JP2000000657A - Non-contact type soldering method, and its soldering iron - Google Patents

Non-contact type soldering method, and its soldering iron

Info

Publication number
JP2000000657A
JP2000000657A JP1312297A JP1312297A JP2000000657A JP 2000000657 A JP2000000657 A JP 2000000657A JP 1312297 A JP1312297 A JP 1312297A JP 1312297 A JP1312297 A JP 1312297A JP 2000000657 A JP2000000657 A JP 2000000657A
Authority
JP
Japan
Prior art keywords
gas flow
soldering
main heating
preheating
heating gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1312297A
Other languages
Japanese (ja)
Inventor
Yoshimasa Matsubara
賢政 松原
Akio Mitsumoto
暁男 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Kaken KK
Original Assignee
Taisei Kaken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Kaken KK filed Critical Taisei Kaken KK
Priority to JP1312297A priority Critical patent/JP2000000657A/en
Priority to PCT/JP1997/001528 priority patent/WO1998030351A1/en
Priority to PCT/JP1998/000021 priority patent/WO1998030352A1/en
Priority to JP53073998A priority patent/JP3345722B2/en
Publication of JP2000000657A publication Critical patent/JP2000000657A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/012Soldering with the use of hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/03Soldering irons; Bits electrically heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/03Soldering irons; Bits electrically heated
    • B23K3/0338Constructional features of electric soldering irons
    • B23K3/0353Heating elements or heating element housings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform the soldering in a non-contact manner in a short time by blowing a preheated gas flow against a part to be soldered of a work, preheating the part, blowing a hot main heating gas flow from a tip of a soldering iron, and performing the soldering in the atmosphere surrounded by the preheated gas flow prevent the electrostatic discharge failure of electronic parts. SOLUTION: A soldered part after soldering by a main heating gas flow is gradually cooled by a preheating gas flow, and preferably rapidly cooled below the room temperature. It is preferable to eject the main heating gas flow at 250-600 deg.C and the preheating gas flow at 100-200 deg.C at the flow rate of 0.5-2 liter/min. and under the pressure of 0.1-2 kgf/cm2.G. A nitrogen gas fed to a gas feed passage 21 is lead to a main heating gas generating chamber 17, and heated by a heater 14 to generate the main heating gas flow, and ejected from a first nozzle 19. A part of the gas is led to a preheating gas flow generating chamber 18 and heated, and ejected from a second nozzle 20. The main heating gas flow is not scattered therearound, and the solder is immediately melted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば電子部品
の半田付けを非接触にて行なえるようにした半田付け方
法及びその半田ごてに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soldering method and a soldering iron, for example, in which electronic components can be soldered in a non-contact manner.

【0002】[0002]

【従来の技術】例えば、電子機器を組立てる場合、半田
ごてを用いて電子基板に各種電子部品や配線を半田付け
することが多い。
2. Description of the Related Art For example, when assembling electronic equipment, various electronic components and wiring are often soldered to an electronic substrate using a soldering iron.

【0003】この種の半田ごてではヒータ等で加熱した
先端チップを電子基板のランドやワークに接触させて半
田を溶融させ、先端チップを離して半田を凝固させる方
式が広く採用されている。
[0003] In this type of soldering iron, a method in which a tip chip heated by a heater or the like is brought into contact with a land or a work of an electronic substrate to melt the solder and separate the tip chip to solidify the solder is widely adopted.

【0004】他方、図3に示すように、半田ごて50内
にエアー通路を形成すとともに、加熱ヒータ51を内蔵
し、先端にステンレス鋼や真鍮製のノズル52を取付
け、高温エアーを吹き付けて半田付けするようにした非
接触式の半田ごても提案されている。
On the other hand, as shown in FIG. 3, an air passage is formed in a soldering iron 50, a heater 51 is built in, a stainless steel or brass nozzle 52 is attached to the tip, and high-temperature air is blown. Non-contact soldering irons that are soldered have also been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の接触式
の半田付け方法では、先端チップを半田付け部位に接触
させる関係上、先端チップの寿命が短く、半田付けの精
度を確保するためには4〜5万回程度で交換する必要が
あった。また、先端チップが電子基板や電子部品に直接
接触するので、先端チップから電子基板や電子部品に洩
れ電流、ノイズ、高調波、静電気等が伝わり、製品の電
気特性が劣化することが懸念されていた。
However, in the conventional contact-type soldering method, since the tip is brought into contact with the soldering portion, the life of the tip is short, and it is necessary to ensure the accuracy of soldering. It was necessary to replace it about 40,000 to 50,000 times. In addition, since the advanced chip comes into direct contact with the electronic substrate or electronic component, there is a concern that leakage current, noise, harmonics, static electricity, etc. are transmitted from the advanced chip to the electronic substrate or electronic component, thereby deteriorating the electrical characteristics of the product. Was.

【0006】また、従来の非接触式の半田ごてでは、高
温エアーがワークに当たった後、周囲に飛散してしま
い、熱を必要な箇所にスポット的に集中させることがで
きず、半田付けに4〜5秒をかかってしまって実用的で
なく、半田付けされた電子部品の取外し(リワーク)に
利用されているのが実情である。
In the conventional non-contact soldering iron, high-temperature air impinges on the work and then scatters around the work, so that heat cannot be concentrated in a spot on a required portion. It takes 4 to 5 seconds to be practical, and is used for removing (reworking) soldered electronic components.

【0007】この発明は、かかる状況において、電子部
品等の半田付けを非接触で行なえるようにした半田付け
方法を提供することを課題とする。
[0007] It is an object of the present invention to provide a soldering method in which soldering of electronic components and the like can be performed in a non-contact manner in such a situation.

【0008】[0008]

【課題を解決するための手段】そこで、本発明に係る非
接触による半田付け方法は、半田ごてを用い、ワークの
半田付け部位に高温気体流を吹き付けてワークを半田付
けするにあたり、半田ごての先端から高温の主加熱気体
流を噴出させるとともに、該主加熱気体流を囲みかつ上
記主加熱気体流よりも低温の予熱気体流を噴出させ、上
記予熱気体流をワークの半田付け部位に吹き付けて予熱
した後、上記主加熱気体流を予熱したワークの半田付け
部位に吹き付け、上記予熱気体流で囲まれた雰囲気中で
半田付けを行なうようにしたことを特徴とする。
Accordingly, a non-contact soldering method according to the present invention uses a soldering iron to blow a high-temperature gas flow to a soldering portion of the work to solder the work. A high-temperature main heating gas flow is ejected from all the tips, and a preheating gas flow surrounding the main heating gas flow and having a lower temperature than the main heating gas flow is ejected, and the preheating gas flow is applied to a soldering portion of the work. After spraying and preheating, the main heating gas flow is sprayed onto a soldering portion of the preheated work, and soldering is performed in an atmosphere surrounded by the preheating gas flow.

【0009】主加熱気体流及び予熱気体流はエアーであ
ってもよいが、エアー中のO2 の影響を考慮すると、窒
素ガスが好ましい。
The main heating gas flow and the preheating gas flow may be air, but nitrogen gas is preferable in consideration of the influence of O 2 in the air.

【0010】本発明の特徴の1つは高温の内外二重の気
体流を形成し、外側の気体流で予熱し、外側気体流で囲
んだ雰囲気中において内側の気体流で半田付けを行なう
ようにした点にある。これにより、内側の気体流の熱が
周囲に飛散してしまうことがなく、非接触式で短時間で
半田付けが行なえ、製品に対する洩れ電流、ノイズ、高
調波の影響を除去できる。但し、静電気については気体
流の摩擦、特に気体流を高速で噴出する場合における摩
擦によって気体流が帯電し、製品に対する電気的影響が
依然として懸念されるので、これに対処することが必要
である。
One of the features of the present invention is to form a high temperature inner / outer double gas flow, preheat with an outer gas flow, and perform soldering with an inner gas flow in an atmosphere surrounded by an outer gas flow. It is in the point which was made. Accordingly, the heat of the gas flow inside does not scatter to the surroundings, the soldering can be performed in a short time in a non-contact manner, and the effects of leakage current, noise, and harmonics on the product can be eliminated. However, regarding the static electricity, the gas flow is charged due to the friction of the gas flow, particularly the friction when the gas flow is ejected at a high speed, and there is still a concern about the electric influence on the product.

【0011】そこで、主加熱気体流及び予熱気体流の噴
出圧力を気体流の帯電が電気的影響の懸念されない程度
となるような範囲、具体低には0.1〜2kgf/cm
2 ・Gの圧力とするのが好ましい。
[0011] Therefore, the ejection pressure of the main heating gas flow and the preheating gas flow is set to a range in which the charging of the gas flow is such that the electric influence is not concerned, specifically 0.1 to 2 kgf / cm.
The pressure is preferably 2 · G.

【0012】緻密でかつ盛りのよい半田付けとする上
で、付着した溶融半田をゆるやかな温度プロファイルで
もって緩冷却しうる雰囲気中で半田付けを行い、凝固開
始直前から室温以下の雰囲気で急冷却するのが肝要であ
る。本発明では気体流を内外二重とし、外側の予熱気体
流でもって予熱し、内側の主加熱気体流で半田付けを行
なった後、外側の予熱気体流で凝固開始直前まで緩冷却
して室温以下の雰囲気に曝して急冷却することができ
る。本発明を電子部品の半田付けに適用する場合、主加
熱気体流の温度を250〜600℃、予熱気体流の温度
を100〜200℃とし、0.5〜2リットル/分の流
量で噴出させるのがよい。
[0012] In order to form a dense and well-soldered solder, the attached molten solder is soldered in an atmosphere that can be slowly cooled with a gentle temperature profile, and immediately cooled immediately before the start of solidification in an atmosphere at room temperature or lower. It is important to do so. In the present invention, the gas flow is made into an inner / outer double, preheated by the outer preheating gas flow, soldered by the inner main heating gas flow, then slowly cooled by the outer preheating gas flow to just before the start of solidification, and then cooled to room temperature. Exposure to the following atmosphere allows rapid cooling. When the present invention is applied to soldering of electronic components, the temperature of the main heating gas flow is set to 250 to 600 ° C., the temperature of the preheating gas flow is set to 100 to 200 ° C., and the gas is ejected at a flow rate of 0.5 to 2 liter / min. Is good.

【0013】溶融半田の凝固開始直前からの急冷却は大
気に曝して行ってもよいが、溶融半田が凝固に際して潜
熱を放出し、それと同時に大気中のO2 、H2 、CO等
を溶解し、酸化及び気孔発生の原因となり、又凝固直前
の半田の酸化はブリッジ、ツノ、ツララ発生の最大要因
であるので、室温以下の低温窒素ガス雰囲気としてもよ
い。低温窒素ガス雰囲気は室温、具体的には25℃以下
の温度とするが、急冷効果を確保する上で氷点以下、例
えばー20℃〜ー30℃としてもよい。また、ワーク表
面側を低温窒素ガス雰囲気に曝すと、溶融半田は表面側
から急冷却されるが、ワーク裏面側に低温窒素ガスを吹
き付けてワーク裏面側からも急冷却すると急冷効果を促
進してより一層微細な急冷凝固組織が得られるので好ま
しい。
The rapid cooling immediately before the start of solidification of the molten solder may be performed by exposing it to the atmosphere. However, the molten solder releases latent heat upon solidification and simultaneously dissolves O 2 , H 2 , CO, etc. in the atmosphere. In addition, since oxidation of the solder and porosity may be caused, and oxidation of the solder immediately before solidification is the largest cause of the generation of bridges, horns, and glares, a low-temperature nitrogen gas atmosphere at room temperature or lower may be used. The temperature of the low-temperature nitrogen gas atmosphere is room temperature, specifically, 25 ° C. or lower, but may be lower than the freezing point, for example, −20 ° C. to −30 ° C. in order to secure the quenching effect. When the work surface is exposed to a low-temperature nitrogen gas atmosphere, the molten solder is rapidly cooled from the front side. However, when the low-temperature nitrogen gas is sprayed on the work back side to rapidly cool from the work back side, the rapid cooling effect is promoted. This is preferable because a finer rapidly solidified structure can be obtained.

【0014】また、本発明によれば上述の非接触による
半田付け方法に使用する半田ごてを提供することができ
る。
Further, according to the present invention, it is possible to provide a soldering iron used in the above-mentioned non-contact soldering method.

【0015】即ち、本発明に係る非接触による半田ごて
は、高温の気体流をワークの半田付け部位に吹き付けて
半田付けを行なう非接触式の半田ごてにおいて、こて本
体の先端には中央の第1のノズルと、該第1のノズルの
外側を覆って開放する第2のノズルとが取付けられる一
方、上記こて本体内には加熱ヒータが内蔵されるととも
に、該加熱ヒータの周囲には主加熱気体流生成チャンバ
ーが上記第1のノズルと連通して形成され、上記主加熱
気体流生成チャンバーの周囲には予熱気体流生成チャン
バーが上記2のノズルと連通して形成され、上記こて本
体には主加熱気体流生成チャンバー及び予熱気体流生成
チャンバーに気体を供給する気体供給通路が設けられて
おり、ヒータ加熱によって高温の主加熱気体流が生成さ
れて上記第1のノズルから噴出され、対流輻射加熱によ
って主加熱気体よりも低温の予熱気体流を生成されて第
2のノズルから上記主加熱気体流を囲んで噴出されるよ
うになしたことを特徴とする。
That is, in the non-contact soldering iron according to the present invention, in the non-contact type soldering iron for performing soldering by blowing a high-temperature gas flow to a soldering portion of a work, A central first nozzle and a second nozzle that opens to cover the outside of the first nozzle are attached, while a heater is built in the iron body, and a periphery of the heater is A main heating gas flow generation chamber is formed in communication with the first nozzle; a preheating gas flow generation chamber is formed around the main heating gas flow generation chamber in communication with the second nozzle; The trowel body is provided with a gas supply passage for supplying gas to the main heating gas flow generation chamber and the preheating gas flow generation chamber. Ejected from Le, characterized in that none from the second nozzle is generated a low-temperature preheating gas flow to be ejected surrounds the main heating gas flow than the main heating gas by convection radiation heating.

【0016】ところで、上述のように主加熱気体流体及
び予熱気体流体の噴出圧力を適切に設定しても気体流の
帯電は依然として残っている。そこで、こて本体をアー
スし、主加熱気体流生成チャンバー及び予熱気体流生成
チャンバーの内側にマイナス電荷を静電誘導させて主加
熱気体流及び予熱気体流のプラス電荷を除去できるよう
にするのがよい。
By the way, even if the ejection pressures of the main heating gas fluid and the preheating gas fluid are appropriately set as described above, the charging of the gas flow still remains. Therefore, the main body of the iron is grounded, and a negative charge is electrostatically induced inside the main heating gas flow generation chamber and the preheating gas flow generation chamber so that the positive charge of the main heating gas flow and the preheating gas flow can be removed. Is good.

【0017】[0017]

【作用及び発明の効果】本発明によれば、先端チップか
ら噴出される内外二重の気体流のうち、外側の予熱気体
流で予熱した後、外側の予熱気体流で囲まれた雰囲気中
において内側の主加熱気体流で半田付けを行なうように
したので、ワーク半田付け部位に吹き付けられた主加熱
気体流の熱が周囲に飛散することがなく、効率よくワー
クの半田付け部位に伝えられ、短時間の内に非接触で半
田付けを行なうことができる。
According to the present invention, of the inner and outer double gas flows ejected from the tip, after being preheated by the outer preheating gas flow, the preheating is performed in an atmosphere surrounded by the outer preheating gas flow. Since the soldering is performed with the inner main heating gas flow, the heat of the main heating gas flow blown to the work soldering part does not scatter around, and is efficiently transmitted to the work soldering part, Non-contact soldering can be performed within a short time.

【0018】その結果、先端チップの接触に起因する製
品の電気的特性の劣化を防止でき、又主加熱気体流及び
予熱気体流の噴出圧力を適切に設定し、こて本体をアー
スすると、気体流の帯電を確実に防止でき、これによっ
て電子部品の静電破壊を防止して製品の電気的特性を保
証できる。
As a result, it is possible to prevent the electrical characteristics of the product from deteriorating due to the contact of the tip, and to properly set the ejection pressures of the main heating gas flow and the preheating gas flow and to ground the trowel main body, thereby reducing the gas. The charging of the current can be reliably prevented, thereby preventing the electronic components from being electrostatically damaged and ensuring the electrical characteristics of the product.

【0019】また、溶融半田が緩冷却される雰囲気中で
半田付けを行うことができるので、溶融半田はその表面
張力にて好ましい盛り上がり状態であるほぼ半球状を呈
する。また、溶融半田の凝固開始直前に室温以下の雰囲
気中で急冷却され、溶融半田にその液相線と固相線間の
間隔が実質的に小さくなった指向性凝固を与えることが
でき、これにより半田を微細凝固組織とできる。
Further, since the soldering can be performed in an atmosphere in which the molten solder is slowly cooled, the molten solder has a substantially hemispherical shape which is a preferable bulging state due to its surface tension. Also, immediately before the start of solidification of the molten solder, it is rapidly cooled in an atmosphere at room temperature or lower, and it is possible to give the molten solder directional solidification in which the distance between its liquidus and solidus is substantially reduced. This allows the solder to have a finely solidified structure.

【0020】その結果、半田ボール、ブリッジあるいは
半田の飛び散りがなく、しかも緻密でPb、Snの偏析
や気孔が極めて少なくて耐ヒートショック性に優れ、し
かも盛りのよい高品質の無酸化、無洗浄の半田付けを行
うことができる。
As a result, there is no scatter of solder balls, bridges or solder, and it is dense, has very few segregation of Pb and Sn and has very few pores, has excellent heat shock resistance, and has high quality non-oxidizing and non-cleaning with good build. Can be soldered.

【0021】[0021]

【発明の実施の形態】以下、本発明を図面に示す具体例
に基づいて詳細に説明する。図1及び図2は本発明に係
る非接触による半田ごての好ましい実施形態を示す。こ
て基部10の先端にはこて本体11の後端部が螺合等に
よって取付けられ、該こて本体11は内外二重のステン
レス筒12、13と中央の棒状アルミナセラミック製の
加熱ヒータ14とを含む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to specific examples shown in the drawings. 1 and 2 show a preferred embodiment of a non-contact soldering iron according to the present invention. The rear end of the iron main body 11 is attached to the tip of the iron base 10 by screwing or the like. The iron main body 11 is made up of an inner and outer double stainless steel cylinders 12 and 13 and a central rod-shaped alumina ceramic heater 14. And

【0022】上記加熱ヒータ14は金属製のカバー15
によって内側ステンレス筒13内面に支持され、上記カ
バー15の後端には板状スペーサ部16が形成されてお
り、上記カバー15と内側ステンレス筒13との間はヒ
ータ加熱によって高温の主加熱気体流を生成する主加熱
気体流生成チャンバー17、内外のステンレス筒体1
2、13の間は対流輻射加熱によって主加熱気体流より
も低温の予熱気体流を生成する予熱気体流生成チャンバ
ー18となっている。
The heater 14 has a metal cover 15.
The inner surface of the inner stainless steel cylinder 13 is supported by the inner surface of the inner stainless steel cylinder 13, and a plate-shaped spacer portion 16 is formed at the rear end of the cover 15. Heating gas flow generation chamber 17 for generating air, stainless steel cylinder 1 inside and outside
Between 2 and 13, there is a preheating gas flow generation chamber 18 that generates a preheating gas flow lower than the main heating gas flow by convective radiation heating.

【0023】また、内側のステンレス筒13の先端には
モリブデン製の第1のノズル19が嵌合され、該第1の
ノズル19は外側ステンレス筒12の先端よりも突設さ
れ、外側ステンレス筒12の先端には第1のノズル19
の外側全周を覆う第2のノズル20が外嵌されている。
Further, a first nozzle 19 made of molybdenum is fitted to the tip of the inner stainless steel cylinder 13, and the first nozzle 19 protrudes from the tip of the outer stainless steel cylinder 12. At the end of the first nozzle 19
A second nozzle 20 that covers the entire outer periphery of the nozzle is externally fitted.

【0024】また、こて基部10は中空状をなして気体
供給通路21が形成され、こて本体11の後端部には第
1の気体流通口22が、カバー15の板状スペーサ部1
6には第2の気体流通口23が、さらにカバー15の先
端部には第3の気体流通口24が形成されて主加熱気体
流生成チャンバー17で生成された主加熱気体流が第1
のノズル19に向けて案内されるようになっている。
A gas supply passage 21 is formed in the trowel base 10 in a hollow shape, and a first gas flow port 22 is provided at a rear end of the trowel main body 11.
6, a second gas flow port 23 is formed at the tip of the cover 15, and a third gas flow port 24 is formed at the distal end of the cover 15. The main heat gas flow generated in the main heat gas flow generation chamber 17 is supplied to the first gas flow port.
Of the nozzle 19.

【0025】さらに、カバー15より後方の内側ステン
レス筒13には第4の気体流通口25が、外側ステンレ
ス筒12の先端には第5の気体流通口26が形成され、
予熱気体流生成チャンバー18で生成された予熱気体流
が第2のノズル20に向けて案内されるようになってい
る。
Further, a fourth gas flow port 25 is formed in the inner stainless steel cylinder 13 behind the cover 15, and a fifth gas flow port 26 is formed at the tip of the outer stainless steel cylinder 12.
The preheating gas flow generated in the preheating gas flow generation chamber 18 is guided toward the second nozzle 20.

【0026】また、加熱ヒータ14の先端には主加熱気
体流30の温度を検知してコントロールを行なうための
センサー27が取付けられ、又図示していないが、ステ
ンレス筒12及び13にはアースが接続されている。
Further, a sensor 27 for detecting and controlling the temperature of the main heating gas flow 30 is attached to the tip of the heater 14, and the stainless steel cylinders 12 and 13 are grounded though not shown. It is connected.

【0027】次に、半田付け方法について説明する。本
例の半田ごてを用いて非接触で半田付けを行う場合、ま
ず加熱ヒータ14に通電するとともに、こて基部10内
の気体供給通路21に窒素ガス(エアーでもよい)を供
給する。この窒素ガス(エアーでもよい)は予め所定温
度、例えば40〜50℃に予熱してもよい。すると、窒
素ガスは気体流通口22、23を介して主加熱気体流生
成チャンバー17に案内され、加熱ヒータ14によって
250〜600℃に加熱されて主加熱気体流30が生成
され、主加熱気体流30は気体流通口24を経て第1の
ノズル19から噴出される。この主加熱気体流30の噴
出量は0.5〜2.0リットル/分に、噴出圧力は0.
1〜2.0kgf/cm2 ・Gに設定される。
Next, a soldering method will be described. When soldering is performed in a non-contact manner using the soldering iron of this example, first, the heater 14 is energized, and a nitrogen gas (or air) is supplied to the gas supply passage 21 in the iron base 10. The nitrogen gas (or air) may be preheated to a predetermined temperature, for example, 40 to 50 ° C. Then, the nitrogen gas is guided to the main heating gas flow generation chamber 17 through the gas circulation ports 22 and 23, and is heated to 250 to 600 ° C. by the heater 14 to generate the main heating gas flow 30. 30 is ejected from the first nozzle 19 through the gas flow port 24. The jet amount of the main heating gas stream 30 is 0.5 to 2.0 liter / min, and the jet pressure is 0.1 to 2.0 liter / min.
It is set to 1 to 2.0 kgf / cm 2 · G.

【0028】同時に、窒素ガスの一部は気体流通口25
を介して予熱気体流生成チャンバー18に各々案内さ
れ、主加熱気体流生成チャンバー17における高温窒素
ガスの対流及び加熱ヒータ14からの輻射熱によって1
00〜200℃に加熱されて予熱気体流31が生成さ
れ、気体流通口26を経て第2のノズル20から主加熱
気体流30の周囲を覆って噴出される。この予熱気体流
31の噴出量は0.5〜2.0リットル/分に、噴出圧
力は0.1〜2.0kgf/cm2 ・Gに設定される。
At the same time, part of the nitrogen gas is
Through the preheating gas flow generation chamber 18, and convection of the high-temperature nitrogen gas in the main heating gas flow generation chamber 17 and radiant heat from the heater 14.
The preheated gas flow 31 is generated by being heated to 00 to 200 ° C., and is ejected from the second nozzle 20 through the gas flow port 26 so as to cover the periphery of the main heated gas flow 30. The ejection amount of the preheating gas stream 31 is set at 0.5 to 2.0 liter / minute, and the ejection pressure is set at 0.1 to 2.0 kgf / cm 2 · G.

【0029】こうして準備が済むと、まず基板の半田付
け部位Wに予熱気体流31を吹き付けて半田付け部位W
を予熱した後、主加熱気体流30を吹き付けるが、高温
の主加熱気体流30は図2に示すように予熱気体流31
で周囲を覆われた状態で半田付け部位Wに吹き付けら
れ、従来のように周囲にそのまま飛散することがないの
で、半田がすぐに溶融する。その後、溶融半田は予熱気
体流31で凝固開始直前まで緩冷却され、大気に曝され
て急冷される。
When the preparation is completed, a preheating gas flow 31 is first blown onto the soldering portion W of the substrate to
After preheating, the main heating gas stream 30 is blown, and the high-temperature main heating gas stream 30 is preheated as shown in FIG.
Is sprayed onto the soldering portion W in a state where the solder is covered, and the solder is not immediately scattered to the surroundings as in the related art, so that the solder is immediately melted. Thereafter, the molten solder is gradually cooled by the preheating gas flow 31 until just before the start of solidification, and is rapidly cooled by being exposed to the atmosphere.

【0030】本件発明者らの実験によれば、従来の非接
触式の半田ごてでは半田付けが完了するまでに4〜5秒
必要であったが、本例の非接触式の半田ごてでは1秒程
度で半田付けを完了させることができることが確認され
た。従って、従来の溶接ロボットや自動溶接機における
接触式の半田ごてに代え、本例の非接触式の半田ごてを
実用的に採用できることが確認された。
According to the experiments conducted by the present inventors, it took four to five seconds for the conventional non-contact soldering iron to complete the soldering, but the non-contact soldering iron of the present example was used. It was confirmed that soldering could be completed in about one second. Therefore, it was confirmed that the non-contact type soldering iron of the present example can be practically used instead of the contact type soldering iron in the conventional welding robot or automatic welding machine.

【0031】また、溶融半田の熱が周囲に急激に吸熱さ
れると、溶融半田は全体として急冷却され、微細な急冷
晶、微細な柱状晶、微細な自由晶が形成されるが、柱状
晶は結晶柱に平行に不純物やガスを含む粒界が発生しや
すく、又自由晶はフラックスガスや不純物ガスが含みや
すい。これに対し、溶融した半田には適切な圧力の主加
熱気体流30及び予熱気体流31の吹き付けられるの
で、半田やフラックスが半田付け部位Wの外方に流れ出
ることなく、溶融半田が加圧され、ガスを放出させ、気
泡やガス穴をなくすことができる。また、かかる加圧に
よって樹枝状晶間を溶融半田の融液で加圧充満させるこ
とができ、ミクロポロシティーやマクロポロシティー
(気孔)を防ぎ、緻密な結晶構造となる。
When the heat of the molten solder is rapidly absorbed into the surroundings, the molten solder is rapidly cooled as a whole to form fine quenched crystals, fine columnar crystals, and fine free crystals. In the crystal, a grain boundary containing impurities and gas is easily generated in parallel with the crystal column, and the free crystal tends to contain flux gas and impurity gas. On the other hand, since the main heating gas flow 30 and the preheating gas flow 31 having appropriate pressures are blown to the molten solder, the molten solder is pressurized without the solder or flux flowing out of the soldering portion W. The gas can be released, eliminating bubbles and gas holes. In addition, the dendrite can be filled with the molten solder by the pressurization due to the pressurization, thereby preventing microporosity and macroporosity (porosity), and forming a dense crystal structure.

【0032】従って、溶融半田の全体が急冷されて溶融
半田の液相線と固相線の間隔が実質的に小さくなるとと
もに、加圧効果が発揮され、マクロ的偏析(Pb、Sn
等)及びミクロ的偏析の樹枝状晶、層状組織、有核組織
等を減少して不純物やガスの少ない微細な結晶組織の凝
固半田が得られる。
Accordingly, the entire molten solder is quenched to substantially reduce the distance between the liquidus and solidus of the molten solder, exert a pressurizing effect, and produce macroscopic segregation (Pb, Sn).
And the like, and dendrites, layered structure, nucleated structure, etc. of micro segregation are reduced to obtain a solidified solder having a fine crystal structure with few impurities and gas.

【0033】また、主加熱気体流30及び予熱気体流3
1の噴出圧力を適切に設定しているので、気体摩擦によ
る帯電が起こり難く、しかもこて本体11をアースして
いるので、たとえ気体流30、31がプラスに帯電して
も主加熱気体流生成チャンバー17及び予熱気体流生成
チャンバー18の内側にマイナス電荷を静電誘導させて
主加熱気体流30及び予熱気体流31のプラス電荷を除
去することができる結果、半田付け部位Wにおける静電
破壊のおそれを確実に解消できる。
The main heating gas flow 30 and the preheating gas flow 3
1 is set appropriately, so that charging due to gas friction is unlikely to occur, and since the iron body 11 is grounded, even if the gas flows 30, 31 are positively charged, the main heating gas flow A negative charge can be electrostatically induced inside the generation chamber 17 and the preheating gas flow generation chamber 18 to remove the positive charge of the main heating gas flow 30 and the preheating gas flow 31, resulting in electrostatic breakdown at the soldering site W. Can be reliably eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る非接触による半田ごての好まし
い実施形態の全体構成及びそのIーI線断面を示す図で
ある。
FIG. 1 is a diagram showing an overall configuration of a preferred embodiment of a non-contact soldering iron according to the present invention and a cross section taken along line II of the preferred embodiment.

【図2】 上記実施形態による半田付け方法を説明する
ための図である。
FIG. 2 is a diagram for explaining a soldering method according to the embodiment.

【図3】 従来の非接触式半田ごてを示す概略構成図で
ある。
FIG. 3 is a schematic configuration diagram showing a conventional non-contact soldering iron.

【符号の説明】[Explanation of symbols]

11 こて本体 17 主加熱気体流生成チャンバー 18 予熱気体流生成チャンバー 19 第1のノズル 20 第2のノズル 21 気体供給通路 30 主加熱気体流 31 予熱気体流 W 半田付け部位 Reference Signs List 11 Iron body 17 Main heating gas flow generation chamber 18 Preheating gas flow generation chamber 19 First nozzle 20 Second nozzle 21 Gas supply passage 30 Main heating gas flow 31 Preheating gas flow W Soldering site

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E319 AA01 AC01 CC49 CC54 CC58 CD31 GG03 GG11 GG15  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5E319 AA01 AC01 CC49 CC54 CC58 CD31 GG03 GG11 GG15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半田ごてを用い、ワークの半田付け部位
に高温気体流を吹き付けてワークを半田付けするにあた
り、 半田ごての先端から高温の主加熱気体流を噴出させると
ともに、該主加熱気体流を囲みかつ上記主加熱気体流よ
りも低温の予熱気体流流を噴出させ、 上記予熱気体流をワークの半田付け部位に吹き付けて予
熱した後、上記主加熱気体流を予熱したワークの半田付
け部位に吹き付け、上記予熱気体流で囲まれた雰囲気中
で半田付けを行なうようにしたことを特徴とする非接触
による半田付け方法。
When a high-temperature gas flow is blown onto a soldering portion of a work using a soldering iron to solder the work, a high-temperature main heating gas flow is ejected from the tip of the soldering iron and the main heating is performed. A preheating gas flow surrounding the gas flow and having a lower temperature than the main heating gas flow is jetted out, and the preheating gas flow is blown to a soldering portion of the work to preheat the work, and then the soldering of the work in which the main heating gas flow is preheated is performed. A non-contact soldering method, wherein the soldering is performed in an atmosphere surrounded by the preheating gas flow.
【請求項2】 上記主加熱気体流によって半田付けした
後の半田付け部位を、上記予熱気体流によって緩冷却し
た後、室温以下に急冷却するようにした請求項1記載の
非接触による半田付け方法。
2. The non-contact soldering according to claim 1, wherein the soldering portion after the soldering by the main heating gas flow is gradually cooled by the preheating gas flow and then rapidly cooled to room temperature or lower. Method.
【請求項3】 温度250〜600℃の上記主加熱気体
流を0.5〜2リットル/分の流量で、温度100〜2
00℃の上記予熱気体流を0.5〜2リットル/分の流
量で各々0.1〜2kgf/cm2 ・Gの圧力で噴出さ
せるようにした請求項1又は2記載の非接触による半田
付け方法。
3. The method according to claim 1, wherein the main heating gas stream at a temperature of 250 to 600 ° C. is supplied at a flow rate of 0.5 to 2 liters / minute and a temperature of 100 to 2
The non-contact soldering according to claim 1 or 2, wherein the preheated gas stream of 00 ° C is jetted at a flow rate of 0.5 to 2 liters / minute at a pressure of 0.1 to 2 kgf / cm 2 · G. Method.
【請求項4】 上記主加熱気体流及び上記予熱気体流に
窒素ガス又はエアーを用いるようにした請求項1ないし
3のいずれかに記載の非接触による半田付け方法。
4. The non-contact soldering method according to claim 1, wherein nitrogen gas or air is used for said main heating gas flow and said preheating gas flow.
【請求項5】 高温の気体流をワークの半田付け部位に
吹き付けて半田付けを行なう非接触式の半田ごてにおい
て、 こて本体の先端には中央の第1のノズルと、該第1のノ
ズルの外側を覆って開放する第2のノズルとが取付けら
れる一方、 上記こて本体内には加熱ヒータが内蔵されるとともに、
該加熱ヒータの周囲には主加熱気体流生成チャンバーが
上記第1のノズルと連通して形成され、上記主加熱気体
流生成チャンバーの周囲には予熱気体流生成チャンバー
が上記2のノズルと連通して形成され、 上記こて本体には主加熱気体流生成チャンバー及び予熱
気体流生成チャンバーに気体を供給する気体供給通路が
設けられており、 ヒータ加熱によって高温の主加熱気体流が生成されて上
記第1のノズルから噴出され、対流輻射加熱によって主
加熱気体流よりも低温の予熱気体流を生成されて第2の
ノズルから上記主加熱気体流を囲んで噴出されるように
なしたことを特徴とする非接触による半田ごて。
5. A non-contact type soldering iron for performing soldering by spraying a high-temperature gas flow onto a soldering portion of a work, wherein a tip of a central first nozzle is provided at a tip of a main body of the iron; A second nozzle that opens and covers the outside of the nozzle is attached, while a heater is built in the iron body,
A main heating gas flow generation chamber is formed around the heater in communication with the first nozzle, and a preheating gas flow generation chamber communicates with the second nozzle around the main heating gas flow generation chamber. The main body of the iron is provided with a gas supply passage for supplying gas to the main heating gas flow generation chamber and the preheating gas flow generation chamber, and a high temperature main heating gas flow is generated by heating the heater. The method is characterized in that a preheating gas flow which is ejected from the first nozzle and which is lower in temperature than the main heating gas flow by convective radiation heating is generated and is ejected from the second nozzle surrounding the main heating gas flow. And a non-contact soldering iron.
【請求項6】 上記こて本体がアースされ、上記主加熱
気体流生成チャンバー及び予熱気体流生成チャンバーの
内側にマイナス電荷を静電誘導させて上記主加熱気体流
及び予熱気体流のプラス電荷を除去可能となした請求項
5記載の非接触による半田ごて。
6. The main body of the trowel is grounded, and a negative charge is electrostatically induced inside the main heating gas flow generation chamber and the preheating gas flow generation chamber to generate a positive charge of the main heating gas flow and the preheating gas flow. 6. The non-contact soldering iron according to claim 5, which is removable.
JP1312297A 1997-01-07 1997-01-07 Non-contact type soldering method, and its soldering iron Pending JP2000000657A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1312297A JP2000000657A (en) 1997-01-07 1997-01-07 Non-contact type soldering method, and its soldering iron
PCT/JP1997/001528 WO1998030351A1 (en) 1997-01-07 1997-05-06 Soldering method and soldering iron
PCT/JP1998/000021 WO1998030352A1 (en) 1997-01-07 1998-01-07 Non-contact type soldering iron capable of intermittent soldering
JP53073998A JP3345722B2 (en) 1997-01-07 1998-01-07 Non-contact soldering iron capable of intermittent soldering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312297A JP2000000657A (en) 1997-01-07 1997-01-07 Non-contact type soldering method, and its soldering iron

Publications (1)

Publication Number Publication Date
JP2000000657A true JP2000000657A (en) 2000-01-07

Family

ID=11824366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312297A Pending JP2000000657A (en) 1997-01-07 1997-01-07 Non-contact type soldering method, and its soldering iron

Country Status (2)

Country Link
JP (1) JP2000000657A (en)
WO (2) WO1998030351A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633021B2 (en) * 1999-05-26 2003-10-14 Kensei Matubara Soldering iron with heated gas flow
JP2006102768A (en) * 2004-10-04 2006-04-20 Hakko Kk Soldering iron, method for assembling the same and method for exchanging heater cartridge therein
US7060937B2 (en) * 2003-04-04 2006-06-13 Hakko Corporation Cartridge-type soldering iron with inert gas emitted near the tip
US7126086B2 (en) 2003-04-04 2006-10-24 Hakko Corporation Cartridge-type soldering iron
CN100363138C (en) * 2004-01-27 2008-01-23 白光株式会社 Solder heating device
CN100464915C (en) * 2003-04-04 2009-03-04 白光株式会社 Brazing soldering iron

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208918A (en) * 1999-01-18 2000-07-28 Ueda Japan Radio Co Ltd Formation of patterned solder bump of printed wiring board
JP2000263223A (en) * 1999-03-18 2000-09-26 Japan Unix Co Ltd Gas jet type soldering method
JP3582833B2 (en) * 2002-03-06 2004-10-27 中島銅工株式会社 Soldering iron
JP2006334598A (en) * 2005-05-31 2006-12-14 Mitsubishi Electric Corp Gas jetting type soldering iron
US7410090B2 (en) * 2006-04-21 2008-08-12 International Business Machines Corporation Conductive bonding material fill techniques
JP2008279473A (en) * 2007-05-09 2008-11-20 Kazuto Fujimoto Soldering iron
JP6831666B2 (en) * 2016-10-13 2021-02-17 株式会社パラット Soldering system, soldering product manufacturing method, soldering method, and soldering
CN114769785B (en) * 2022-04-18 2023-10-20 翼龙半导体设备(无锡)有限公司 High-pressure air self-cooling hot tin spray head

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783940B2 (en) * 1987-12-25 1995-09-13 松下電器産業株式会社 Hot air reflow soldering device
JPH07132369A (en) * 1993-06-17 1995-05-23 Noriyuki Yoshida Soldering iron

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633021B2 (en) * 1999-05-26 2003-10-14 Kensei Matubara Soldering iron with heated gas flow
US7060937B2 (en) * 2003-04-04 2006-06-13 Hakko Corporation Cartridge-type soldering iron with inert gas emitted near the tip
US7126086B2 (en) 2003-04-04 2006-10-24 Hakko Corporation Cartridge-type soldering iron
CN100464915C (en) * 2003-04-04 2009-03-04 白光株式会社 Brazing soldering iron
CN100363138C (en) * 2004-01-27 2008-01-23 白光株式会社 Solder heating device
JP2006102768A (en) * 2004-10-04 2006-04-20 Hakko Kk Soldering iron, method for assembling the same and method for exchanging heater cartridge therein
JP4533077B2 (en) * 2004-10-04 2010-08-25 白光株式会社 Soldering iron, assembling method and heater cartridge replacing method

Also Published As

Publication number Publication date
WO1998030351A1 (en) 1998-07-16
WO1998030352A1 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
JP2000000657A (en) Non-contact type soldering method, and its soldering iron
US5139193A (en) Fluxless resoldering system and fluxless soldering process
US6050477A (en) Method of brazing directionally solidified or monocrystalline components
JP3541307B2 (en) Soldering iron
US6648216B2 (en) Process and apparatus for flow soldering
JP4497792B2 (en) Brazing method and apparatus free from martensite
JP2010258000A (en) Electronic apparatus manufacturing method by soldering of through-hole and soldering iron for the same
JP3303224B2 (en) Soldering method and soldering iron
JPH06244548A (en) Apparatus and method for attaching and detaching of circuit component
JP2000188464A (en) Automatic soldering device
JP2002141658A (en) Method and device for flow soldering
JP3345722B2 (en) Non-contact soldering iron capable of intermittent soldering
JP3781697B2 (en) Method and apparatus for soldering electronic parts
JP2000033475A (en) Gas ejection type soldering iron
US20170058388A1 (en) Sprayed coating formation device and sprayed coating formation method
JPS5558304A (en) Producing device of metal powder
JP2004071785A (en) Jet soldering equipment
JP2002141656A (en) Method and device for flow soldering
JPH0328514B2 (en)
JPH05163024A (en) Melting of glass raw material
JPS6281252A (en) Continuous casting method
JPS6254578B2 (en)
JPS62207577A (en) Plasma melting method
JPH06296074A (en) Wave soldering device
JP2002158432A (en) Lead free soldering system