature nitrogen gas 64 is sprayed onto the soldering portion of the substrate for 2 to 5 seconds to preheat the soldering portion, thereby activating low residue flux at the soldering portion. Can be Also,
When the O 2 concentration is 5 ppm or less, fluxless soldering is possible. In this case, the substrates and electronic components around the soldering site are exposed to the atmosphere of the low-temperature nitrogen gas 65, so that the surrounding substrates and electronic components are not affected by heat.

【0046】次に、約0.3〜0.8秒で、先端チップ
55を半田付け部位に接触して加熱してフラックス無し
の糸半田を供給し、高温窒素ガス64の雰囲気中で半田
付け部位に溶融半田の盛りを形成させる。次に、半田付
け部位から先端チップ55を離し、溶融半田を低温窒素
ガス65の雰囲気に曝す一方、基板の裏面から室温の窒
素ガスを吹き付けて急冷却する。
Next, in about 0.3 to 0.8 seconds, the tip 55 is brought into contact with the soldering site and heated to supply a flux-free thread solder, and the soldering is performed in an atmosphere of high-temperature nitrogen gas 64. A portion of molten solder is formed at the site. Next, the tip chip 55 is separated from the soldering portion, and the molten solder is exposed to the atmosphere of the low-temperature nitrogen gas 65, while rapidly cooling by blowing a nitrogen gas at room temperature from the back surface of the substrate.

【0047】すると、溶融半田の熱が周囲に急激に吸熱
されて溶融半田は全体として急冷却され、微細な急冷
晶、微細な柱状晶、微細な自由晶が形成される。柱状晶
は結晶柱に平行に不純物やガスを含む粒界が発生しやす
く、又自由晶のフラックスガスや不純物ガスに対し高温
窒素ガス65の圧力1.0〜5.0kg/cm2 によっ
て溶融半田を加圧し、ガスを放出させ、気泡やガス穴を
なくすことができる。また、加圧された高温窒素ガス6
5により樹枝状晶間を溶融半田の融液で加圧充満させる
ことができ、ミクロ・マクロポロシティー(気孔)を防
ぎ、緻密な結晶構造となる。
Then, the heat of the molten solder is rapidly absorbed into the surroundings, and the molten solder is rapidly cooled as a whole, and fine quenched crystals, fine columnar crystals, and fine free crystals are formed. The columnar crystals are likely to generate grain boundaries containing impurities and gases in parallel with the crystal columns, and the molten solder is formed by applying a high-temperature nitrogen gas 65 pressure of 1.0 to 5.0 kg / cm 2 to the free crystal flux gas or impurity gas. To release gas and eliminate bubbles and gas holes. The pressurized high-temperature nitrogen gas 6
By means of 5, the dendrites can be filled under pressure with the molten solder melt, thereby preventing micro and macro porosity (porosity) and providing a dense crystal structure.

【0048】従って、溶融半田の全体が急冷されて溶融
半田の液相線と固相線の間隔が実質的に小さくなるとと
もに、加圧効果が発揮され、マクロ的偏析(Pb、Sn
等)及びミクロ的偏析の樹枝状晶、層状組織、有核組織
等を減少して不純物やガスの少ない微細な結晶組織の凝
固半田が得られる。
Accordingly, the entire molten solder is quenched to substantially reduce the distance between the liquidus and solidus of the molten solder, exert a pressurizing effect, and achieve macroscopic segregation (Pb, Sn).
And the like, and dendrites, layered structure, nucleated structure, etc. of micro segregation are reduced to obtain a solidified solder having a fine crystal structure with few impurities and gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態を示す概略構成図で
ある。
FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】 図1の半田付け方法を説明するための温度特
性を示す図である。
FIG. 2 is a diagram showing temperature characteristics for explaining the soldering method of FIG. 1;

【図3】 本発明の第2の実施形態を示す概略構成図で
ある。
FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention.

【図4】 本発明の第3の実施形態を示す概略構成図で
ある。
FIG. 4 is a schematic configuration diagram showing a third embodiment of the present invention.

【符号の説明】 17 窒素ガス分離装置 18 加熱供給
機 23 半田ごて 25 窒素ガス
供給パイプ。27 窒素ガス加熱パイプ 50
半田ごて 51 こて部 53 ヒータ 55 先端チップ 60 第1の保
護カバー 61 第1の窒素ガス供給通路 62 第2の保
護カバー 63 第2の窒素ガス供給通路 65 高温窒素
ガス 66 低温窒素ガス D 高温窒素
ガス雰囲気 W 電子基板(ワーク)
[Description of Signs] 17 Nitrogen gas separator 18 Heating and supplying device 23 Soldering iron 25 Nitrogen gas supply pipe. 27 Nitrogen gas heating pipe 50
Soldering iron 51 Iron part 53 Heater 55 Tip 60 First protective cover 61 First nitrogen gas supply passage 62 Second protective cover 63 Second nitrogen gas supply passage 65 High temperature nitrogen gas 66 Low temperature nitrogen gas D High temperature Nitrogen gas atmosphere W Electronic substrate (work)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−231160(JP,A) 特開 平4−262862(JP,A) 特開 平4−309457(JP,A) 特開 平6−244548(JP,A) 特開 平6−21640(JP,A) 特開 昭59−151492(JP,A) 特開 平6−151032(JP,A) 特開 平6−334326(JP,A) 特開 平6−315766(JP,A) 実開 平6−70962(JP,U) (58)調査した分野(Int.Cl.7,DB名) H05K 3/34 B23K 31/02 B23K 3/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-231160 (JP, A) JP-A-4-262628 (JP, A) JP-A-4-309457 (JP, A) JP-A-6-261 244548 (JP, A) JP-A-6-21640 (JP, A) JP-A-59-151492 (JP, A) JP-A-6-151032 (JP, A) JP-A-6-334326 (JP, A) JP-A-6-315766 (JP, A) JP-A-6-70962 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H05K 3/34 B23K 31/02 B23K 3/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ワークに溶融半田を接触付着させて凝固
させ、あるいはワーク表面に形成された半田層を溶融さ
せて凝固させ、半田付けを行うにあたり、ワークに付着した又はワーク表面層の 溶融半田が室温の
冷却速度を基準にして緩冷却されうる溶融半田より低温
の高温窒素ガス雰囲気中で半田付けを行うことにより溶
融半田をその表面張力にてほぼ半球状となし、溶融半田
をその凝固開始直前から室温以下の低温窒素ガス雰囲気
中で急冷却することにより溶融半田全体を指向性凝固さ
せて微細凝固組織となしたことを特徴とする半田付け方
法。
1. A method of contacting and adhering molten solder to a work to solidify it, or melting and solidifying a solder layer formed on the surface of the work to perform soldering. Is at room temperature
By performing soldering in a high-temperature nitrogen gas atmosphere at a lower temperature than the molten solder that can be slowly cooled based on the cooling rate, the molten solder is made almost hemispherical with its surface tension, and the molten solder is solidified A soldering method characterized by rapidly cooling in a low-temperature nitrogen gas atmosphere at room temperature or lower immediately before the start to directionally solidify the entire molten solder to form a fine solidified structure.
【請求項2】 急冷却開始時にワーク裏面に低温窒素ガ
スを吹き付けてワーク裏面からも急冷却するようにした
請求項1記載の半田付け方法。
2. The soldering method according to claim 1, wherein a low-temperature nitrogen gas is blown onto the back surface of the work when the rapid cooling is started, so that the work back surface is also rapidly cooled.
【請求項3】 半田ごてを用いてワークを半田付けする
にあたり、ワークの半田付け部位を高温窒素ガスで予熱
した後、高温窒素ガス雰囲気中で半田ごてを接触させて
半田付けを行い、低温窒素ガスにて溶融半田を急冷却す
るようにした請求項1又は2記載の半田付け方法。
3. When soldering a work using a soldering iron, after preheating a soldering portion of the work with a high-temperature nitrogen gas, the soldering is performed by contacting the soldering iron in a high-temperature nitrogen gas atmosphere. 3. The soldering method according to claim 1, wherein the molten solder is rapidly cooled with a low-temperature nitrogen gas.
【請求項4】 半田ごてを用いて後付けにてワークを半
田付けするにあたり、半田ごての先端チップの周囲に高
温窒素ガスを、その周囲に低温窒素ガスを噴射させ、ワ
ーク半田付け部位の予熱時及び半田付け時に半田付け部
位近傍のワーク及び素子を低温窒素ガスにて高温窒素ガ
スから保護するようにした請求項3記載の半田付け方
法。
4. When soldering a workpiece by post-installation using a soldering iron, a high-temperature nitrogen gas is sprayed around a tip of the soldering iron and a low-temperature nitrogen gas is sprayed around the tip. 4. The soldering method according to claim 3, wherein the work and the element near the soldering portion are protected from the high-temperature nitrogen gas by the low-temperature nitrogen gas during the preheating and the soldering.
【請求項5】 こて部に内蔵されたヒータの発熱にて先
端チップを加熱可能となした半田ごてにおいて、ヒータ
の周囲には第1の保護カバーを気密的に覆うとともにそ
の先端側を先端チップの周囲に開放して第1の窒素ガス
供給通路を形成し、第1の保護カバーの周囲には第2の
保護カバーを気密的に覆うとともにその先端を第1の保
護カバーの先端開口の周囲に開放して第2の窒素ガス供
給通路を形成し、第1、第2の窒素ガス供給通路に窒素
ガスを供給して先端チップの周囲に高温窒素ガスを、高
温窒素ガスの周囲に低温窒素ガスを供給するようにして
なることを特徴とする半田ごて。
5. A soldering iron in which a tip chip can be heated by heat generated by a heater built in the iron portion, the first protection cover is hermetically covered around the heater, and the tip side is covered. A first nitrogen gas supply passage is formed around the tip tip to form a first nitrogen gas supply passage. The second protection cover is hermetically covered around the first protection cover, and the tip of the second protection cover is opened at the tip of the first protection cover. To form a second nitrogen gas supply passage, and supply nitrogen gas to the first and second nitrogen gas supply passages to supply a high-temperature nitrogen gas around the tip chip and a high-temperature nitrogen gas around the high-temperature nitrogen gas. A soldering iron characterized by supplying a low-temperature nitrogen gas.
JP35062295A 1995-12-22 1995-12-22 Soldering method and soldering iron Expired - Fee Related JP3303224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35062295A JP3303224B2 (en) 1995-12-22 1995-12-22 Soldering method and soldering iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35062295A JP3303224B2 (en) 1995-12-22 1995-12-22 Soldering method and soldering iron

Publications (2)

Publication Number Publication Date
JPH09181436A JPH09181436A (en) 1997-07-11
JP3303224B2 true JP3303224B2 (en) 2002-07-15

Family

ID=18411727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35062295A Expired - Fee Related JP3303224B2 (en) 1995-12-22 1995-12-22 Soldering method and soldering iron

Country Status (1)

Country Link
JP (1) JP3303224B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632335C2 (en) * 1996-08-10 1999-01-21 Messer Griesheim Gmbh Method and device for mechanically removing solder balls on the surface of printed circuit boards
JP3590319B2 (en) 2000-03-10 2004-11-17 株式会社ジャパンユニックス Gas injection type soldering method and apparatus
JP2004344920A (en) * 2003-05-21 2004-12-09 Japan Unix Co Ltd Iron tip cleaning device for soldering iron
JP4833927B2 (en) * 2007-06-29 2011-12-07 古河電気工業株式会社 Soldering method and soldering apparatus
JP6666071B2 (en) * 2015-04-03 2020-03-13 セイテック株式会社 Local soldering method

Also Published As

Publication number Publication date
JPH09181436A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
US20070170227A1 (en) Soldering method
JPH0992682A (en) Soldering method and soldering device
JPH04504230A (en) Method for manufacturing soldered articles
WO1991018701A1 (en) Fluxless resoldering system and fluxless soldering process
JP2000000657A (en) Non-contact type soldering method, and its soldering iron
JP3303224B2 (en) Soldering method and soldering iron
US7150387B2 (en) Process and apparatus for flow soldering
JP2757738B2 (en) Circuit component attaching / detaching device and circuit component attaching / detaching method
JP2003078242A (en) Method of partially soldering printed board
JP2002141658A (en) Method and device for flow soldering
JP3240876B2 (en) Mounting method of chip with bump
JP3344289B2 (en) Mounting method of work with bump
JP3997614B2 (en) Mounting soldering method
JPH10117065A (en) Soldering method for work with bump
JP2002111194A (en) Flow soldering method and device
JP2001308508A (en) Soldering device and electronic equipment soldered by means of the same
JP3264556B2 (en) Soldering method
JP2001177233A (en) Method and device for soldering surface-mounted component
JPH01284477A (en) Automatic soldering device
JP2002141656A (en) Method and device for flow soldering
JP2004071785A (en) Jet soldering equipment
JPS61137668A (en) Soldering method
JPH04269896A (en) Soldering method for printed board
JPS6229196A (en) Reflow soldering method and apparatus
JPH0226038A (en) Fixing method of electronic element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees