WO1998030351A1 - Soldering method and soldering iron - Google Patents

Soldering method and soldering iron Download PDF

Info

Publication number
WO1998030351A1
WO1998030351A1 PCT/JP1997/001528 JP9701528W WO9830351A1 WO 1998030351 A1 WO1998030351 A1 WO 1998030351A1 JP 9701528 W JP9701528 W JP 9701528W WO 9830351 A1 WO9830351 A1 WO 9830351A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas flow
soldering
temperature
preheating
tip
Prior art date
Application number
PCT/JP1997/001528
Other languages
French (fr)
Japanese (ja)
Inventor
Akio Mitumoto
Kensei Matubara
Original Assignee
Kabushikigaisha Taiseikaken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushikigaisha Taiseikaken filed Critical Kabushikigaisha Taiseikaken
Priority to JP53073998A priority Critical patent/JP3345722B2/en
Publication of WO1998030351A1 publication Critical patent/WO1998030351A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/012Soldering with the use of hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/03Soldering irons; Bits electrically heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/03Soldering irons; Bits electrically heated
    • B23K3/0338Constructional features of electric soldering irons
    • B23K3/0353Heating elements or heating element housings

Definitions

  • the present invention relates to a soldering method and a soldering iron, for example, which enable high-quality soldering of electronic components.
  • soldering iron For this type of soldering iron, a method is widely used in which the tip chip heated by heating or the like is brought into contact with the land of the electronic board to melt the solder, and the tip chip is separated to solidify the solder. .
  • the tip is brought into contact with the soldering part, so that the tip is subjected to thermal stress due to the heat cycle, and tin diffusion and erosion due to flux occur.
  • the life of the tip was short, and it was necessary to replace it about 40,000 to 50,000 times in order to secure soldering accuracy.
  • leakage current, noise, harmonics, static electricity, etc. are transmitted from the advanced chip to the electronic substrate and electronic components, and there is a concern that the electrical characteristics of the product may be degraded. I was
  • An object of the present invention is to provide a soldering method that can eliminate the need for replacement of a tip chip and that can perform high-quality soldering of electronic components and the like in view of such problems.
  • the non-contact soldering method uses a soldering iron, and melts and softens the solder from the tip of the soldering iron when soldering the work by blowing a high-temperature gas flow onto the soldering portion of the work. And a high-temperature main heating gas flow that is high enough to blow out the surroundings of the main heating gas flow.
  • the main heating gas flow is blown to the soldering portion of the preheated work while the preheating gas flow is sprayed to the soldering portion of the work to perform soldering in an atmosphere surrounded by the preheating gas flow. It is characterized by doing so.
  • the gas stream is preferably a high concentration of inert gas. This is because an inert gas such as nitrogen gas is preferable in consideration of the effect of O 2 in air on soldering quality.
  • the heating element only needs to generate heat, and a nichrome wire heater, a ceramic heater, a high-frequency heater, a medium-frequency heater, a low-frequency heater, an infrared heater, a plasma heating element, an ultrasonic heating element, an elema heating element, or the like can be used. .
  • One of the features of the present invention is that a high-temperature internal / external dual gas flow is formed, preheated by an external gas flow, and soldered by an internal gas flow in an atmosphere surrounded by an external gas flow. It is in.
  • the heat of the gas flow inside does not scatter to the surroundings, soldering can be performed in a short time in a non-contact manner, and the effects of leakage current, noise, and harmonics on products can be eliminated.
  • static electricity the friction of the gas flow, especially when the gas flow is ejected at high speed, charges the gas flow, and there is still concern about the electrical effects on the product.
  • the main ejection pressure of the heating gas flow and the preheating gas stream charged gas flow range such that the extent that no fear of electrical influence, specifically of 0. l ⁇ 2 kgf / cm 2 ⁇ G
  • the pressure is preferably set.
  • soldering should be performed in an atmosphere where the adhered molten solder can be slowly cooled with moderate temperature characteristics, and immediately cooled immediately before the start of solidification in an atmosphere below room temperature. Is essential.
  • the gas flow is made into an inner / outer double, preheated by the outer preheating gas flow, soldered by the inner main heating gas flow, and then slowly cooled to just before the start of solidification by the outer preheating gas flow to room temperature.
  • the temperature of the main heating gas flow is 100 to 100 ° C., preferably 250 to 600 ° C., and the temperature of the preheating gas flow is It is preferable to jet the gas at a lower temperature than the high-temperature gas flow, for example, at a flow rate of 100 to 20 (TC, 0.5 to 2 liters / minute).
  • Rapid cooling immediately before the start of solidification of the molten solder may be performed by exposing it to the atmosphere.However, the molten solder releases latent heat upon solidification, and simultaneously dissolves 0 2 , H 2 , CO, etc. in the atmosphere. Oxidation of the solder immediately before solidification causes oxidation and porosity, and is the largest factor in the generation of bridges, knuckles, and smears. Therefore, the ambient may be a low-temperature nitrogen gas atmosphere at room temperature or lower.
  • the low-temperature nitrogen gas atmosphere is set to room temperature, specifically, a temperature of 25 ° C. or lower, but it is preferable to secure a quenching effect. For example, it may be set to a temperature of from 120 ° C.
  • the non-contact type soldering iron according to the present invention is a non-contact type soldering iron for performing soldering by blowing a high-temperature gas flow to a soldering portion of a work.
  • a main heating gas flow generation chamber is formed in communication with the first nozzle, and a preheating gas flow generation chamber is formed around the main heating gas flow generation chamber.
  • a chamber is formed in communication with the two nozzles, and the iron body is provided with a gas supply passage for supplying gas to the main heating gas flow generation chamber and the preheating gas flow generation chamber.
  • the heating generates a high-temperature main heating gas flow high enough to melt-soften the solder and is ejected from the first nozzle, and heating by convection heat and / or radiant heat from the main heating gas flow generation chamber or a heating element.
  • a preheating gas flow having a lower temperature than the main heating gas flow and a temperature sufficient to preheat the solder is generated, and is ejected from the second nozzle around the main heating gas flow. It is characterized by.
  • the main heating gas flow generation chamber 1 is preferably formed around the heating element from the viewpoint of manufacturing simplicity, but may be formed inside the heating element.
  • the shape of the nozzle is not particularly limited, but it is preferable to use, for example, a diverge nozzle, since it is better to jet the gas stream at a higher speed.
  • the preheating gas flow may be ejected straight around the main heating gas flow, but a spiral fin and a spiral groove are formed on the inner surface of the preheating gas flow generation chamber 1 so that the preheating gas flow is formed in a spiral shape.
  • the positional relationship between the tips of the first and second nozzles may be such that the tip of the second nozzle projects beyond the tip of the first nozzle, or the positional relationship may be reversed.
  • the latter is preferable when the element of the work is small, especially when the element has an ultra fine pitch, for example, when soldering electronic components.
  • the main body of the trowel is grounded, and a negative charge is electrostatically induced inside the main heating gas flow generation chamber and the preheating gas flow generation chamber to remove the positive charges of the main heating gas flow and the preheating gas flow. It is better to be able to do it.
  • the soldering portion of the work is preheated by the preheating gas flow, even if the tip is brought into contact with the soldering portion, the temperature drop of the tip is small and the tip is preheated. As a result of being heated by the gas flow and quickly raising the temperature, Thermal stress of the chip can be reduced.
  • the temperature of the tip of the soldering iron is lower than that of the above-mentioned tip and sufficient for preheating the solder.
  • the preheated gas flow is blown around the above-mentioned tip, and the preheated gas flow is sprayed onto the soldering part of the work to preheat the work. Then, the soldering part of the preheated work is made into the preheated gas flow by the tip.
  • a contact type soldering method characterized in that the soldering is performed in an enclosed atmosphere.
  • the preheated gas flow reduces the heat cycle of the tip and quickly returns the temperature-reduced tip to a predetermined temperature. It is preferable to use a high temperature, but there is a concern about the thermal effect on the work and elements (for example, electronic elements) near the soldering site. Therefore, a low-temperature gas flow, which is lower than the preheating gas flow, is sprayed around the preheating gas flow from the tip of the soldering iron. May be protected from the heat of the preheated gas stream with a low temperature gas stream. Further, according to the present invention, it is possible to provide a soldering iron used in the above-mentioned contact-type soldering method.
  • the tip of the tip is placed around the heating element.
  • a preheating gas flow generation chamber is formed to open to the surroundings, and the heat generated by the heating element also generates a preheating gas flow at a low temperature and at a temperature sufficient to preheat the solder. It is possible to provide a contact-type soldering iron characterized in that it is ejected to the surroundings.
  • a low-temperature gas flow generation chamber 1 is formed around the preheating gas flow generation chamber and its front end is opened around the front end opening of the preheating gas flow, and the convection heat from the preheating gas flow generation chamber 1 is formed.
  • a structure may be adopted in which a low-temperature gas flow lower than the preheating gas flow is generated by heating with z or radiant heat and is ejected around the preheating gas flow.
  • the inert gas purging apparatus has a shape of a soldering iron as a whole, has a built-in heating element, and a heating element is attached to a tip portion of the heating element. While the heating element can be heated, a preheating gas flow generation chamber is formed around the heating element by opening its front end side around the front end of the heat holding element, and the preheating gas flow generation chamber is formed. High-temperature gas flow is generated by the radiant heat and is ejected forward.
  • FIG. 1 is a sectional view showing a principal part of a first embodiment of a soldering iron according to the present invention.
  • FIG. 2 is a sectional view taken along the line II.
  • FIG. 3 is a view for explaining a soldering method using the above-mentioned soldering iron.
  • FIG. 4 is a sectional view showing a first modified example of the soldering iron.
  • FIG. 5 is a sectional view showing a second modification of the above-mentioned soldering iron.
  • FIG. 6 is a sectional view showing a principal part of a second embodiment of the soldering iron according to the present invention.
  • FIG. 7 is a sectional view showing a principal part of a third embodiment of the soldering iron according to the present invention.
  • FIG. 1 is a sectional view showing a principal part of a first embodiment of a soldering iron according to the present invention.
  • FIG. 2 is a sectional view taken along the line II.
  • FIG. 3
  • FIG. 8 is a perspective view showing the holder 35 in the soldering iron of FIG.
  • FIG. 9 is a configuration diagram showing a conventional non-contact soldering iron.
  • FIG. 10 is a view showing a preferred embodiment of the inert gas purge apparatus according to the present invention.
  • FIG. 1 and 2 show a preferred embodiment of a non-contact soldering iron according to the present invention.
  • the rear end of the iron body 11 is attached to the tip of the iron base 10 by means of a screw or the like, and the iron body 11 is connected to the inner and outer double stainless steel cylinders 12 and 13.
  • the inner stainless steel tube 13 is supported by a spacer piece (not shown) on the inner surface of the outer stainless steel tube 12 including a central rod-shaped alumina ceramic heater (heating element) 14.
  • the heater 14 is supported on the inner surface of the inner stainless steel tube 13 by a metal cover 15, and a plate-shaped spacer 16 is formed at the rear end of the cover 15.
  • Main heating gas flow generation chamber 17 that generates a main heating gas flow high enough to melt and soften the solder by heating the heater between heater 5 and inner stainless steel cylinder 13, inner and outer stainless steel cylinders 12, 1 Between 3 is a preheating gas flow generation chamber 18 that generates a preheating gas flow at a temperature lower than the main heating gas flow and at a temperature sufficient to preheat the solder by heating by convection heat and / or radiant heat. .
  • a first nozzle 19 made of molybdenum is fitted to the tip of the inner stainless steel cylinder 13 with a force, and the first nozzle 19 is protruded from an insertion hole of the tip wall of the outer stainless steel cylinder 12, A second nozzle 20 that covers the entire outer periphery of the first nozzle 19 is externally fitted to the tip of the outer stainless steel cylinder 12.
  • the iron base 10 has a hollow shape and the inside is a gas supply passage 21.
  • a first gas flow port 22 is provided at the rear end of the iron body 11 with a cover 15.
  • a second gas flow port 23 is formed in the plate-shaped sensor part 16 of the second heat pump, and a third gas flow port 24 is formed at the tip of the cover 15 to form the main heating gas flow generation chamber 1 1.
  • the main heating gas flow generated in 7 is guided toward the first nozzle 19.
  • the gas supply passage 21 may be constituted by a hose or the like supported outside the iron base 10.
  • a fourth gas flow port 25 is formed in the inner stainless steel cylinder 13 behind the cover 15, and a fifth gas flow port 26 is formed at the tip of the outer stainless steel cylinder 12, and a preheat gas flow is generated.
  • the preheated gas stream generated in the chamber 18 is guided toward the second nozzle 20.
  • a sensor 17 for detecting the temperature of the main heating gas flow 30 and performing control is mounted, and although not shown, a stainless steel cylinder 1 2 And 13 are connected to ground.
  • the heater 14 is energized, and nitrogen gas is supplied to the gas supply passage 21 in the base 10.
  • This nitrogen gas has a predetermined temperature, for example, 4 It may be preheated to 0-50 ° C.
  • the nitrogen gas is guided to the main heating gas flow generation chamber 17 via the gas flow ports 22 and 23, and is heated to 250 to 600 ° C. by the heating heater 14 to be heated to the main heating gas.
  • a stream 30 is generated, and the main heated gas stream 30 is ejected from the first nozzle 19 via the gas flow port 24.
  • the ejection amount of the main heating gas stream 30 is set to 0.5 to 2.0 liters, and the ejection pressure is set to 0.1 to 2.0 kgf / cm 2 ⁇ G.
  • the preheated gas stream 31 is generated by being heated to 100 to 200 ° C by the radiant heat of the second nozzle 20 through the gas flow port 26 and flows around the main heated gas stream 30. Spouted over.
  • the ejection volume of the preheated gas stream 31 is set to 0.5 to 2.0 liters Z, and the ejection pressure is set to 0.1 to 2.0 kgf / cm 2 ⁇ G.
  • a preheating gas flow 31 is blown onto the soldering portion W of the substrate to preheat the soldering portion W, and then the main heating gas flow 30 is blown.
  • 0 is sprayed onto the soldering site W with its surroundings covered by the preheating gas flow 31 as shown in Fig. 3, and it does not scatter around as it is in the past, so the solder melts immediately .
  • the molten solder is slowly cooled by a preheating gas stream 31 until just before the start of solidification, and then rapidly cooled by being exposed to the atmosphere.
  • the non-contact soldering iron of the present example required 1 second. It was confirmed that the soldering could be completed in a certain degree. Therefore, the non-contact type soldering of the present embodiment can be practically adopted instead of the conventional soldering port bot / soldering in the automatic soldering machine.
  • the molten solder when the heat of the molten solder is rapidly absorbed into the surroundings, the molten solder is rapidly cooled as a whole, and fine quenched crystals, fine columnar crystals, and fine free crystals are formed. Grain boundaries containing impurities and gases are likely to be generated parallel to the columns, and free crystals are flux Gas and impurity gas are easy to contain.
  • the main heating gas flow 30 and the preheating gas flow 31 of appropriate pressure are blown to the molten solder, the solder and flux do not flow out of the soldering portion W, and the molten solder is applied. Pressurizes and releases gas, eliminating bubbles and gas holes.
  • the dendrite can be filled with the molten solder by the pressurization due to the pressurization, thereby preventing microporosity and macroporosity (porosity), resulting in a dense crystal structure.
  • the whole of the molten solder is rapidly cooled, so that the distance between the liquidus and solidus of the molten solder is substantially reduced, and a pressurizing effect is exerted, and macro-segregation (Pb, Sn, etc.)
  • the dendritic crystals, layered structure, nucleated structure, etc., of the birefringence are reduced, and a solidified solder having a fine crystal structure with few impurities and gas can be obtained.
  • the main heating gas flow generation chamber — 17 and the preheating gas flow generation chamber -electrostatically induce negative charges inside the chamber 18 to generate the main heating gas flow 30 and preheating gas
  • the positive charge of the flow 31 can be removed, so that the possibility of electrostatic breakdown at the soldering site W can be reliably eliminated.
  • FIG. 4 shows a first modification of the above embodiment.
  • the tip of the second nozzle 20 protrudes forward from the tip of the first nozzle 19, and the inner stainless steel tube 13 is made of beryllium copper, chromium copper, or another alloy having good heat conductivity.
  • the inner alloy tube 13 and the first nozzle 19 are formed integrally with the inner alloy tube 13, and the second nozzle 20 and the outer stainless steel tube 12 are formed integrally.
  • the first nozzle 19 employs a divergent nozzle structure whose inner surface expands in an arc shape in cross section.
  • the inner diameter of the tip of the first nozzle 19 is set to 0.1 to 0.5 mm
  • the inner diameter of the second nozzle 20 is set to 0.5 to 4.0 mm
  • a flat surface 20a of l to 2 mm is formed on the inner surface of the tip portion of the nozzle 20 to stabilize the preheating gas flow.
  • a divergent nozzle is used for the first nozzle 19, so that a high-speed main heating gas flow can be obtained by the structure, and the tip of the second nozzle 20 is Because it is more protruding than that of the first nozzle 19, the preheating gas flow and the high-speed main heating gas flow accelerate each other, and the higher-speed main heating gas flow and the higher-speed preheating gas flow can get.
  • the tip of the first and second nozzles 19 and 20 and the work soldering site Thermal decay of the main heating gas flow and the preheating gas flow until reaching the work soldering site is small, and the consumption of nitrogen gas (or air) can be suppressed.
  • FIG. 5 shows a second modification.
  • a hollow ceramic heater is used as the heater 14, and a main heating gas flow generation chamber 17 is formed inside the heater 14.
  • a coil-shaped material 17a made of a molybdenum-based alloy or a tungsten-based alloy is housed in the heater 14 to impart a swirl to the main heating gas flow to reduce heat unevenness of the main heating gas flow.
  • a spiral fin or a spiral groove is formed on at least one of the second nozzle 20 and / or the outer surface of the outer cylinder 12 and / or the first nozzle 19 and / or the outer surface of the inner cylinder 13 to impart a swirl to the preheating gas flow. You may do so.
  • FIG. 6 shows a second embodiment of the present invention.
  • the soldering iron main body 30 and the grip part (iron base) 31 and the force, and the iron body 30 are heated over night (for example, a round bar-shaped alumina nitride heater).
  • 3 2 is built in, the tip of the heater 3 2 is inserted into the hole of the tip holder 1 3 3, the tip 3 4 is fixed to the tip of the tip holder 3 3, and the heat generated by the heater 3 2 is the tip 3 The tip 4 is transmitted to the tip 4 and is heated.
  • the rear end of the heater 32 is inserted and held in the center hole of a holder 35 built in the tip of the grip portion 30, and a temperature sensor (not shown) is attached to the heater 32. Have been.
  • An auxiliary heater for adjusting the temperature of the preheating gas flow may be installed.
  • a plurality of nitrogen gas supply holes are formed in an annular shape in the holder 135, and a tip of a nitrogen gas supply pipe 36 passed through the grip portion 30 is connected to the holder 35, and a heater 3 is provided.
  • a power line 32 a extends rearward in the nitrogen gas supply pipe 36 from the rear end of 2.
  • a first protective cover 37 is fixed to the end of the grip portion 30.
  • the first protective cover 37 covers the periphery of the heater 32 and a predetermined space between the chip holder 33 and the heater.
  • a gap for example, a gap of l mm extends to the distal end side, and the distal end is opened around the distal end tip 34, thus forming a preheating gas flow generation chamber 38. It is preferable that the tip of the first protective cover 37 is extended to as close to the tip chip 34 as possible, so that it does not touch the work at the time of soldering.
  • the heater 32 is energized to heat the tip chip 34 to 280 ° C to 380 ° C, while the soldering iron 32 is heated.
  • the nitrogen gas supply pipe 36 is supplied with nitrogen gas having a pressure of 1.0 to 5.0 kg / cm 2 , a flow rate of 4 liter / min, and a purity of 99 to 99.9%.
  • the supply of nitrogen gas may be continuous supply or intermittent supply.
  • the nitrogen gas passing through the preheating gas flow generation chamber 1 38 is heated to 200 ° C. to 25.0 ° C. by the radiant heat of the tip 34 due to the heat generated by the heater 32, and the volume increases. And released as it is.
  • the flow rate and pressure of the nitrogen gas can be adjusted by setting the inner diameter and number of the nitrogen gas supply holes of the holder 35. It is also possible with an external pressure regulator or flow regulator.
  • a preheating gas flow is blown to the soldering part of the board for 2 to 5 seconds to preheat the soldering part (preheating), thereby activating a low residue flux at the soldering part.
  • the tip 34 may be brought into contact with the soldering portion at the same time as the preheating gas flow is sprayed. In the case under ⁇ 2 concentration 5 ppm or less can be fluxless soldering.
  • the tip 34 is brought into contact with the soldering area and heated to supply the low-residue flux-containing threaded solder, and the soldering area is heated in a preheated gas flow atmosphere. To form a pile of molten solder.
  • the tip 34 is separated from the soldering site, and the molten solder is exposed to the atmosphere of the preheated gas flow, while rapidly cooling by blowing nitrogen gas at room temperature from the back surface of the substrate.
  • the whole of the molten solder is rapidly cooled, so that the distance between the liquidus and solidus of the molten solder is substantially reduced, and a pressurizing effect is exerted, and macro-segregation (Pb, Sn, etc.)
  • the dendritic crystals, layered structure, nucleated structure, etc., of the birefringence are reduced, and a solidified solder having a fine crystal structure with few impurities and gas can be obtained.
  • solder flux is preheated to activate the flux and to prevent the flux / solder ball from scattering, so that a smooth and good soldering operation can be performed.
  • Preheating the electronic board before contacting the board mitigating local and rapid temperature rise (heat shock) of the electronic board and preventing thermal destruction of electronic components, as well as flux, electronic board and supplied solder
  • the wire can also be preheated, so that the hot brittleness of the solder layer can be prevented.
  • the solder and flux can be preheated with high-temperature nitrogen gas, the amount of heat stored in the tip of the soldering iron is small, and even if the tip of the chip is extremely fine, sufficient amount of heat can be used for soldering, resulting in low-temperature soldering. Can be achieved. Further, since the soldering iron chip is in a non-oxidizing atmosphere, the chip is prevented from being oxidized, the wettability of the molten solder can be improved, and the chip cleaning is almost unnecessary, so that the chip life can be greatly improved.
  • FIG. 7 shows a third embodiment of the present invention.
  • a second protective cover 39 is fixed to the end of the grip portion 30 outside the first protective cover 37, and the first protective bar 39 is a first protective cover 37.
  • a predetermined gap for example, a gap of 2 mm.
  • a low-temperature gas flow generation chamber 140 is thus configured.
  • a nitrogen gas supply hole is formed in the holder 135 in a double annular shape so that nitrogen gas is also supplied to the low-temperature gas flow generation chamber 140.
  • soldering is performed in substantially the same manner as in the above-described second embodiment.
  • the substrate and electronic components around the soldering site are removed from the low-temperature gas flow generation chamber. Since the substrate is exposed to a low temperature generated at 0, for example, a nitrogen gas atmosphere at room temperature, the surrounding substrates and electronic components can be prevented from being affected by heat.
  • FIG. 10 shows a preferred embodiment of an inert gas purging apparatus to which the concept of the present invention is applied.
  • the inert gas purging apparatus includes a main body 30 and a grip 31.
  • the main body 30 incorporates a heater (eg, a round bar-shaped alumina nitride heater) 32, and the tip of the heater 32 is Heat retaining member made of copper alloy with good thermal conductivity (heat retaining member) 33 Inserted into the hole of 33, heat generated by heater 32 is transmitted to heat retaining member 33, and heat retaining member 33 is heated. It is supposed to be.
  • a heater eg, a round bar-shaped alumina nitride heater
  • the rear end of the heater 32 is inserted and held in the center hole of a holder 35 built in the tip of the grip portion 30, and a temperature sensor 39 is attached to the heater 32.
  • a temperature sensor 39 is attached to the heater 32.
  • a plurality of nitrogen gas supply holes are formed in an annular shape in the holder 135, and a tip of a nitrogen gas supply pipe 36 passed through the grip portion 30 is connected to the holder 35, and a heater 3 is provided.
  • a power line 32 a extends rearward in the nitrogen gas supply pipe 36 from the rear end of 2.
  • a first protective cover 37 is fixed to the tip of the grip portion 30.
  • the first protective cover 37 covers the heater 32 and a space between the first protective cover 37 and the heat retaining member 33.
  • a predetermined gap for example, a gap of l mm is extended to the front end side, and the front end is opened to surround the front end of the heat retaining member 33, thereby forming a high temperature gas flow generation chamber 38.
  • the inert gas purging apparatus of this example is used to spray high-temperature inert gas to the soldering area when soldering with a soldering robot or an automatic soldering machine to protect the soldering area from air and preheat it.
  • the inner and outer dual gas flows ejected from the tip of the soldering iron are preheated by the outer preheating gas flow, and then the inner preheating gas is surrounded by the outer preheating gas flow. Since the soldering is performed with the main heating gas flow, the heat of the main heating gas flow blown to the work soldering part does not scatter around and is efficiently transmitted to the work soldering part. Soldering can be performed in a short time without contact, that is, without using a tip.
  • the molten solder since the soldering can be performed in an atmosphere in which the molten solder is slowly cooled, the molten solder has a substantially hemispherical shape which is a preferable bulging state due to its surface tension. Also, immediately before the start of solidification of the molten solder, it is rapidly cooled in an atmosphere at room temperature or lower, and it is possible to give the molten solder directional solidification in which the distance between its liquidus and solidus is substantially reduced. This allows the solder to have a finely solidified structure.
  • soldering can be performed.
  • a preheating gas flow is injected around the tip tip, a low-temperature gas flow is injected as necessary around the tip, and the soldering portion is preheated with the preheating gas flow. Since the tip is used for soldering, there is little change in temperature of the tip due to contact with the soldering area, and the tip is heated by the preheating gas flow, resulting in almost all thermal stress on the tip Without this, the life of the tip can be greatly improved.

Abstract

When a soldering iron is used to subject a work to soldering while blowing a high temperature gas flow against that portion of the work, which is to be soldered, a tip end of the soldering iron jets a main heating gas flow of a sufficiently high temperature to melt and soften solder, a preheating gas flow of a temperature, which is lower than that of the main heating gas flow but sufficiently high to preheat the solder, is jetted surrounding the main heating gas flow, the preheating gas flow is blown against that portion of the work, which is to be soldered, to preheat the portion, and then the main heating gas flow is blown against that portion of the work, which is to be soldered and has been preheated, to effect soldering in an atmosphere surrounded by the preheating gas flow.

Description

一 i一  One i one
明糸 IH書  Akeito IH
半田付け方法及び半田ごて  Soldering method and soldering iron
技術分野  Technical field
この発明は、 例えば電子部品の半田付けを高品質で行なえるようにした半田付 け方法及び半田ごてに関する。  The present invention relates to a soldering method and a soldering iron, for example, which enable high-quality soldering of electronic components.
背景技術  Background art
例えば、 電子機器を組立てる場合、 半田ごてを用いて電子基板に各種電子部品 や を半田付けすることが多い。  For example, when assembling an electronic device, various electronic components are often soldered to an electronic substrate using a soldering iron.
この種の半田ごてではヒ一夕等で加熱した先端チップを電子基板のランドゃヮ —クに接触させて半田を溶融させ、 先端チップを離して半田を凝固させる方式が 広く採用されている。  For this type of soldering iron, a method is widely used in which the tip chip heated by heating or the like is brought into contact with the land of the electronic board to melt the solder, and the tip chip is separated to solidify the solder. .
他方、 図 9に示すように、 半田ごて 1 0 0内にエアー通路を形成すとともに、 加熱ヒータ 1 0 1を内蔵し、 先端にステンレス鋼や真鍮製のノズル 1 0 2を取付 け、 高温エア一を吹き付けて半田付けするようにした非接触式の半田ごても提案 されている。  On the other hand, as shown in Fig. 9, an air passage was formed in the soldering iron 100, a heater 101 was built in, and a stainless steel or brass nozzle 102 was attached to the tip, and the A non-contact type soldering iron which is soldered by blowing air has also been proposed.
し力、し、 従来の接触式の半田付け方法では、 先端チップを半田付け部位に接触 させる関係上、 先端チップにヒートサイクルによる熱ストレスが作用するととも に、 錫の拡散及びフラックスによる浸蝕が発生して先端チップの寿命が短く、 半 田付けの精度を確保するためには 4〜 5万回程度で交換する必要があった。 また 、 先端チップが電子基板や電子部品に直接接触するので、 先端チップから電子基 板や電子部品に洩れ電流、 ノイズ、 高調波、 静電気等が伝わり、 製品の電気特性 が劣化することが懸念されていた。  In the conventional contact-type soldering method, the tip is brought into contact with the soldering part, so that the tip is subjected to thermal stress due to the heat cycle, and tin diffusion and erosion due to flux occur. As a result, the life of the tip was short, and it was necessary to replace it about 40,000 to 50,000 times in order to secure soldering accuracy. Also, since the advanced chip comes into direct contact with the electronic substrate and electronic components, leakage current, noise, harmonics, static electricity, etc. are transmitted from the advanced chip to the electronic substrate and electronic components, and there is a concern that the electrical characteristics of the product may be degraded. I was
他方、 従来の非接触式の半田ごてでは、 上述のような問題は生じないものの、 高温エアーがワークに当たった後、 周囲に飛散してしまレ、、 熱を必要な箇所にス ポット的に集中させることができず、 半田付けに 4〜5秒もかかってしまって実 用的でなく、 半田付けされた電子部品の取外し (リワーク) に利用されているの が実情である。 発明の開示 On the other hand, with the conventional non-contact type soldering iron, although the above-mentioned problems do not occur, high-temperature air hits the work and then scatters around, causing spots where heat is needed. It is not practical because it takes 4 to 5 seconds to solder, and it is used for removing (reworking) soldered electronic components. Disclosure of the invention
この発明は、 かかる問題点に鑑み、 先端チップの交換を不要とでき、 しかも電 子部品等の半田付けを高品質で行なえるようにした半田付け方法を提供すること を課題とする。  An object of the present invention is to provide a soldering method that can eliminate the need for replacement of a tip chip and that can perform high-quality soldering of electronic components and the like in view of such problems.
そこで、 本発明に係る非接触による半田付け方法は、 半田ごてを用い、 ワーク の半田付け部位に高温気体流を吹き付けてワークを半田付けするにあたり、 半田 ごての先端から半田を溶融軟化させるのに十分な高温の主加熱気体流を噴出させ るとともに、 上記主加熱気体流よりも低温でかつ半田を予熱するのに十分な温度 の予熱気体流を上記主加熱気体流を囲んで噴出させ、 上記予熱気体流をワークの 半田付け部位に吹き付けて予熱しながら、 上記主加熱気体流を予熱したワークの 半田付け部位に吹き付け、 上記予熱気体流で囲まれた雰囲気中で半田付けを行な うようにしたことを特徴とする。  Therefore, the non-contact soldering method according to the present invention uses a soldering iron, and melts and softens the solder from the tip of the soldering iron when soldering the work by blowing a high-temperature gas flow onto the soldering portion of the work. And a high-temperature main heating gas flow that is high enough to blow out the surroundings of the main heating gas flow. The main heating gas flow is blown to the soldering portion of the preheated work while the preheating gas flow is sprayed to the soldering portion of the work to perform soldering in an atmosphere surrounded by the preheating gas flow. It is characterized by doing so.
気体流は高濃度の不活性ガスが好ましい。 半田付け品質に対するエアー中の 0 2 の影響を考慮すると、 窒素ガス等の不活性ガスが好ましいからである。 発熱体 は発熱するものであればよく、 ニクロム線ヒータ、 セラミックスヒータ、 高周波 ヒータ、 中周波ヒータ、 低周波ヒータ、 赤外線ヒータ、 プラズマ発熱体、 超音波 発熱体、 エレマ発熱体等を用いることができる。 The gas stream is preferably a high concentration of inert gas. This is because an inert gas such as nitrogen gas is preferable in consideration of the effect of O 2 in air on soldering quality. The heating element only needs to generate heat, and a nichrome wire heater, a ceramic heater, a high-frequency heater, a medium-frequency heater, a low-frequency heater, an infrared heater, a plasma heating element, an ultrasonic heating element, an elema heating element, or the like can be used. .
本発明の特徴の 1つは高温の内外二重の気体流を形成し、 外側の気体流で予熱 し、 外側気体流で囲んだ雰囲気中において内側の気体流で半田付けを行なうよう にした点にある。 これにより、 内側の気体流の熱が周囲に飛散してしまうことが なく、 非接触式で短時間で半田付けが行なえ、 製品に対する洩れ電流、 ノイズ、 高調波の影響を除去できる。 但し、 静電気については気体流の摩擦、 特に気体流 を高速で噴出する場合における摩擦によって気体流が帯電し、 製品に対する電気 的影響が依然として懸念されるので、 これに対処することが必要である。 そこで 、 主加熱気体流及び予熱気体流の噴出圧力を気体流の帯電が電気的影響の懸念さ れない程度となるような範囲、 具体的には 0. l〜2 k g f / c m2 · Gの圧力 とするのが好ましい。 緻密でかつ盛りのよい半田付けとする上で、 付着した溶融半田をゆるやかな温 度特性でもって緩冷却しうる雰囲気中で半田付けを行い、 凝固開始直前から室温 以下の雰囲気で急冷却するのが肝要である。 本発明では気体流を内外二重とし、 外側の予熱気体流でもって予熱し、 内側の主加熱気体流で半田付けを行なった後 、 外側の予熱気体流で凝固開始直前まで緩冷却して室温以下の雰囲気に曝して急 冷却することができる。 本発明を電子部品の半田付けに適用する場合、 主加熱気 体流の温度を 1 0 0〜1 0 0 0 °C、 好ましくは 2 5 0〜6 0 0 °C、 予熱気体流の 温度を高温気体流よりも低温、 例えば 1 0 0〜 2 0 (TCとし、 0 . 5〜 2リット ル /分の流量で噴出させるのがよい。 One of the features of the present invention is that a high-temperature internal / external dual gas flow is formed, preheated by an external gas flow, and soldered by an internal gas flow in an atmosphere surrounded by an external gas flow. It is in. As a result, the heat of the gas flow inside does not scatter to the surroundings, soldering can be performed in a short time in a non-contact manner, and the effects of leakage current, noise, and harmonics on products can be eliminated. However, with regard to static electricity, the friction of the gas flow, especially when the gas flow is ejected at high speed, charges the gas flow, and there is still concern about the electrical effects on the product. Therefore, the main ejection pressure of the heating gas flow and the preheating gas stream charged gas flow range such that the extent that no fear of electrical influence, specifically of 0. l~2 kgf / cm 2 · G The pressure is preferably set. In order to achieve a dense and well-soldered solder, soldering should be performed in an atmosphere where the adhered molten solder can be slowly cooled with moderate temperature characteristics, and immediately cooled immediately before the start of solidification in an atmosphere below room temperature. Is essential. In the present invention, the gas flow is made into an inner / outer double, preheated by the outer preheating gas flow, soldered by the inner main heating gas flow, and then slowly cooled to just before the start of solidification by the outer preheating gas flow to room temperature. Exposure to the following atmosphere allows rapid cooling. When the present invention is applied to the soldering of electronic components, the temperature of the main heating gas flow is 100 to 100 ° C., preferably 250 to 600 ° C., and the temperature of the preheating gas flow is It is preferable to jet the gas at a lower temperature than the high-temperature gas flow, for example, at a flow rate of 100 to 20 (TC, 0.5 to 2 liters / minute).
溶融半田の凝固開始直前からの急冷却は大気に曝して行ってもよいが、 溶融半 田が凝固に際して潜熱を放出し、 それと同時に大気中の 02、 H 2、 C O等を溶 解し、 酸化及び気孔発生の原因となり、 又凝固直前の半田の酸化はブリッジ、 ッ ノ、 ッララ発生の最大要因であるので、 周囲を室温以下の低温窒素ガス雰囲気と してもよい。 低温窒素ガス雰囲気は室温、 具体的には 2 5 °C以下の温度とするが 、 急冷効果を確保することが好ましい。 例えば、 一2 0 °C〜一 3 0 °Cとしてもよ レ、。 また、 ワーク表面側を低温窒素ガス雰囲気に曝すと、 溶融半田は表面側から 急冷却されるが、 ヮーク裏面側に低温窒素ガスを吹き付けてワーク裏面側からも 急冷却すると急冷効果を促進してより一層微細な急冷凝固組織が得られるので好 ましい。 Rapid cooling immediately before the start of solidification of the molten solder may be performed by exposing it to the atmosphere.However, the molten solder releases latent heat upon solidification, and simultaneously dissolves 0 2 , H 2 , CO, etc. in the atmosphere. Oxidation of the solder immediately before solidification causes oxidation and porosity, and is the largest factor in the generation of bridges, knuckles, and smears. Therefore, the ambient may be a low-temperature nitrogen gas atmosphere at room temperature or lower. The low-temperature nitrogen gas atmosphere is set to room temperature, specifically, a temperature of 25 ° C. or lower, but it is preferable to secure a quenching effect. For example, it may be set to a temperature of from 120 ° C. to 130 ° C. Also, when the work surface is exposed to a low-temperature nitrogen gas atmosphere, the molten solder is rapidly cooled from the front side. However, when the low-temperature nitrogen gas is blown on the back side of the workpiece and the work is also rapidly cooled from the back side, the rapid cooling effect is promoted. It is preferable because a finer rapidly solidified structure can be obtained.
また、 本発明によれば、 上述の非接触式の半田付け方法に使用する半田ごてを 提供することができる。  Further, according to the present invention, it is possible to provide a soldering iron used in the above-mentioned non-contact soldering method.
即ち、 本発明に係る非接触式の半田ごては、 高温の気体流をワークの半田付け 部位に吹き付けて半田付けを行なう非接触式の半田ごてにおいて、 こて本体の先 端には中央の第 1のノズルと、 該第 1のノズルの外側を覆って開放する第 2のノ ズルとが設けられる一方、 上記こて本体内には発熱体が内蔵されるとともに、 該 発熱体の周囲又は内部には主加熱気体流生成チャンバ一が上記第 1のノズルと連 通して形成され、 上記主加熱気体流生成チャンバ一の周囲には予熱気体流生成チ ャンバーが上記 2のノズルと連通して形成され、 上記こて本体には主加熱気体流 生成チヤンバー及び予熱気体流生成チャンバ一に気体を供給する気体供給通路が 設けられており、 上記発熱体の発熱によって半田を溶融軟化するのに十分な高温 の主加熱気体流が生成されて上記第 1のノズルから噴出され、 上記主加熱気体流 生成チャンバ一又は発熱体からの対流熱及び 又は輻射熱による加熱によって上 記主加熱気体流よりも低温でかつ半田を予熱するのに十分な温度の予熱気体流が 生成されて第 2のノズルから上記主加熱気体流を囲んで噴出されるようになした ことを特徴とする。 That is, the non-contact type soldering iron according to the present invention is a non-contact type soldering iron for performing soldering by blowing a high-temperature gas flow to a soldering portion of a work. A first nozzle, and a second nozzle that covers and opens the outside of the first nozzle, while a heating element is built in the iron body, and a periphery of the heating element is provided. Alternatively, a main heating gas flow generation chamber is formed in communication with the first nozzle, and a preheating gas flow generation chamber is formed around the main heating gas flow generation chamber. A chamber is formed in communication with the two nozzles, and the iron body is provided with a gas supply passage for supplying gas to the main heating gas flow generation chamber and the preheating gas flow generation chamber. The heating generates a high-temperature main heating gas flow high enough to melt-soften the solder and is ejected from the first nozzle, and heating by convection heat and / or radiant heat from the main heating gas flow generation chamber or a heating element. As a result, a preheating gas flow having a lower temperature than the main heating gas flow and a temperature sufficient to preheat the solder is generated, and is ejected from the second nozzle around the main heating gas flow. It is characterized by.
主加熱気体流生成チャンバ一は製造の簡単さの観点からは発熱体の周囲に形成 するのがよいが、 発熱体の内部に形成してもよい。 ノズルの形伏は特に限定され ないが、 気体流はより高速で噴射するのがよいことから、 例えばダイバージ工ン トノズルを使用するのが好ましい。 また、 予熱気体流は主加熱気体流を囲んで真 直に噴出させてもよいが、 予熱気体流生成チャンバ一の内面に螺旋状フィンゃ螺 旋溝を形成し、 予熱気体流を螺旋状に旋回させて予熱気体流で囲まれる空間内の エアーを吸い出し、 その状態で主加熱気体流を噴射させ、 主加熱気体流の半田付 け効率をアップさせることができる。 第 1、 第 2のノズルの先端の位置関係は第 1ノズルの先端よりも第 2ノズルの先端を突出させてもよく、 逆の位置関係にな つてもよい。 後者はワークの素子が小さい、 特に超ファインピッチの場合、 例え ば電子部品の半田付けを行う場合に好ましい。  The main heating gas flow generation chamber 1 is preferably formed around the heating element from the viewpoint of manufacturing simplicity, but may be formed inside the heating element. The shape of the nozzle is not particularly limited, but it is preferable to use, for example, a diverge nozzle, since it is better to jet the gas stream at a higher speed. The preheating gas flow may be ejected straight around the main heating gas flow, but a spiral fin and a spiral groove are formed on the inner surface of the preheating gas flow generation chamber 1 so that the preheating gas flow is formed in a spiral shape. By turning, the air in the space surrounded by the preheating gas flow is sucked out, and the main heating gas flow is jetted in that state, so that the soldering efficiency of the main heating gas flow can be improved. The positional relationship between the tips of the first and second nozzles may be such that the tip of the second nozzle projects beyond the tip of the first nozzle, or the positional relationship may be reversed. The latter is preferable when the element of the work is small, especially when the element has an ultra fine pitch, for example, when soldering electronic components.
ところで、 上述のように主加熱気体流体及び予熱気体流体の噴出圧力を適切に 設定しても気体流の帯電は依然として残ることがある。 そこで、 こて本体をァー スし、 主加熱気体流生成チヤンバ一及び予熱気体流生成チャンバ一の内側にマイ ナス電荷を静電誘導させて主加熱気体流及び予熱気体流のプラス電荷を除去でき るようにするのがよい。  Incidentally, even if the ejection pressure of the main heating gas fluid and the preheating gas fluid is appropriately set as described above, the charging of the gas flow may still remain. Therefore, the main body of the trowel is grounded, and a negative charge is electrostatically induced inside the main heating gas flow generation chamber and the preheating gas flow generation chamber to remove the positive charges of the main heating gas flow and the preheating gas flow. It is better to be able to do it.
また、 本発明ではワークの半田付け部位を予熱気体流で予熱しているので、 先 端チップを半田付け部位に接触させる方式であっても、 先端チップの温度低下は 小さく、 しかも先端チップが予熱気体流で加熱されて迅速に昇温する結果、 先端 チップの熱ストレスを小さくできる。 In the present invention, since the soldering portion of the work is preheated by the preheating gas flow, even if the tip is brought into contact with the soldering portion, the temperature drop of the tip is small and the tip is preheated. As a result of being heated by the gas flow and quickly raising the temperature, Thermal stress of the chip can be reduced.
即ち、 本発明によれば、 半田ごてを用いてワークの半田付け部位を半田付けす るにあたり、 半田ごての先端から上記先端チップよりも低温でかつ半田を予熱す るのに十分な温度の予熱気体流を上記先端チップを囲んで噴出させ、 該予熱気体 流をワークの半田付け部位に吹き付けて予熱した後、 該予熱したワークの半田付 け部位を上記先端チップによって上記予熱気体流で囲まれた雰囲気中で半田付け するようにしたことを特徴とする接触式の半田付け方法を提供できる。  That is, according to the present invention, when soldering a soldering portion of a work using a soldering iron, the temperature of the tip of the soldering iron is lower than that of the above-mentioned tip and sufficient for preheating the solder. The preheated gas flow is blown around the above-mentioned tip, and the preheated gas flow is sprayed onto the soldering part of the work to preheat the work. Then, the soldering part of the preheated work is made into the preheated gas flow by the tip. A contact type soldering method characterized in that the soldering is performed in an enclosed atmosphere.
この場合、 予熱気体流は先端チップのヒートサイクルを小さくしかつ温度低下 した先端チップを迅速に所定温度に復帰させる上で、 上述の内外二重の気体流を 形成する場合に比してより一層高温とするのが好ましいが、 半田付け部位近傍の ワークや素子 (例えば、 電子素子) に対する熱影響が懸念される。 そこで、 半田 ごての先端から予熱気体流の周囲を囲んで予熱気体流より低温の低温気体流を噴 射させ、 ワーク半田付け部位の予熱時及び半田付け時に半田付け部位近傍のヮー ク及び素子を低温気体流で予熱気体流の熱から保護するようにしてもよい。 また、 本発明によれば上述の接触式の半田付け方法に使用する半田ごてを提供 することができる。  In this case, the preheated gas flow reduces the heat cycle of the tip and quickly returns the temperature-reduced tip to a predetermined temperature. It is preferable to use a high temperature, but there is a concern about the thermal effect on the work and elements (for example, electronic elements) near the soldering site. Therefore, a low-temperature gas flow, which is lower than the preheating gas flow, is sprayed around the preheating gas flow from the tip of the soldering iron. May be protected from the heat of the preheated gas stream with a low temperature gas stream. Further, according to the present invention, it is possible to provide a soldering iron used in the above-mentioned contact-type soldering method.
即ち、 本発明によれば、 こて本体に内蔵された発熱体の発熱にて先端チップを 加熱可能となした半田ごてにおいて、 上記発熱体の周囲にはその先端側を先端チ ップの周囲に開放して予熱気体流生成チヤンバーが形成され、 上記発熱体の発熱 によって上記先端チップょりも低温でかつ半田を予熱するのに十分な温度の予熱 気体流が生成されて上記先端チップの周囲に噴出されるようになしたことを特徴 とする接触式の半田ごてを提供することができる。  That is, according to the present invention, in a soldering iron in which the tip can be heated by the heat generated by the heating element built in the iron body, the tip of the tip is placed around the heating element. A preheating gas flow generation chamber is formed to open to the surroundings, and the heat generated by the heating element also generates a preheating gas flow at a low temperature and at a temperature sufficient to preheat the solder. It is possible to provide a contact-type soldering iron characterized in that it is ejected to the surroundings.
この場合、 予熱気体流生成チヤンバーの周囲には低温気体流生成チャンバ一を 形成してその先端側を予熱気体流の先端開放口部の周囲に開放させ、 予熱気体流 生成チャンバ一からの対流熱及び z又は輻射熱による加熱によって予熱気体流よ りも低温の低温気体流を生成して予熱気体流の周囲に噴出させる構造を採用して もよい。 また、 上述の接触式の半田ごての構造を利用すれば、 半田付ロボットゃ自動半 田付機において半田付けする際に、 その半田付け部位に高温の窒素ガス等、 高温 不活性ガスを吹き付け、 半田付け部位を大気から保護するとともに予熱するのに 適した不活性ガスパージ器具を提供することができる。 In this case, a low-temperature gas flow generation chamber 1 is formed around the preheating gas flow generation chamber and its front end is opened around the front end opening of the preheating gas flow, and the convection heat from the preheating gas flow generation chamber 1 is formed. Alternatively, a structure may be adopted in which a low-temperature gas flow lower than the preheating gas flow is generated by heating with z or radiant heat and is ejected around the preheating gas flow. Also, if the above-mentioned contact-type soldering iron structure is used, when soldering with a soldering robot or an automatic soldering machine, a high-temperature inert gas such as a high-temperature nitrogen gas is blown to the soldering portion, It is possible to provide an inert gas purging device suitable for protecting the soldering portion from the atmosphere and preheating.
即ち、 本発明に係る不活性ガスパージ器具は、 全体として半田ごて形状をなし 、 発熱体を内蔵し、 該発熱体の先端部に保熱体が取付けられて上記発熱体の発熱 にて上記保熱体を加熱可能となす一方、 上記発熱体の周囲にはその先端側を上記 保熱体の先端周囲に開放して予熱気体流生成チャンバ一が形成され、 上記発熱体 及び保熱体からの輻射熱によつて高温気体流が生成されて前方に噴出されるよう になしたことを特徴とする。  That is, the inert gas purging apparatus according to the present invention has a shape of a soldering iron as a whole, has a built-in heating element, and a heating element is attached to a tip portion of the heating element. While the heating element can be heated, a preheating gas flow generation chamber is formed around the heating element by opening its front end side around the front end of the heat holding element, and the preheating gas flow generation chamber is formed. High-temperature gas flow is generated by the radiant heat and is ejected forward.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明に係る半田ごての第 1の実施形態を示す要部断面構成図である 。 第 2図はその I— I線断面図である。 第 3図は上記半田ごてを用いた半田付け 方法を説明するための図である。 第 4図は上記半田ごての第 1の変形例を示す断 面図である。 第 5図は上記半田ごての第 2の変形例を示す断面図である。 第 6図 は本発明に係る半田ごての第 2の実施形態を示す要部断面構成図である。 第 7図 は本発明に係る半田ごての第 3の実施形態を示す要部断面構成図である。 第 8図 は第 7図の半田ごてにおけるホルダー 3 5を示す斜視図である。 第 9図は従来の 非接触式の半田ごてを示す構成図である。 第 1 0図は本発明に係る不活性ガスパ ージ器具の好ましい実施形態を示す図である。  FIG. 1 is a sectional view showing a principal part of a first embodiment of a soldering iron according to the present invention. FIG. 2 is a sectional view taken along the line II. FIG. 3 is a view for explaining a soldering method using the above-mentioned soldering iron. FIG. 4 is a sectional view showing a first modified example of the soldering iron. FIG. 5 is a sectional view showing a second modification of the above-mentioned soldering iron. FIG. 6 is a sectional view showing a principal part of a second embodiment of the soldering iron according to the present invention. FIG. 7 is a sectional view showing a principal part of a third embodiment of the soldering iron according to the present invention. FIG. 8 is a perspective view showing the holder 35 in the soldering iron of FIG. FIG. 9 is a configuration diagram showing a conventional non-contact soldering iron. FIG. 10 is a view showing a preferred embodiment of the inert gas purge apparatus according to the present invention.
好ましい実施形態の説明  Description of the preferred embodiment
以下、 本発明を図面に示す具体例に基づいて詳細に説明する。 図 1及び図 2は 本発明に係る非接触による半田ごての好ましい実施形態を示す。 こて基部 1 0の 先端にはこて本体 1 1の後端部が螺合ゃビス止め等の方法によって取付けられ、 該こて本体 1 1は内外二重のステンレス筒 1 2、 1 3と中央の棒状アルミナセラ ミック製の加熱ヒータ (発熱体) 1 4とを含み、 内側ステンレス筒 1 3は外側ス テンレス筒 1 2の内面にスぺーサ片 (図示せず) によって支持されている。 上記加熱ヒータ 1 4は金属製のカバー 1 5によって内側ステンレス筒 1 3内面 に支持され、 上記カバー 1 5の後端には板状スぺ一サ部 1 6が形成されており、 上記カバー 1 5と内側ステンレス筒 1 3との間はヒータ加熱によって半田を溶融 軟化するのに十分な高温の主加熱気体流を生成する主加熱気体流生成チヤンバー 1 7、 内外のステンレス筒体 1 2、 1 3の間は対流熱及び 又は輻射熱による加 熱によって主加熱気体流よりも低温でかつ半田を予熱するのに十分な温度の予熱 気体流を生成する予熱気体流生成チャンバ一 1 8となっている。 Hereinafter, the present invention will be described in detail based on specific examples shown in the drawings. 1 and 2 show a preferred embodiment of a non-contact soldering iron according to the present invention. The rear end of the iron body 11 is attached to the tip of the iron base 10 by means of a screw or the like, and the iron body 11 is connected to the inner and outer double stainless steel cylinders 12 and 13. The inner stainless steel tube 13 is supported by a spacer piece (not shown) on the inner surface of the outer stainless steel tube 12 including a central rod-shaped alumina ceramic heater (heating element) 14. The heater 14 is supported on the inner surface of the inner stainless steel tube 13 by a metal cover 15, and a plate-shaped spacer 16 is formed at the rear end of the cover 15. Main heating gas flow generation chamber 17 that generates a main heating gas flow high enough to melt and soften the solder by heating the heater between heater 5 and inner stainless steel cylinder 13, inner and outer stainless steel cylinders 12, 1 Between 3 is a preheating gas flow generation chamber 18 that generates a preheating gas flow at a temperature lower than the main heating gas flow and at a temperature sufficient to preheat the solder by heating by convection heat and / or radiant heat. .
また、 内側のステンレス筒 1 3の先端にはモリブデン製の第 1のノズル 1 9力 嵌合され、 該第 1のノズル 1 9は外側ステンレス筒 1 2の先端壁の挿通穴から突 設され、 外側ステンレス筒 1 2の先端には第 1のノズル 1 9の外側全周を覆う第 2のノズル 2 0が外嵌されている。  Also, a first nozzle 19 made of molybdenum is fitted to the tip of the inner stainless steel cylinder 13 with a force, and the first nozzle 19 is protruded from an insertion hole of the tip wall of the outer stainless steel cylinder 12, A second nozzle 20 that covers the entire outer periphery of the first nozzle 19 is externally fitted to the tip of the outer stainless steel cylinder 12.
また、 こて基部 1 0は中空状をなして内部が気体供給通路 2 1となっており、 こて本体 1 1の後端部には第 1の気体流通口 2 2が、 カバ一 1 5の板状スぺ一サ 部 1 6には第 2の気体流通口 2 3力 さらにカバー 1 5の先端部には第 3の気体 流通口 2 4が形成されて主加熱気体流生成チャンバ一 1 7で生成された主加熱気 体流が第 1のノズル 1 9に向けて案内されるようになっている。 なお、 気体供給 通路 2 1はこて基部 1 0の外側に支持したホース等で構成することもできる。 さらに、 カバー 1 5より後方の内側ステンレス筒 1 3には第 4の気体流通口 2 5が、 外側ステンレス筒 1 2の先端には第 5の気体流通口 2 6が形成され、 予熱 気体流生成チャンバ一 1 8で生成された予熱気体流が第 2のノズル 2 0に向けて 案内されるようになっている。  Further, the iron base 10 has a hollow shape and the inside is a gas supply passage 21. A first gas flow port 22 is provided at the rear end of the iron body 11 with a cover 15. A second gas flow port 23 is formed in the plate-shaped sensor part 16 of the second heat pump, and a third gas flow port 24 is formed at the tip of the cover 15 to form the main heating gas flow generation chamber 1 1. The main heating gas flow generated in 7 is guided toward the first nozzle 19. In addition, the gas supply passage 21 may be constituted by a hose or the like supported outside the iron base 10. Further, a fourth gas flow port 25 is formed in the inner stainless steel cylinder 13 behind the cover 15, and a fifth gas flow port 26 is formed at the tip of the outer stainless steel cylinder 12, and a preheat gas flow is generated. The preheated gas stream generated in the chamber 18 is guided toward the second nozzle 20.
また、 加熱ヒータ 1 4の先端には主加熱気体流 3 0の温度を検知してコント口 ールを行なうためのセンサ一 2 7が取付けられ、 又図示していないが、 ステンレ ス筒 1 2及び 1 3にはアースが接続されている。  At the end of the heater 14, a sensor 17 for detecting the temperature of the main heating gas flow 30 and performing control is mounted, and although not shown, a stainless steel cylinder 1 2 And 13 are connected to ground.
次に、 半田付け方法について説明する。 本例の半田ごてを用いて非接触で半田 付けを行う場合、 まず加熱ヒータ 1 4に通電するとともに、 こて基部 1 0内の気 体供給通路 2 1に窒素ガスを供給する。 この窒素ガスは予め所定温度、 例えば 4 0〜5 0 °Cに予熱してもよい。 すると、 窒素ガスは気体流通口 2 2、 2 3を介し て主加熱気体流生成チャンバ一 1 7に案内され、 加熱ヒータ 1 4によって 2 5 0 〜6 0 0 °Cに加熱されて主加熱気体流 3 0が生成され、 主加熱気体流 3 0は気体 流通口 2 4を経て第 1のノズル 1 9から噴出される。 この主加熱気体流 3 0の噴 出量は 0 . 5〜2 . 0リットル 分に、 噴出圧力は 0 . 1〜2 . 0 k g f / c m 2 · Gに設定される。 Next, the soldering method will be described. When soldering is performed in a non-contact manner using the soldering iron of this example, first, the heater 14 is energized, and nitrogen gas is supplied to the gas supply passage 21 in the base 10. This nitrogen gas has a predetermined temperature, for example, 4 It may be preheated to 0-50 ° C. Then, the nitrogen gas is guided to the main heating gas flow generation chamber 17 via the gas flow ports 22 and 23, and is heated to 250 to 600 ° C. by the heating heater 14 to be heated to the main heating gas. A stream 30 is generated, and the main heated gas stream 30 is ejected from the first nozzle 19 via the gas flow port 24. The ejection amount of the main heating gas stream 30 is set to 0.5 to 2.0 liters, and the ejection pressure is set to 0.1 to 2.0 kgf / cm 2 · G.
同時に、 窒素ガスの一部は気体流通口 2 5を介して予熱気体流生成チャンバ一 1 8に各々案内され、 主加熱気体流生成チャンバ一 1 7における高温窒素ガスの 対流及び加熱ヒータ 1 4からの輻射熱によって 1 0 0 ~ 2 0 0 °Cに加熱されて予 熱気体流 3 1が生成され、 気体流通口 2 6を経て第 2のノズル 2 0から主加熱気 体流 3 0の周囲を覆って噴出される。 この予熱気体流 3 1の噴出量は 0 . 5〜2 • 0リットル Z分に、 噴出圧力は 0 . 1〜2 . 0 k g f / c m2 · Gに設定され 。 At the same time, a part of the nitrogen gas is respectively guided to the preheating gas flow generation chamber 18 through the gas flow port 25, and the convection of the high-temperature nitrogen gas in the main heating gas flow generation chamber 17 and the heating heater 14 The preheated gas stream 31 is generated by being heated to 100 to 200 ° C by the radiant heat of the second nozzle 20 through the gas flow port 26 and flows around the main heated gas stream 30. Spouted over. The ejection volume of the preheated gas stream 31 is set to 0.5 to 2.0 liters Z, and the ejection pressure is set to 0.1 to 2.0 kgf / cm 2 · G.
こうして準備が済むと、 まず基板の半田付け部位 Wに予熱気体流 3 1を吹き付 けて半田付け部位 Wを予熱した後、 主加熱気体流 3 0を吹き付けるが、 高温の主 加熱気体流 3 0は図 3に示すように予熱気体流 3 1で周囲を覆われた状態で半田 付け部位 Wに吹き付けられ、 従来のように周囲にそのまま飛散することがないの で、 半田がすぐに溶融する。 その後、 溶融半田は予熱気体流 3 1で凝固開始直前 まで緩冷却され、 大気に曝されて急冷される。  When the preparation is completed, first, a preheating gas flow 31 is blown onto the soldering portion W of the substrate to preheat the soldering portion W, and then the main heating gas flow 30 is blown. 0 is sprayed onto the soldering site W with its surroundings covered by the preheating gas flow 31 as shown in Fig. 3, and it does not scatter around as it is in the past, so the solder melts immediately . Thereafter, the molten solder is slowly cooled by a preheating gas stream 31 until just before the start of solidification, and then rapidly cooled by being exposed to the atmosphere.
本件発明者らの実験によれば、 従来の非接触式の半田ごてでは半田付けが完了 するまでに 4〜 5秒必要であつたが、 本例の非接触式の半田ごてでは 1秒程度で 半田付けを完了させることができることが確認された。 従って、 従来の半田付口 ボットゃ自動半田付機における半田付けに代え、 本例の非接触式の半田付けを実 用的に採用できる。  According to the experiments conducted by the inventors of the present invention, it took 4 to 5 seconds for the conventional non-contact soldering iron to complete the soldering, whereas the non-contact soldering iron of the present example required 1 second. It was confirmed that the soldering could be completed in a certain degree. Therefore, the non-contact type soldering of the present embodiment can be practically adopted instead of the conventional soldering port bot / soldering in the automatic soldering machine.
また、 溶融半田の熱が周囲に急激に吸熱されると、 溶融半田は全体として急冷 却され、 微細な急冷晶、 微細な柱状晶、 微細な自由晶が形成されるが、 柱伏晶は 結晶柱に平行に不純物やガスを含む粒界が発生しやすく、 又自由晶はフラックス ガスや不純物ガスが含みやすい。 これに対し、 溶融した半田には適切な圧力の主 加熱気体流 3 0及び予熱気体流 3 1の吹き付けられるので、 半田やフラックスが 半田付け部位 Wの外方に流れ出ることなく、 溶融半田が加圧され、 ガスを放出さ せ、 気泡やガス穴をなくすことができる。 また、 かかる加圧によって樹枝状晶間 を溶融半田の融液で加圧充満させることができ、 ミクロポロシティ一やマクロポ 口シティ一 (気孔) を防ぎ、 緻密な結晶構造となる。 Also, when the heat of the molten solder is rapidly absorbed into the surroundings, the molten solder is rapidly cooled as a whole, and fine quenched crystals, fine columnar crystals, and fine free crystals are formed. Grain boundaries containing impurities and gases are likely to be generated parallel to the columns, and free crystals are flux Gas and impurity gas are easy to contain. On the other hand, since the main heating gas flow 30 and the preheating gas flow 31 of appropriate pressure are blown to the molten solder, the solder and flux do not flow out of the soldering portion W, and the molten solder is applied. Pressurizes and releases gas, eliminating bubbles and gas holes. In addition, the dendrite can be filled with the molten solder by the pressurization due to the pressurization, thereby preventing microporosity and macroporosity (porosity), resulting in a dense crystal structure.
従って、 溶融半田の全体が急冷されて溶融半田の液相線と固相線の間隔が実質 的に小さくなるとともに、 加圧効果が発揮され、 マクロ的偏析 (P b、 S n等) 及びミクロ的偏折の樹枝状晶、 層状組織、 有核組織等を減少して不純物やガスの 少ない微細な結晶組織の凝固半田が得られる。  Therefore, the whole of the molten solder is rapidly cooled, so that the distance between the liquidus and solidus of the molten solder is substantially reduced, and a pressurizing effect is exerted, and macro-segregation (Pb, Sn, etc.) The dendritic crystals, layered structure, nucleated structure, etc., of the birefringence are reduced, and a solidified solder having a fine crystal structure with few impurities and gas can be obtained.
また、 主加熱気体流 3 0及び予熱気体流 3 1の噴出圧力を適切に設定している ので、 気体摩擦による帯電が起こり難く、 しかもこて本体 1 1をアースしている ので、 たとえ気体流 3 0、 3 1がプラスに帯電しても主加熱気体流生成チャンバ — 1 7及び予熱気体流生成チャンバ一 1 8の内側にマイナス電荷を静電誘導させ て主加熱気体流 3 0及び予熱気体流 3 1のプラス電荷を除去することができる結 果、 半田付け部位 Wにおける静電破壊のおそれを確実に解消できる。  In addition, since the ejection pressure of the main heating gas flow 30 and the preheating gas flow 31 is set appropriately, charging due to gas friction is unlikely to occur, and since the iron body 11 is grounded, Even if 30 and 31 are positively charged, the main heating gas flow generation chamber — 17 and the preheating gas flow generation chamber-electrostatically induce negative charges inside the chamber 18 to generate the main heating gas flow 30 and preheating gas As a result, the positive charge of the flow 31 can be removed, so that the possibility of electrostatic breakdown at the soldering site W can be reliably eliminated.
図 4は上記実施形態の第 1の変形例を示す。 本例では第 2のノズル 2 0の先端 が第 1のノズル 1 9の先端より前方に突設され、 又内側ステンレス筒 1 3がベリ リウム銅、 クロム銅又はその他の熱伝導性のよい合金の筒に変更され、 該内側の 合金筒 1 3と第 1のノズル 1 9と力一体に形成され、 又第 2のノズル 2 0と外側 ステンレス筒 1 2とが一体に形成されている。 第 1のノズル 1 9には内面が断面 円弧状に脹らんだダイバージェントノズル構造が採用されている。 また、 寸法的 には第 1のノズル 1 9の先端内径は 0 . 1〜0 . 5 mmに、 第 2のノズル 2 0の 内径は 0 . 5〜4 . 0 mmに設定され、 又第 2のノズル 2 0の先端部位内面には l〜2 mmの平坦面 2 0 aが形成されて予熱気体流が安定化されている。  FIG. 4 shows a first modification of the above embodiment. In this example, the tip of the second nozzle 20 protrudes forward from the tip of the first nozzle 19, and the inner stainless steel tube 13 is made of beryllium copper, chromium copper, or another alloy having good heat conductivity. The inner alloy tube 13 and the first nozzle 19 are formed integrally with the inner alloy tube 13, and the second nozzle 20 and the outer stainless steel tube 12 are formed integrally. The first nozzle 19 employs a divergent nozzle structure whose inner surface expands in an arc shape in cross section. Dimensionally, the inner diameter of the tip of the first nozzle 19 is set to 0.1 to 0.5 mm, the inner diameter of the second nozzle 20 is set to 0.5 to 4.0 mm, and A flat surface 20a of l to 2 mm is formed on the inner surface of the tip portion of the nozzle 20 to stabilize the preheating gas flow.
本例では第 1のノズル 1 9にダイバージェントノズルを採用しているので、 そ の構造によって高速の主加熱気体流が得られ、 しかも第 2のノズル 2 0の先端を 第 1のノズル 1 9のそれよりも突設させているので、 予熱気体流と高速の主加熱 気体流とが相互に加速し合い、 より一層高速の主加熱気体流と高速の予熱気体流 が得られる。 その結果、 第 1、 第 2のノズル 1 9、 2 0の先端とワーク半田付け 部位との間に一定の距離をおいても、 第 1、 第 2のノズル 1 9、 2 0を出てから ワーク半田付け部位に達するまでの主加熱気体流及び予熱気体流の熱減衰が少な く、 窒素ガス (又はエアー) の消費量を抑制することができる。 In this example, a divergent nozzle is used for the first nozzle 19, so that a high-speed main heating gas flow can be obtained by the structure, and the tip of the second nozzle 20 is Because it is more protruding than that of the first nozzle 19, the preheating gas flow and the high-speed main heating gas flow accelerate each other, and the higher-speed main heating gas flow and the higher-speed preheating gas flow can get. As a result, even after a certain distance between the tip of the first and second nozzles 19 and 20 and the work soldering site, Thermal decay of the main heating gas flow and the preheating gas flow until reaching the work soldering site is small, and the consumption of nitrogen gas (or air) can be suppressed.
また、 図 5は第 2の変形例を示す。 本例では加熱ヒータ 1 4として中空のセラ ミックスヒータ力使用され、 加熱ヒータ 1 4の内部に主加熱気体流生成チャンバ 一 1 7が形成されている。 この加熱ヒータ 1 4内にはモリブデン系合金又はタン グステン系合金からコイル形状材 1 7 aが収容され、 主加熱気体流に旋回を付与 して主加熱気体流の熱ムラを低減するようになっている。 なお、 第 2のノズル 2 0及び 又は外側筒 1 2内面、 及び第 1のノズル 1 9及び 又は内側筒 1 3外面 の少なくとも一方に螺旋フィン又は螺旋溝を形成し、 予熱気体流に旋回を付与す るようにしてもよい。  FIG. 5 shows a second modification. In this example, a hollow ceramic heater is used as the heater 14, and a main heating gas flow generation chamber 17 is formed inside the heater 14. A coil-shaped material 17a made of a molybdenum-based alloy or a tungsten-based alloy is housed in the heater 14 to impart a swirl to the main heating gas flow to reduce heat unevenness of the main heating gas flow. ing. A spiral fin or a spiral groove is formed on at least one of the second nozzle 20 and / or the outer surface of the outer cylinder 12 and / or the first nozzle 19 and / or the outer surface of the inner cylinder 13 to impart a swirl to the preheating gas flow. You may do so.
図 6は本発明の第 2の実施形態を示す。 図において、 半田ごてはこて本体 3 0 とグリップ部 (こて基部) 3 1と力、らなり、 こて本体 3 0には加熱ヒ一夕 (例え ば、 丸棒状の窒化アルミナヒータ) 3 2が内蔵され、 加熱ヒータ 3 2の先端部は チップホルダ一 3 3の穴内に挿入され、 チップホルダー 3 3の先端にはチップ 3 4が固定され、 加熱ヒータ 3 2の発熱が先端チップ 3 4に伝達されて先端チップ 3 4が加熱されるようになっている。  FIG. 6 shows a second embodiment of the present invention. In the figure, the soldering iron main body 30 and the grip part (iron base) 31 and the force, and the iron body 30 are heated over night (for example, a round bar-shaped alumina nitride heater). 3 2 is built in, the tip of the heater 3 2 is inserted into the hole of the tip holder 1 3 3, the tip 3 4 is fixed to the tip of the tip holder 3 3, and the heat generated by the heater 3 2 is the tip 3 The tip 4 is transmitted to the tip 4 and is heated.
また、 加熱ヒータ 3 2の後端部はグリップ部 3 0の先端に内蔵されたホルダー 3 5の中央穴に挿入して保持され、 又加熱ヒータ 3 2には温度センサー (図示せ ず) が取付けられている。 なお、 予熱気体流を温度調節するための補助ヒータを 設置してもよい。 このホルダ一 3 5には複数の窒素ガス供給穴が環状に形成され 、 ホルダー 3 5にはグリップ部 3 0内に揷通された窒素ガス供給パイプ 3 6の先 端が接続され、 加熱ヒータ 3 2の後端から電源線 3 2 aが窒素ガス供給パイプ 3 6内を後方に延設されている。 また、 グリップ部 3 0の先端には第 1の保護カバー 3 7が固定され、 第 1の保 護カバー 3 7は加熱ヒータ 3 2の周囲を覆うとともに、 チップホルダー 3 3との 間に所定の隙間、 例えば l mmの隙間をあけて先端側に延び、 その先端は先端チ ップ 3 4の周囲に開放され、 こうして予熱気体流生成チャンバ一 3 8が構成され ている。 この第 1の保護カバ一 3 7の先端は半田付け時にワークと当たらない程 度で、 可能な限り先端チップ 3 4近傍まで延設するのがよい。 The rear end of the heater 32 is inserted and held in the center hole of a holder 35 built in the tip of the grip portion 30, and a temperature sensor (not shown) is attached to the heater 32. Have been. An auxiliary heater for adjusting the temperature of the preheating gas flow may be installed. A plurality of nitrogen gas supply holes are formed in an annular shape in the holder 135, and a tip of a nitrogen gas supply pipe 36 passed through the grip portion 30 is connected to the holder 35, and a heater 3 is provided. A power line 32 a extends rearward in the nitrogen gas supply pipe 36 from the rear end of 2. A first protective cover 37 is fixed to the end of the grip portion 30. The first protective cover 37 covers the periphery of the heater 32 and a predetermined space between the chip holder 33 and the heater. A gap, for example, a gap of l mm extends to the distal end side, and the distal end is opened around the distal end tip 34, thus forming a preheating gas flow generation chamber 38. It is preferable that the tip of the first protective cover 37 is extended to as close to the tip chip 34 as possible, so that it does not touch the work at the time of soldering.
次に、 使用方法について説明する。 本例の半田ごてを用いて半田付けを行う場 合、 まず加熱ヒータ 3 2に通電して先端チップ 3 4を 2 8 0 °C〜3 8 0 °Cに加熱 する一方、 半田ごての窒素ガス供給パイプ 3 6には圧力 1 . 0〜5 . 0 k g/ c m 2 、 流量 4リットル/ m i n、 純度 9 9〜9 9 . 9 %の窒素ガスを供給する。 窒素ガスの供給は連続供給でもよく、 間欠供給でもよい。 すると、 予熱気体流生 成チャンバ一 3 8を通過する窒素ガスは加熱ヒータ 3 2の発熱による先端チップ 3 4の輻射熱により 2 0 0 °C〜2 5. 0 °Cに加熱され、 体積が増大し、 そのまま前 方に放出される。 なお、 窒素ガスの流量及び圧力はホルダー 3 5の窒素ガス供給 穴の内径や数の設定によって調整できる。 また、 外部の圧力調整器や流量調整器 によっても可能である。 Next, the method of use will be described. When soldering using the soldering iron of this example, first, the heater 32 is energized to heat the tip chip 34 to 280 ° C to 380 ° C, while the soldering iron 32 is heated. The nitrogen gas supply pipe 36 is supplied with nitrogen gas having a pressure of 1.0 to 5.0 kg / cm 2 , a flow rate of 4 liter / min, and a purity of 99 to 99.9%. The supply of nitrogen gas may be continuous supply or intermittent supply. Then, the nitrogen gas passing through the preheating gas flow generation chamber 1 38 is heated to 200 ° C. to 25.0 ° C. by the radiant heat of the tip 34 due to the heat generated by the heater 32, and the volume increases. And released as it is. The flow rate and pressure of the nitrogen gas can be adjusted by setting the inner diameter and number of the nitrogen gas supply holes of the holder 35. It is also possible with an external pressure regulator or flow regulator.
こうして準備が済むと、 まず基板の半田付け部位に 2〜 5秒間、 予熱気体流を 吹き付けて半田付け部位の予熱 (プリヒート) を行い、 これにより半田付け部位 の低残渣フラックスを活性化できる。 また、 予熱気体流を吹き付けると同時に、 先端チップ 3 4を半田付け部位に接触させてもよい。 また、 〇2 濃度 5 p p m以 下の場合はフラックスレス半田付けを可能である。 When the preparation is completed, first, a preheating gas flow is blown to the soldering part of the board for 2 to 5 seconds to preheat the soldering part (preheating), thereby activating a low residue flux at the soldering part. In addition, the tip 34 may be brought into contact with the soldering portion at the same time as the preheating gas flow is sprayed. In the case under 〇 2 concentration 5 ppm or less can be fluxless soldering.
次に、 約 0 . 3〜0 . 8秒で、 先端チップ 3 4を半田付け部位に接触して加熱 して低残渣フラックス入りの糸半田を供給し、 予熱気体流の雰囲気中で半田付け 部位に溶融半田の盛りを形成させる。 次に、 半田付け部位から先端チップ 3 4を 離し、 溶融半田を予熱気体流の雰囲気に曝す一方、 基板の裏面から室温の窒素ガ スを吹き付けて急冷却する。  Next, in about 0.3 to 0.8 seconds, the tip 34 is brought into contact with the soldering area and heated to supply the low-residue flux-containing threaded solder, and the soldering area is heated in a preheated gas flow atmosphere. To form a pile of molten solder. Next, the tip 34 is separated from the soldering site, and the molten solder is exposed to the atmosphere of the preheated gas flow, while rapidly cooling by blowing nitrogen gas at room temperature from the back surface of the substrate.
すると、 溶融半田の熱が周囲に急激に吸熱されて溶融半田は全体として急冷却 され、 微細な急冷晶、 微細な柱状晶、 微細な自由晶が形成される。 柱状晶は結晶 柱に平行に不純物やガスを含む粒界が発生しやすく、 又自由晶のフラックスガス や不純物ガスに対し高温窒素ガス 6 5の圧力 1 . 0〜5 . O k gZ c m2 によつ て溶融半田を加圧し、 ガスを放出させ、 気泡やガス穴をなくすことができる。 ま た、 加 Eされた高温窒素ガス 6 5により樹技状晶間を溶融半田の融液で加 E充満 させることができ、 ミクロ 'マクロポロシティ一 (気孔) を防ぎ、 緻密な結晶構 造となる。 Then, the heat of the molten solder is rapidly absorbed by the surroundings, and the molten solder is rapidly cooled as a whole. As a result, fine quenched crystals, fine columnar crystals, and fine free crystals are formed. Columnar crystal grain boundaries is likely to occur including parallel impurities or gases into crystalline pillar, and the pressure 1 of hot nitrogen gas 6 5 to free crystals of the flux gas and impurity gas. 0-5. To O k gZ cm 2 Thus, the molten solder is pressurized and gas is released, so that bubbles and gas holes can be eliminated. In addition, the high-temperature nitrogen gas 65 added allows the dendrites to be filled with the molten solder melt, thereby preventing micro-macroporosity (porosity) and achieving a dense crystal structure. Become.
従って、 溶融半田の全体が急冷されて溶融半田の液相線と固相線の間隔が実質 的に小さくなるとともに、 加圧効果が発揮され、 マクロ的偏析 (P b、 S n等) 及びミクロ的偏折の樹枝状晶、 層状組織、 有核組織等を減少して不純物やガスの 少ない微細な結晶組織の凝固半田が得られる。  Therefore, the whole of the molten solder is rapidly cooled, so that the distance between the liquidus and solidus of the molten solder is substantially reduced, and a pressurizing effect is exerted, and macro-segregation (Pb, Sn, etc.) The dendritic crystals, layered structure, nucleated structure, etc., of the birefringence are reduced, and a solidified solder having a fine crystal structure with few impurities and gas can be obtained.
また、 半田フラックスを予熱してフラックスの活性化及びフラックスゃ半田ボ ールの飛散防止を図って円滑で良好な半田付け作業を行うことができ、 又高温の 半田ごて 3 4のチップが電子基板に接触する前に電子基板を予熱し、 電子基板の 局部的で急激な温度上昇 (ヒートショック) を緩和して電子部品の熱破壊を防止 でき、 さらにはフラックス、 電子基板及び供給される半田線をも予熱できる結果 、 半田層の熱間脆性を予防できる。  In addition, the solder flux is preheated to activate the flux and to prevent the flux / solder ball from scattering, so that a smooth and good soldering operation can be performed. Preheating the electronic board before contacting the board, mitigating local and rapid temperature rise (heat shock) of the electronic board and preventing thermal destruction of electronic components, as well as flux, electronic board and supplied solder The wire can also be preheated, so that the hot brittleness of the solder layer can be prevented.
また、 半田及びフラックスを高温窒素ガスで予熱できる結果、 半田ごてのチッ プの蓄熱量は少なくて済み、 チップ先端を極細にしても十分な熱量による半田付 けができ、 結果的には低温半田付けが達成できることとなる。 さらに、 半田ごて のチップが無酸化雰囲気内にあるので、 チップの酸化が防止されて溶融半田の濡 れ性を向上でき、 又チップクリーニングがほとんど不要となり、 チップ寿命を大 幅に向上できる。  Also, since the solder and flux can be preheated with high-temperature nitrogen gas, the amount of heat stored in the tip of the soldering iron is small, and even if the tip of the chip is extremely fine, sufficient amount of heat can be used for soldering, resulting in low-temperature soldering. Can be achieved. Further, since the soldering iron chip is in a non-oxidizing atmosphere, the chip is prevented from being oxidized, the wettability of the molten solder can be improved, and the chip cleaning is almost unnecessary, so that the chip life can be greatly improved.
図 7は本発明の第 3の実施形態を示す。 本例ではグリップ部 3 0の先端には第 1の保護カバ一 3 7の外側にて第 2の保護カバー 3 9が固定され、 第 1の保護力 バー 3 9は第 1の保護カバー 3 7の周囲を所定の隙間、 例えば 2 mmの隙間をあ けて気密的に覆って先端側に延び、 その先端は第 1の保護カバー 3 7の先端部近 傍に開放され、 こうして低温気体流生成チャンバ一 4 0が構成されている。 なお 、 図 8に示されるように、 ホルダ一 3 5には低温気体流生成チャンバ一 4 0にも 窒素ガスが供給されるように窒素ガス供給穴を内外二重の環状に形成する。 本例においては上記第 2の実施形態とほぼ同様の方法にて半田付けを行うが、 予熱時及び半田付け時においては半田付け部位の周囲の基板や電子部品は低温気 体流生成チャンバ一 4 0で生成された低温、 例えば室温の窒素ガスの雰囲気中に 曝されるので、 周囲の基板や電子部品が熱影響を受けるのを防止できる。 FIG. 7 shows a third embodiment of the present invention. In this example, a second protective cover 39 is fixed to the end of the grip portion 30 outside the first protective cover 37, and the first protective bar 39 is a first protective cover 37. Around the end of the first protective cover 37 with a predetermined gap, for example, a gap of 2 mm. Opened to the side, a low-temperature gas flow generation chamber 140 is thus configured. As shown in FIG. 8, a nitrogen gas supply hole is formed in the holder 135 in a double annular shape so that nitrogen gas is also supplied to the low-temperature gas flow generation chamber 140. In this example, soldering is performed in substantially the same manner as in the above-described second embodiment. However, during preheating and during soldering, the substrate and electronic components around the soldering site are removed from the low-temperature gas flow generation chamber. Since the substrate is exposed to a low temperature generated at 0, for example, a nitrogen gas atmosphere at room temperature, the surrounding substrates and electronic components can be prevented from being affected by heat.
図 1 0は本発明の考え方を応用した不活性ガスパージ器具の好ましい実施形態 を示す。 不活性ガスパージ器具は本体部 3 0とグリップ部 3 1とからなり、 本体 部 3 0には加熱ヒータ (例えば、 丸棒状の窒化アルミナヒータ) 3 2が内蔵され 、 加熱ヒータ 3 2の先端部は熱伝導性の良好な銅系合金からなる保熱部材 (保熱 体) 3 3の穴内に挿入され、 加熱ヒータ 3 2の発熱が保熱部材 3 3に伝達されて 保熱部材 3 3が加熱されるようになっている。  FIG. 10 shows a preferred embodiment of an inert gas purging apparatus to which the concept of the present invention is applied. The inert gas purging apparatus includes a main body 30 and a grip 31. The main body 30 incorporates a heater (eg, a round bar-shaped alumina nitride heater) 32, and the tip of the heater 32 is Heat retaining member made of copper alloy with good thermal conductivity (heat retaining member) 33 Inserted into the hole of 33, heat generated by heater 32 is transmitted to heat retaining member 33, and heat retaining member 33 is heated. It is supposed to be.
また、 加熱ヒータ 3 2の後端部はグリップ部 3 0の先端に内蔵されたホルダー 3 5の中央穴に挿入して保持され、 又加熱ヒータ 3 2には温度センサー 3 9が取 付けられている。 このホルダ一 3 5には複数の窒素ガス供給穴が環状に形成され 、 ホルダー 3 5にはグリップ部 3 0内に揷通された窒素ガス供給パイプ 3 6の先 端が接続され、 加熱ヒータ 3 2の後端から電源線 3 2 aが窒素ガス供給パイプ 3 6内を後方に延設されている。  The rear end of the heater 32 is inserted and held in the center hole of a holder 35 built in the tip of the grip portion 30, and a temperature sensor 39 is attached to the heater 32. I have. A plurality of nitrogen gas supply holes are formed in an annular shape in the holder 135, and a tip of a nitrogen gas supply pipe 36 passed through the grip portion 30 is connected to the holder 35, and a heater 3 is provided. A power line 32 a extends rearward in the nitrogen gas supply pipe 36 from the rear end of 2.
また、 グリップ部 3 0の先端には第 1の保護カバー 3 7が固定され、 第 1の保 護カバ一 3 7は加熱ヒータ 3 2の周囲を覆うとともに、 保熱部材 3 3との間に所 定の隙間、 例えば l mmの隙間をあけて先端側に延び、 その先端は保熱部材 3 3 の先端を囲んで開放され、 こうして高温気体流生成チャンバ一 3 8が構成されて いる。  A first protective cover 37 is fixed to the tip of the grip portion 30. The first protective cover 37 covers the heater 32 and a space between the first protective cover 37 and the heat retaining member 33. A predetermined gap, for example, a gap of l mm is extended to the front end side, and the front end is opened to surround the front end of the heat retaining member 33, thereby forming a high temperature gas flow generation chamber 38.
本例の不活性ガスパージ器具は半田付ロボットゃ自動半田付機において半田付 けする際に、 その半田付け部位に高温不活性ガスを吹き付け、 半田付け部位を大 気から保護するとともに予熱するのに最適である。 産業上の利用可能性 The inert gas purging apparatus of this example is used to spray high-temperature inert gas to the soldering area when soldering with a soldering robot or an automatic soldering machine to protect the soldering area from air and preheat it. Optimal. Industrial applicability
本発明によれば、 半田ごての先端から噴出される内外二重の気体流のうち、 外 側の予熱気体流で予熱した後、 外側の予熱気体流で囲まれた雰囲気中において内 側の主加熱気体流で半田付けを行なうようにしたので、 ワーク半田付け部位に吹 き付けられた主加熱気体流の熱が周囲に飛散することがなく、 効率よくワークの 半田付け部位に伝えられ、 短時間の内に非接触で、 即ち先端チップを用いること なく半田付けができる。  According to the present invention, the inner and outer dual gas flows ejected from the tip of the soldering iron are preheated by the outer preheating gas flow, and then the inner preheating gas is surrounded by the outer preheating gas flow. Since the soldering is performed with the main heating gas flow, the heat of the main heating gas flow blown to the work soldering part does not scatter around and is efficiently transmitted to the work soldering part. Soldering can be performed in a short time without contact, that is, without using a tip.
その結果、 先端チップの接触に起因する製品の電気的特性の劣化を防止でき、 又主加熱気体流及び予熱気体流の噴出圧力を適切に設定し、 こて本体をアースす ると、 気体流の帯電を確実に防止でき、 これによつて電子部品の静電破壊を防止 して製品の電気的特性を保証できる。  As a result, it is possible to prevent the deterioration of the electrical characteristics of the product due to the contact of the tip, and to set the ejection pressure of the main heating gas flow and the preheating gas flow appropriately, This can reliably prevent electrification of the product, thereby preventing electrostatic breakdown of electronic components and ensuring the electrical characteristics of the product.
また、 溶融半田が緩冷却される雰囲気中で半田付けを行うことができるので、 溶融半田はその表面張力にて好ましい盛り上がり状態であるほぼ半球状を呈する 。 また、 溶融半田の凝固開始直前に室温以下の雰囲気中で急冷却され、 溶融半田 にその液相線と固相線間の間隔が実質的に小さくなった指向性凝固を与えること ができ、 これにより半田を微細凝固組織とできる。  In addition, since the soldering can be performed in an atmosphere in which the molten solder is slowly cooled, the molten solder has a substantially hemispherical shape which is a preferable bulging state due to its surface tension. Also, immediately before the start of solidification of the molten solder, it is rapidly cooled in an atmosphere at room temperature or lower, and it is possible to give the molten solder directional solidification in which the distance between its liquidus and solidus is substantially reduced. This allows the solder to have a finely solidified structure.
その結果、 半田ボール、 ブリッジあるいは半田の飛び散りがなく、 しかも緻密 で P b、 S nの偏析ゃ気孔が極めて少なくて耐ヒートショック性に優れ、 しかも 盛りのよい高品質の無酸化、 無洗浄の半田付けを行うことができる。  As a result, there is no solder balls, bridges, or solder splattering, and it is dense, has very few segregation of Pb and Sn, has excellent heat shock resistance, and has high quality, high quality non-oxidizing and non-cleaning. Soldering can be performed.
また、 本発明によれば、 先端チップの周囲に予熱気体流を噴射させ、 必要に応 じてその周囲に低温気体流を噴射させ、 予熱気体流で半田付け部位を予熱し、 そ の状態で先端チップで半田付けを行うようにしたので、 半田付け部位への接触に 起因する先端チップの温度変化が少なく、 しかも予熱気体流によって先端チップ が加熱される結果、 先端チップの熱ストレスがほとんど発生せず、 先端チップの 寿命を大幅に向上できることとなる。  Further, according to the present invention, a preheating gas flow is injected around the tip tip, a low-temperature gas flow is injected as necessary around the tip, and the soldering portion is preheated with the preheating gas flow. Since the tip is used for soldering, there is little change in temperature of the tip due to contact with the soldering area, and the tip is heated by the preheating gas flow, resulting in almost all thermal stress on the tip Without this, the life of the tip can be greatly improved.

Claims

言青求の範囲 Scope of word blue
1 . 半田ごてを用い、 ワークの半田付け部位に高温気体流を吹き付けてワーク を半田付けするにあたり、  1. When using a soldering iron to blow the high-temperature gas flow to the soldering area of the work and solder the work,
半田ごての先端から半田を溶融軟化させるのに十分な高温の主加熱気体流を噴 出させるとともに、 上記主加熱気体流よりも低温でかつ半田を予熱するのに十分 な温度の予熱気体流を上記主加熱気体流を囲んで噴出させ、  A main heating gas flow at a temperature high enough to melt and soften the solder is ejected from the tip of the soldering iron, and a preheating gas flow at a temperature lower than the main heating gas flow and at a temperature sufficient to preheat the solder. Is blown around the main heating gas flow,
上記予熱気体流をヮ一クの半田付け部位に吹き付けて予熱しながら、 上記主加 熱気体流を予熱したワークの半田付け部位に吹き付け、 上記予熱気体流で囲まれ た雰囲気中で半田付けを行なうようにしたことを特徴とする非接触式の半田付け 方法。  The main heating gas flow is blown to the soldering part of the preheated work while the preheating gas flow is blown to the soldering portion of the pre-heating to perform the soldering in the atmosphere surrounded by the preheating gas flow. A non-contact type soldering method characterized by being performed.
2 . 上記主加熱気体流によって半田付けした半田付け部位を、 上記予熱気体流 によって緩冷却した後、 室温以下に急冷却するようにした請求項 1記載の非接触 式の半田付け方法。  2. The non-contact type soldering method according to claim 1, wherein the soldering portion soldered by the main heating gas flow is gradually cooled by the preheating gas flow and then rapidly cooled to room temperature or lower.
3 . 上記主加熱気体流及び/又は上記予熱気体流に窒素ガス又はエア一を用い るようにした請求項 1又は 2記載の非接触式の半田付け方法。  3. The non-contact soldering method according to claim 1, wherein nitrogen gas or air is used for the main heating gas flow and / or the preheating gas flow.
4 . 半田ごてを用いてワークの半田付け部位を半田付けするにあたり、 半田ごての先端から上記先端チップょりも低温でかつ半田を予熱するのに十分 な温度の予熱気体流を上記先端チップを囲んで噴出させ、  4. When soldering the soldering area of the work with a soldering iron, apply a preheating gas flow from the tip of the soldering iron at a low temperature and at a temperature sufficient to preheat the solder. Spout around the chip,
該予熱気体流をヮークの半田付け部位に吹き付けて予熱した後、 該予熱したヮ -クの半田付け部位を上記先端チップによつて上記予熱気体流で囲まれた雰囲気 中で半田付けするようにしたことを特徴とする接触式の半田付け方法。  After the preheated gas flow is sprayed onto the soldering portion of the peak to preheat, the soldered portion of the preheated peak is soldered by the above-mentioned tip in an atmosphere surrounded by the preheated gas flow. A contact type soldering method, characterized in that:
5 . 上記先端チップによって半田付けした半田付け部位を、 上記予熱気体流に よつて緩冷却した後、 室温以下に急冷却するようにした請求項 4記載の接触式の 半田付け方法。  5. The contact-type soldering method according to claim 4, wherein the soldered portion soldered by the tip chip is gradually cooled by the preheating gas flow and then rapidly cooled to room temperature or lower.
6 . 上記半田ごての先端から上記予熱気体流の周囲を囲んで予熱気体流より低 温の低温気体流を噴射させ、 ワーク半田付け部位の予熱時及び半田付け時に半田 付け部位近傍のワーク及び素子を低温気体流で予熱気体流の熱から保護するよう にした請求項 4又は 5記載の接触式の半田付け方法。 6. A low-temperature gas flow, which is lower in temperature than the preheating gas flow, is injected around the preheating gas flow from the tip of the soldering iron. Protect the device from the heat of the preheated gas stream with a cold gas stream The contact-type soldering method according to claim 4 or 5, wherein
7 . 上記予熱気体流及び 又は上記低温気体流に窒素ガス又はエアーを用いる ようにした請求項 4ないし 6のいずれかに記載の接触式の半田付け方法。  7. The contact-type soldering method according to claim 4, wherein nitrogen gas or air is used for the preheating gas flow and / or the low-temperature gas flow.
8 . 高温の気体流をワークの半田付け部位に吹き付けて半田付けを行なう非接 触式の半田ごてにおいて、  8. In a non-contact type soldering iron that performs soldering by blowing a high-temperature gas flow to the soldering part of the work,
こて本体の先端には中央の第 1のノズルと、 該第 1のノズルの外側を覆って開 放する第 2のノズルとが設けられる一方、  The tip of the iron body is provided with a first nozzle at the center and a second nozzle which is open to cover the outside of the first nozzle,
上記こて本体内には発熱体が内蔵されるとともに、 該発熱体の周囲又は内部に は主加熱気体流生成チャンバ一が上記第 1のノズルと連通して形成され、 上記主 加熱気体流生成チャンバ一の周囲には予熱気体流生成チヤンバーが上記 2のノズ ルと連通して形成され、  A heating element is built in the iron body, and a main heating gas flow generation chamber is formed around or inside the heating element in communication with the first nozzle. A preheating gas flow generation chamber is formed around the chamber 1 in communication with the nozzle of the above 2;
上記こて本体には主加熱気体流生成チヤンバ一及び予熱気体流生成チヤンバー に気体を供給する気体供給通路が設けられており、  The iron body has a gas supply passage for supplying gas to the main heating gas flow generation chamber and the preheating gas flow generation chamber.
上記発熱体の発熱によつて半田を溶融軟化するのに十分な高温の主加熱気体流 が生成されて上記第 1のノズルから噴出され、 上記主加熱気体流生成チャンバ一 又は発熱体からの対流熱及び/又は輻射熱による加熱によつて上記主加熱気体流 よりも低温でかつ半田を予熱するのに十分な温度の予熱気体流が生成されて第 2 のノズルから上記主加熱気体流を囲んで噴出されるようになしたことを特徴とす る非接触式の半田ごて。  Due to the heat generated by the heating element, a high-temperature main heating gas flow sufficient to melt and soften the solder is generated and ejected from the first nozzle, and convection from the main heating gas flow generation chamber or the heating element. Heating by heat and / or radiant heat produces a preheating gas flow at a lower temperature than the main heating gas flow and at a temperature sufficient to preheat the solder, and surrounds the main heating gas flow from a second nozzle. A non-contact soldering iron characterized by being blown out.
9 . 上記こて本体がアースされ、 上記主加熱気体流生成チャンバ一及び予熱気 体流生成チャンバ一の内側にマイナス電荷を静電誘導させて上記主加熱気体流及 び予熱気体流のプラス電荷を除去可能となした請求項 8記載の非接触式の半田ご て。  9. The trowel body is grounded, and a negative charge is electrostatically induced inside the main heating gas flow generation chamber 1 and the preheating gas flow generation chamber 1 to add a positive charge to the main heating gas flow and the preheating gas flow. 9. The non-contact soldering iron according to claim 8, wherein the soldering iron can be removed.
1 0 . こて本体に内蔵された発熱体の発熱にて先端チップを加熱可能となした 半田ごてにおいて、  10. In a soldering iron whose tip can be heated by the heat generated by the heating element built in the iron body,
上記発熱体の周囲にはその先端側を先端チップの周囲に開放して予熱気体流生 成チヤンバーが形成され、 上記発熱体の発熱によって上記先端チップよりも低温 でカヽっ半田を予熱するのに十分な温度の予熱気体流力 s'生成されて上記先端チップ の周囲に噴出されるようになしたことを特徴とする接触式の半田ごて。 A preheating gas flow generation chamber is formed around the heating element with its distal end open to the periphery of the tip, and the temperature of the heating element is lower than that of the tip due to heat generated by the heating element. A contact-type soldering iron characterized in that a preheating gas flow force s' having a temperature sufficient to preheat the solder is generated and jetted around the tip.
1 1 . 上記予熱気体流生成チャンバ一の周囲には低温気体流生成チャンバ一が その先端側を上記予熱気体流の先端開放口部の周囲に開放して形成され、 上記予 熱気体流生成チャンバーからの対流熱及び/又は輻射熱による加熱によつて予熱 気体流よりも低温の低温気体流が生成されて上記予熱気体流の周囲に噴出される ようになした請求項 1 0記載の接触式の半田ごて。  1 1. A low-temperature gas flow generation chamber 1 is formed around the preheating gas flow generation chamber 1 with its front end side opened around the opening end of the preheating gas flow, and the preheating gas flow generation chamber is formed. 10.The contact type of claim 10, wherein a low-temperature gas flow lower in temperature than the preheating gas flow is generated by heating by convection heat and / or radiant heat from the air, and is jetted around the preheating gas flow. Soldering iron.
1 2 . 上記こて本体がアースされ、 上記予熱気体流生成チャンバ一及び/又は 上記低温気体流生成チャンバ一の内側にマイナス電荷を静電誘導させて上記予熱 気体流及び Z又は低温気体流のプラス電荷を除去可能となした請求項 1 0又は 1 1記載の接触式の半田ごて。  1 2. The iron body is grounded, and a negative charge is electrostatically induced inside the preheating gas flow generation chamber 1 and / or the low temperature gas flow generation chamber 1 to generate the preheating gas flow and Z or the low temperature gas flow. The contact-type soldering iron according to claim 10 or 11, wherein a positive charge can be removed.
1 3 . 全体として半田ごて形状をなし、 本体部に発熱体が内蔵され、 該発熱体 の先端部に保熱体が取付けられて上記発熱体の発熱にて上記保熱体を加熱可能と なす一方、 上記発熱体の周囲にはその先端側を上記保熱体の先端周囲に開放して 高温気体流生成チヤンバーが形成され、 上記発熱体及び保熱体からの輻射熱によ つて高温気体流が生成されて前方に噴出されるようになしたことを特徴とする高 温不活性ガスパージ器具。  1 3. It has a soldering iron shape as a whole, a heating element is built in the main body, and a heat retaining element is attached to the tip of the heating element, and the heat retaining element can be heated by the heat generated by the heating element. On the other hand, a high-temperature gas flow generation chamber is formed around the heating element with its distal end open around the distal end of the heat retaining element, and the high-temperature gas flow is generated by radiant heat from the heating element and the thermal retaining element. A high-temperature inert gas purging apparatus characterized in that a gas is generated and ejected forward.
PCT/JP1997/001528 1997-01-07 1997-05-06 Soldering method and soldering iron WO1998030351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53073998A JP3345722B2 (en) 1997-01-07 1998-01-07 Non-contact soldering iron capable of intermittent soldering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1312297A JP2000000657A (en) 1997-01-07 1997-01-07 Non-contact type soldering method, and its soldering iron
JP9/13122 1997-01-07

Publications (1)

Publication Number Publication Date
WO1998030351A1 true WO1998030351A1 (en) 1998-07-16

Family

ID=11824366

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1997/001528 WO1998030351A1 (en) 1997-01-07 1997-05-06 Soldering method and soldering iron
PCT/JP1998/000021 WO1998030352A1 (en) 1997-01-07 1998-01-07 Non-contact type soldering iron capable of intermittent soldering

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000021 WO1998030352A1 (en) 1997-01-07 1998-01-07 Non-contact type soldering iron capable of intermittent soldering

Country Status (2)

Country Link
JP (1) JP2000000657A (en)
WO (2) WO1998030351A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769785A (en) * 2022-04-18 2022-07-22 翼龙半导体设备(无锡)有限公司 High-pressure air self-cooling hot tin spray head

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208918A (en) * 1999-01-18 2000-07-28 Ueda Japan Radio Co Ltd Formation of patterned solder bump of printed wiring board
JP2000263223A (en) * 1999-03-18 2000-09-26 Japan Unix Co Ltd Gas jet type soldering method
JP3541307B2 (en) * 1999-05-26 2004-07-07 賢政 松原 Soldering iron
JP3582833B2 (en) * 2002-03-06 2004-10-27 中島銅工株式会社 Soldering iron
JP3754968B2 (en) * 2003-04-04 2006-03-15 白光株式会社 Soldering iron
CN100464915C (en) * 2003-04-04 2009-03-04 白光株式会社 Brazing soldering iron
US7126086B2 (en) 2003-04-04 2006-10-24 Hakko Corporation Cartridge-type soldering iron
JP4134174B2 (en) * 2004-01-27 2008-08-13 白光株式会社 Solder heater
JP4533077B2 (en) * 2004-10-04 2010-08-25 白光株式会社 Soldering iron, assembling method and heater cartridge replacing method
JP2006334598A (en) * 2005-05-31 2006-12-14 Mitsubishi Electric Corp Gas jetting type soldering iron
US7410090B2 (en) * 2006-04-21 2008-08-12 International Business Machines Corporation Conductive bonding material fill techniques
JP2008279473A (en) * 2007-05-09 2008-11-20 Kazuto Fujimoto Soldering iron
JP6831666B2 (en) * 2016-10-13 2021-02-17 株式会社パラット Soldering system, soldering product manufacturing method, soldering method, and soldering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132369A (en) * 1993-06-17 1995-05-23 Noriyuki Yoshida Soldering iron
JPH0783940B2 (en) * 1987-12-25 1995-09-13 松下電器産業株式会社 Hot air reflow soldering device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783940B2 (en) * 1987-12-25 1995-09-13 松下電器産業株式会社 Hot air reflow soldering device
JPH07132369A (en) * 1993-06-17 1995-05-23 Noriyuki Yoshida Soldering iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769785A (en) * 2022-04-18 2022-07-22 翼龙半导体设备(无锡)有限公司 High-pressure air self-cooling hot tin spray head
CN114769785B (en) * 2022-04-18 2023-10-20 翼龙半导体设备(无锡)有限公司 High-pressure air self-cooling hot tin spray head

Also Published As

Publication number Publication date
WO1998030352A1 (en) 1998-07-16
JP2000000657A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
WO1998030351A1 (en) Soldering method and soldering iron
US5139193A (en) Fluxless resoldering system and fluxless soldering process
WO2008020585A1 (en) Method and apparatus for forming amorphous coating film
JPH0735649Y2 (en) Nozzle for desoldering device
JP3541307B2 (en) Soldering iron
US20120125982A1 (en) Gas feed device for a wave soldering or tinning machine
WO2017106978A1 (en) Nozzle assembly
HU220317B (en) Stability enhancement of molten solder droplets as ejected from a nozzle of droplet pump
JP5260878B2 (en) Method for forming amorphous film by thermal spraying
JP2010258000A (en) Electronic apparatus manufacturing method by soldering of through-hole and soldering iron for the same
JP3345722B2 (en) Non-contact soldering iron capable of intermittent soldering
US9922870B2 (en) Method for applying an image of an electrically conductive material onto a recording medium and device for ejecting droplets of an electrically conductive fluid
JPH09181436A (en) Soldering method and soldering iron
JP2000033475A (en) Gas ejection type soldering iron
ES2208446T3 (en) PRODUCTION OF A POWDER FROM METAL FOUNDED BY SPRAYING WITH REACTIVE GAS.
JP3781697B2 (en) Method and apparatus for soldering electronic parts
JP2000176637A (en) Non-contacting type soldering iron
JP2002217534A (en) Soldering apparatus
JPH0217004Y2 (en)
JP6182586B2 (en) Soldering device
JPH08323466A (en) Soldering device
US20170058388A1 (en) Sprayed coating formation device and sprayed coating formation method
JP2939047B2 (en) Metal spraying method
JP2004071785A (en) Jet soldering equipment
JP2583263B2 (en) Highly radioactive solid waste cutting equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase