JP3281008B2 - Semiconductor storage device - Google Patents
Semiconductor storage deviceInfo
- Publication number
- JP3281008B2 JP3281008B2 JP32470191A JP32470191A JP3281008B2 JP 3281008 B2 JP3281008 B2 JP 3281008B2 JP 32470191 A JP32470191 A JP 32470191A JP 32470191 A JP32470191 A JP 32470191A JP 3281008 B2 JP3281008 B2 JP 3281008B2
- Authority
- JP
- Japan
- Prior art keywords
- memory cell
- source
- memory
- mos transistors
- memory device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 20
- 230000015654 memory Effects 0.000 claims description 66
- 239000000758 substrate Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 101100521334 Mus musculus Prom1 gene Proteins 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- Y02B70/16—
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体記憶装置に係
り、詳しくは、例えば、不揮発性メモリの分野に用いて
好適な、データの再書き込みが可能な半導体記憶装置に
関する。近年、不揮発性メモリの分野においては電気的
にデータの消去することにより再書き込みが可能な、例
えば、EEPROM(Electrically Erasable Programm
able Read Only Memory)等の半導体記憶装置が数多く
開発されている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device and, more particularly, to a data rewritable semiconductor memory device suitable for use in, for example, the field of non-volatile memory. In recent years, in the field of non-volatile memory, data can be rewritten by electrically erasing data, for example, an electrically erasable programmable (EEPROM).
Many semiconductor memory devices such as an Able Read Only Memory have been developed.
【0002】これは、予め書き込まれた所定のデータを
電気的に消去することで再書き込みが可能となる不揮発
性メモリである。このような不揮発性メモリでは、磁気
記憶装置等の媒体から置き換えての使用を考慮して大容
量化、及び低コスト化が図られるとともに、携帯型情報
処理端末に使用することを考慮して低電圧化が要求され
る。[0002] This is a nonvolatile memory which can be rewritten by electrically erasing predetermined data which has been written in advance. Such a non-volatile memory achieves a large capacity and low cost in consideration of use by replacing a medium such as a magnetic storage device, and has a low cost in consideration of use in a portable information processing terminal. Voltage is required.
【0003】[0003]
【従来の技術】従来、予め書き込まれた所定のデータを
消去することで再書き込みが可能となる不揮発性メモリ
である半導体記憶装置としては、例えば、EPROM
(Erasable Programmable Read Only Memory)やEEP
ROM等が知られている。しかし、EPROMはセルサ
イズが小さいという長所があるが、データの消去に紫外
線を用いるためにデータ消去が面倒であり、また、EE
PROMはデータを電気的に消去できるためにデータ消
去は容易であるが、EPROMと比較してセルサイズが
大きいために大容量化しにくいという問題がある。2. Description of the Related Art Conventionally, as a semiconductor memory device which is a nonvolatile memory which can be rewritten by erasing predetermined data written in advance, for example, an EPROM
(Erasable Programmable Read Only Memory) or EEP
ROMs and the like are known. However, the EPROM has the advantage of a small cell size, but the use of ultraviolet rays for data erasure makes data erasure troublesome.
PROMs can erase data easily because they can electrically erase data, but have the problem that it is difficult to increase the capacity due to the large cell size compared to EPROMs.
【0004】そこで、これらの各メモリの長所を併せ持
つ、例えば、FLASHメモリと呼ばれる半導体記憶装
置が開発されている。図4はFLASHメモリの中でも
最も代表的なセルの断面図である。図中、CGはコント
ロールゲート、FGはフローティングゲート、DはN+
型のドレイン、SはN+ 型のソース、PSはP型の基板
である。Therefore, a semiconductor memory device called, for example, a FLASH memory, which has the advantages of these memories, has been developed. FIG. 4 is a sectional view of the most typical cell in the FLASH memory. In the figure, CG is a control gate, FG is a floating gate, D is N +
D is a drain, S is an N + -type source, and PS is a P-type substrate.
【0005】図5は図4に示すFLASHメモリのセル
マトリクス構成を示す回路図である。図中、Cは各メモ
リセル、WLx はワード線、BLx はビット線、SLx
はセレクト線を示す。(但し、x は図中におけ
るi ,j ,a ,m ,n を示す)次に作用を説明する。FIG. 5 is a circuit diagram showing a cell matrix configuration of the FLASH memory shown in FIG. In the figure, C is the memory cell, WL x denotes a word line, BL x bit line, SL x
Indicates a select line. (However, x indicates i , j , a , m , n in the figure) Next, the operation will be described.
【0006】まず、メモリセルCに書き込みを行う場合
は、コントロールゲートCG、及びドレインDに高電位
電圧VPPが印加され、前述のEPROMと同様に、ドレ
インD近傍でのアバランシェ注入によりフローティング
ゲートFGに電子が注入されてメモリセルCがカットオ
フされる。消去する場合は、ドレインDがフロートされ
た状態でソースSに高電位電圧V PPが印加され、フロー
ティングゲートFGから電子が抜き去られることで、書
き込まれたデータの消去がなされる。First, when writing to memory cell C,
Indicates that the control gate CG and the drain D have a high potential.
Voltage VPPIs applied, and the drain is applied in the same manner as in the EPROM.
Floating due to avalanche injection near in-D
When electrons are injected into the gate FG, the memory cell C is cut off.
Is When erasing, the drain D is floated.
The source S has a high potential voltage V PPIs applied and the flow
With the removal of electrons from the operating gate FG,
The written data is erased.
【0007】なお、前述した動作状態におけるコントロ
ールゲートCG、ドレインD、ソースS、基板PSの各
電位レベルは表1に示すような値に設定される。The potential levels of the control gate CG, drain D, source S, and substrate PS in the above-described operating state are set to values as shown in Table 1.
【0008】[0008]
【表1】 [Table 1]
【0009】[0009]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の半導体記憶装置にあっては、フローティング
ゲートFGから電子を抜き去ることによって書き込まれ
たデータの消去を行うという構成となっていたため、以
下に述べるような問題点があった。すなわち、消去時に
あまり多くの電子を抜き去ると過剰消去となり、非選択
のメモリセルがリーク電流を流してしまうという問題点
があった。However, such a conventional semiconductor memory device has a configuration in which written data is erased by extracting electrons from the floating gate FG. There was a problem as described above. That is, if too many electrons are extracted during erasing, excessive erasing occurs, and there is a problem that a non-selected memory cell causes a leak current to flow.
【0010】したがって、過剰消去を防止するために
は、消去時にフローティングゲートFGから少しずつ電
子を抜き去っては読み出しチェックを行わなければなら
ないという複雑な制御が必要である。また、半導体記憶
装置の記憶容量の増大に伴い、プロセスのばらつき、つ
まり、個々のメモリセルのばらつきを防止する必要があ
るために製造自体が困難となる。Therefore, in order to prevent excessive erasure, it is necessary to perform complicated control such that electrons must be extracted from the floating gate FG little by little at the time of erasure to perform a read check. Further, with the increase in the storage capacity of the semiconductor memory device, it is necessary to prevent process variations, that is, variations in individual memory cells, which makes the manufacturing itself difficult.
【0011】さらに、半導体記憶装置の試験時間も膨大
なものとなってしまう。そこで、EEPROMのように
選択トランジスタを追加するということも考えられる
が、この場合、選択トランジスタの追加はセルサイズの
増大を招くという新たな問題点が発生するため、実用的
でない。 [目的] そこで本発明は、セルサイズの増大を抑えつつ、過剰消
去による弊害を防止する半導体記憶装置を提供すること
を目的としている。Further, the test time of the semiconductor memory device becomes enormous. Therefore, it is conceivable to add a selection transistor like an EEPROM. However, in this case, the addition of the selection transistor causes a new problem that the cell size is increased, which is not practical. [Object] It is an object of the present invention to provide a semiconductor memory device that suppresses an adverse effect due to excessive erasure while suppressing an increase in cell size.
【0012】[0012]
【課題を解決するための手段】本発明による半導体記憶
装置は上記目的達成のため、電気的に消去可能な半導体
記憶装置において、同一のワード線上にある所定数のメ
モリセルを1単位としてメモリセル群を複数形成し、該
複数のメモリセル群各々にゲートが前記ワード線に接続
されたMOSトランジスタを形成し、前記複数のメモリ
セル群各々において各メモリセルのソースを接続すると
ともに、該ソースは前記MOSトランジスタを介して共
通ソースに接続するように構成している。ここで、前記
MOSトランジスタを含む前記複数のメモリセル群をウ
ェル内に形成し、前記複数のメモリセル群に予め書き込
まれた所定のデータを、前記ワード線に負電位電圧を印
加し消去することは好ましい。 In order to achieve the above object, a semiconductor memory device according to the present invention provides an electrically erasable semiconductor device.
In a storage device, a predetermined number of messages on the same word line
A plurality of memory cell groups are formed with a memory cell as one unit,
Gate connected to the word line for each of a plurality of memory cell groups
Forming a plurality of MOS transistors,
Connecting the source of each memory cell in each cell group
In both cases, the sources are shared via the MOS transistor.
It is configured to connect to a communication source . Where
A plurality of memory cell groups including MOS transistors
Formed in a cell and previously written in the plurality of memory cell groups.
The specified data, and apply a negative potential voltage to the word line.
Adding and erasing is preferable.
【0013】また、前記MOSトランジスタを含む前記
複数のメモリセル群を形成するウェルは少なくとも2以
上に分割されることが好ましく、前記複数のメモリセル
群に予め書き込まれた所定のデータを消去する場合、前
記ウェルを基板電位と同電位とすることが効果的であ
る。In addition, the above-mentioned MOS transistor includes the above- mentioned MOS transistor.
Preferably well to form a plurality of memory cell groups which are divided into at least two or more, if you erase a predetermined data written in advance in the plurality of memory cell groups, the well and substrate the same potential It is effective to do.
【0014】[0014]
【作用】本発明では、メモリセル群のワード線がゲート
に接続されるMOSトランジスタが設けられ、このMO
Sトランジスタ、及びメモリセル群中の各メモリセルの
ソースが共通に接続されており、データの読み出し時に
は、選択されたメモリセル群のみがソースに接続されて
いるため、仮に非選択のメモリセル群中に過剰消去セル
が存在したとしても非選択メモリセル群のソースは切り
離されているため、過剰消去セルの影響が抑えられる。According to the present invention, a MOS transistor in which a word line of a memory cell group is connected to a gate is provided.
Since the S transistor and the source of each memory cell in the memory cell group are connected in common, and only the selected memory cell group is connected to the source at the time of reading data, the non-selected memory cell group Even if an over-erased cell exists, the source of the unselected memory cell group is cut off, so that the influence of the over-erased cell is suppressed.
【0015】また、消去のために複雑な制御も必要な
く、追加されるMOSトランジスタも1メモリセル群に
対して1個なので、セル面積も従来のものとほとんど変
わらない。すなわち、過剰消去による弊害が防止される
とともに、その際のセルサイズの増大も抑えられる。Further, complicated control for erasing is not required, and since one MOS transistor is added to one memory cell group, the cell area is almost the same as that of the conventional one. That is, adverse effects due to excessive erasure are prevented, and an increase in cell size at that time is also suppressed.
【0016】[0016]
【実施例】以下、本発明を図面に基づいて説明する。図
1〜3は本発明に係る半導体記憶装置の一実施例を示す
図である。まず、構成を説明する。なお、図1〜3にお
いて、図4,5に示した従来例に付された番号と同一番
号は同一部分を示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. 1 to 3 are views showing one embodiment of a semiconductor memory device according to the present invention. First, the configuration will be described. In FIGS. 1 to 3, the same reference numerals as those of the conventional example shown in FIGS.
【0017】図1は本実施例のメモリセルの断面図であ
り、図中、GはMOSトランジスタTのゲート、CSは
N+ 型の共通ソース、PWはP型のウェル、NSはN型
の基板である。図2は本実施例の要部構成を示す平面図
であり、図中、CWはコンタクト窓、WLはポリシリコ
ンからなるワード線、BLはアルミ配線ビット線、CS
はアルミ配線からなる共通ソース、Sは拡散層からなる
ソース、FGはフローティングゲートである。FIG. 1 is a cross-sectional view of a memory cell according to the present embodiment. In the figure, G is the gate of a MOS transistor T, CS is an N + type common source, PW is a P type well, and NS is an N type. It is a substrate. FIG. 2 is a plan view showing a configuration of a main part of the present embodiment. In the drawing, CW is a contact window, WL is a word line made of polysilicon, BL is an aluminum wiring bit line, CS
Is a common source made of aluminum wiring, S is a source made of a diffusion layer, and FG is a floating gate.
【0018】図3は図2の等価回路図であり、図中、C
Bはメモリセル群を示し、1バイト分、すなわち、8ビ
ットのメモリセルCと、1個のMOSトランジスタTと
から構成されている。次に作用を説明する。本実施例で
は、表2に示すように、読み出し時には選択されたワー
ド線WLが高電位電圧VCC(この場合、5V)とされる
ことにより、フローティングゲートFGに電子が注入さ
れた状態(書き込んだ状態)ではカットオフされ、電子
が引き抜かれた状態(消去した状態)ではオンされるこ
とで、データの“L”,“H”が検出される。FIG. 3 is an equivalent circuit diagram of FIG.
B denotes a memory cell group, which is composed of one byte, that is, an 8-bit memory cell C, and one MOS transistor T. Next, the operation will be described. In this embodiment, as shown in Table 2, the word line WL selected at the time of reading the high-potential voltage V CC (in this case, 5V) by being a state in which electrons in the floating gate FG is injected (Writing In this state, the data is cut off, and in the state where electrons are extracted (erased state), the data is turned on, thereby detecting "L" and "H" of data.
【0019】[0019]
【表2】 [Table 2]
【0020】ここで、選択されたメモリセル群CBのソ
ースだけが0V電位とされるため、仮に非選択中のメモ
リセル群CB中にリークが存在しても、MOSトランジ
スタ(ソーストランジスタ)Tによりカットオフされて
いるので、図3から明らかなように、リーク電流パスは
非選択中のメモリセル群CBのうち選択されたメモリセ
ル群CBに隣接した一部のメモリセルにのみ生じるもの
であって実質的にリーク電流は無視できる。書き込み時
には、通常のEPROMと同様に、ワード線WLに高電
位電圧VPP(この場合、12V)が印加されるととも
に、ビット線BLにも高電位電圧VPP(この場合、12
V)が印加されることによってアバランシェブレークダ
ウンが起こされ、フローティングゲートFGに電子が注
入される。Here, since only the source of the selected memory cell group CB is set to the potential of 0 V, even if a leak exists in the unselected memory cell group CB, the MOS transistor (source transistor) T Since it is cut off , the leakage current path is
The memory cell selected from among the non-selected memory cell groups CB
That occurs only in some memory cells adjacent to the memory group CB
Therefore, the leak current can be substantially ignored . At the time of writing, like a normal EPROM, a high potential voltage V PP (in this case, 12V) to the word line WL with is applied, to the bit line BL high level voltage V PP (in this case, 12
The application of V) causes avalanche breakdown, and electrons are injected into the floating gate FG.
【0021】消去時には、ワード線WLに負の高電位電
圧−VPP(この場合、−7V)が印加されることによっ
てフローティングゲートFGからウェルPW側へかけて
のトンネル現象により、電子が引き抜かれる。これは、
本実施例の構成においては、消去時に高電位電圧を共通
ソースCSに印加することができないので、ゲートに負
の高電位電圧を印加することによりフローティングゲー
トFGから基板NS側に電子を放出させるためである。[0021] At the time of erasing, a negative high potential voltage -V PP (in this case, -7V) to the word line WL by tunneling over from the floating gate FG to the wells PW side by is applied, electrons are extracted . this is,
In the configuration of this embodiment, since a high potential voltage cannot be applied to the common source CS during erasing, electrons are emitted from the floating gate FG to the substrate NS by applying a negative high potential voltage to the gate. It is.
【0022】ここで、ウェルPW電位を基板NSと同電
位のVCC(この場合、5V)まで上げることによって電
界を強くして消去時間を早めることができる。このよう
に本実施例では、所定ビット数のメモリセル群に対して
1個のMOSトランジスタを追加することにより、過剰
消去の問題を回避できる。したがって、大容量化されて
も従来のセルと同程度の面積を実現でき、プロセスのば
らつきによる過剰消去を防止できる。Here, by raising the potential of the well PW to V CC (5 V in this case), which is the same potential as the substrate NS, the electric field can be increased and the erase time can be shortened. As described above, in the present embodiment, the problem of excessive erasure can be avoided by adding one MOS transistor to a memory cell group having a predetermined number of bits. Therefore, even if the capacity is increased, the same area as that of the conventional cell can be realized, and excessive erasure due to process variation can be prevented.
【0023】なお、上記実施例はソースを共通に接続す
るメモリセル群中のメモリセル数を8ビット分、すなわ
ち、1バイト単位としているが、これに限らず、例え
ば、1ワード単位でもよく、処理系に適した単位として
任意であることは言うまでもない。In the above embodiment, the number of memory cells in the memory cell group commonly connected to the source is 8 bits, that is, in units of 1 byte. However, the present invention is not limited to this. Needless to say, the unit is arbitrary as a unit suitable for the processing system.
【0024】[0024]
【発明の効果】本発明では、メモリセル群のワード線が
ゲートに接続されたMOSトランジスタを設け、このM
OSトランジスタを介して、共通に接続したメモリセル
群中の各メモリセルの各ソースを共通ソースに接続し、
データの読み出し時には、選択したメモリセル群のみを
ソースに接続しているため、仮に非選択のメモリセル群
中に過剰消去セルが存在したとしても非選択メモリセル
群のソースは切り離されているため、過剰消去セルの影
響を抑えることができる。According to the present invention, a MOS transistor in which a word line of a memory cell group is connected to a gate is provided.
Memory cells commonly connected via an OS transistor
Connect each source of each memory cell in the group to a common source ,
At the time of data reading, only the selected memory cell group is connected to the source, so even if an over-erased cell exists in the unselected memory cell group, the source of the unselected memory cell group is disconnected. In addition, the influence of the over-erased cells can be suppressed.
【0025】また、消去のために複雑な制御も不要であ
り、追加されるMOSトランジスタも1メモリセル群に
対して1個であるため、セル面積も従来のものとほとん
ど変わらない。したがって、過剰消去による弊害を防止
でき、その際のセルサイズの増大も抑えることができ
る。Further, complicated control for erasing is not required, and the number of added MOS transistors is one for each memory cell group, so that the cell area is almost the same as that of the conventional one. Therefore, adverse effects due to excessive erasure can be prevented, and an increase in cell size at that time can be suppressed.
【図1】本発明の半導体記憶装置のメモリセルの断面図
である。FIG. 1 is a sectional view of a memory cell of a semiconductor memory device of the present invention.
【図2】本実施例の要部構成を示す平面図である。FIG. 2 is a plan view illustrating a main configuration of the present embodiment.
【図3】図2の等価回路図である。FIG. 3 is an equivalent circuit diagram of FIG.
【図4】従来のFLASHメモリにおけるメモリセルの
断面図である。FIG. 4 is a sectional view of a memory cell in a conventional FLASH memory.
【図5】従来のFLASHメモリのセルマトリクス構成
を示す回路図である。FIG. 5 is a circuit diagram showing a cell matrix configuration of a conventional flash memory.
CG コントロールゲート FG フローティングゲート D ドレイン S ソース PS P型基板 C メモリセル WLx ワード線 BLx ビット線 SLx セレクト線 CS 共通ソース G ゲート WL ワード線 BL ビット線 PW P型ウェル NS N型基板 CW コンタクト窓 CB メモリセル群CG control gate FG floating gate D drain S source PS P-type substrate C memory cell WL x word line BL x bit line SL x select line CS common source G gate WL word line BL bit line PW P-type well NS N-type substrate CW contact Window CB memory cell group
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/8247 H01L 27/115 H01L 29/788 H01L 29/792 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/8247 H01L 27/115 H01L 29/788 H01L 29/792
Claims (4)
て、 同一のワード線上にある所定数のメモリセルを1単位と
してメモリセル群を複数形成し、 該複数のメモリセル群各々にゲートが前記ワード線に接
続されたMOSトランジスタを形成し、 前記複数のメモリセル群各々において各メモリセルのソ
ースを接続するとともに、該ソースは前記MOSトラン
ジスタを介して共通ソースに接続する ことを特徴とする
半導体記憶装置。1. An electrically erasable semiconductor memory device.
A predetermined number of memory cells on the same word line
To form a plurality of memory cell groups, and a gate is connected to the word line in each of the plurality of memory cell groups.
Connected MOS transistors are formed, and in each of the plurality of memory cell groups, the source of each memory cell is formed.
Source, and the source is connected to the MOS transistor.
A semiconductor memory device connected to a common source via a resistor .
メモリセル群をウェル内に形成し、 前記複数のメモリセ
ル群に予め書き込まれた所定のデータを、前記ワード線
に負電位電圧を印加し消去することを特徴とする請求項
1記載の半導体記憶装置。2. The plurality of MOS transistors including the MOS transistors.
A memory cell group is formed in the well, and the plurality of memory cells are formed.
The predetermined data written in advance to the word group is
2. The semiconductor memory device according to claim 1, wherein a negative potential voltage is applied to said memory cell for erasing .
メモリセル群を形成するウェルは少なくとも2以上に分
割されていることを特徴とする請求項2記載の半導体記
憶装置。3. The plurality of MOS transistors including the MOS transistors.
The wells forming the memory cell group are divided into at least two or more.
3. The semiconductor memory device according to claim 2, wherein the semiconductor memory device is divided.
た所定のデータを消去する場合、前記ウェルを基板電位
と同電位にすることを特徴とする請求項2または3記載
の半導体記憶装置。 4. The method according to claim 1, wherein said plurality of memory cell groups are written in advance.
When erasing predetermined data, the well is set at the substrate potential.
4. The electric potential as set forth in claim 2, wherein:
Semiconductor storage device.
Priority Applications (21)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32470191A JP3281008B2 (en) | 1991-12-09 | 1991-12-09 | Semiconductor storage device |
EP01117838A EP1168365A3 (en) | 1991-12-09 | 1992-12-09 | Negative-voltage bias circuit |
EP92924898A EP0570597B1 (en) | 1991-12-09 | 1992-12-09 | Flash memory improved in erasing characteristic, and circuit therefor |
EP99115180A EP0961290B1 (en) | 1991-12-09 | 1992-12-09 | Flash memory with improved erasability and its circuitry |
EP99115179A EP0961289B1 (en) | 1991-12-09 | 1992-12-09 | Flash memory with improved erasability and its circuitry |
DE69231751T DE69231751T2 (en) | 1991-12-09 | 1992-12-09 | FLASH MEMORY WITH IMPROVED DELETION PROPERTIES AND CIRCUIT FOR IT |
EP01121238A EP1168362A3 (en) | 1991-12-09 | 1992-12-09 | Flash memory with improved erasability and its circuitry |
DE69232807T DE69232807T2 (en) | 1991-12-09 | 1992-12-09 | Flash memory with better erasability and its switching |
DE69232211T DE69232211T2 (en) | 1991-12-09 | 1992-12-09 | Flash memory with better erasability and its switching |
DE69900372T DE69900372T2 (en) | 1991-12-09 | 1992-12-09 | Supply voltage switch |
EP99114223A EP0954102A1 (en) | 1991-12-09 | 1992-12-09 | Exclusive or/nor circuits |
KR1019930702211A KR970003809B1 (en) | 1991-12-09 | 1992-12-09 | Flash memory improved in erasing characteristic and circuit therefor |
EP99110956A EP0944094B1 (en) | 1991-12-09 | 1992-12-09 | Power switching circuit |
PCT/JP1992/001608 WO1993012525A1 (en) | 1991-12-09 | 1992-12-09 | Flash memory improved in erasing characteristic, and circuit therefor |
US08/436,699 US5770963A (en) | 1991-12-09 | 1995-05-08 | Flash memory with improved erasability and its circuitry |
US08/436,721 US5608670A (en) | 1991-12-09 | 1995-05-08 | Flash memory with improved erasability and its circuitry |
US08/440,843 US5619450A (en) | 1991-12-09 | 1995-05-15 | Drive circuit for flash memory with improved erasability |
US08/441,598 US5592419A (en) | 1991-12-09 | 1995-05-15 | Flash memory with improved erasability and its circuitry |
US08/441,460 US5576637A (en) | 1991-12-09 | 1995-05-15 | XOR CMOS logic gate |
US08/445,103 US5631597A (en) | 1991-12-09 | 1995-05-19 | Negative voltage circuit for a flash memory |
US08/449,001 US5640123A (en) | 1991-12-09 | 1995-05-24 | Substrate voltage control circuit for a flash memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32470191A JP3281008B2 (en) | 1991-12-09 | 1991-12-09 | Semiconductor storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05160373A JPH05160373A (en) | 1993-06-25 |
JP3281008B2 true JP3281008B2 (en) | 2002-05-13 |
Family
ID=18168752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32470191A Expired - Lifetime JP3281008B2 (en) | 1991-12-09 | 1991-12-09 | Semiconductor storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3281008B2 (en) |
-
1991
- 1991-12-09 JP JP32470191A patent/JP3281008B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05160373A (en) | 1993-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4058134B2 (en) | Flash memory device | |
KR100337766B1 (en) | A non-volatile semiconductor memory device circuit | |
US8045386B2 (en) | Methods and apparatus for programming a memory cell using one or more blocking memory cells | |
US5034926A (en) | Non-volatile semiconductor memory | |
US5790456A (en) | Multiple bits-per-cell flash EEPROM memory cells with wide program and erase Vt window | |
JPH06119790A (en) | Nonvolatile semiconductor memory | |
JP3558510B2 (en) | Nonvolatile semiconductor memory device | |
US6657898B2 (en) | Nonvolatile semiconductor memory device and data erase method therefor | |
CN107910033B (en) | EEPROM and erasing, programming and reading method thereof | |
JPH10302488A (en) | Non-volatile semiconductor memory device | |
US6272044B2 (en) | Semiconductor storage device and method of driving thereof | |
JPH07120716B2 (en) | Semiconductor memory device | |
JP3464955B2 (en) | Semiconductor storage device and storage method | |
JPH0757486A (en) | Driving method for nand type nonvolatile memory | |
KR20220160473A (en) | Semiconductor storage device | |
JP3281008B2 (en) | Semiconductor storage device | |
US6266280B1 (en) | Method of programming nonvolatile semiconductor device at low power | |
JP3228188B2 (en) | Electrically writable / erasable nonvolatile semiconductor memory device | |
JPH046698A (en) | Non-volatile semiconductor storing device | |
JP3692664B2 (en) | Nonvolatile semiconductor memory device | |
JP3578478B2 (en) | Nonvolatile semiconductor memory device | |
JPH09246404A (en) | Non-volatile semiconductor memory | |
KR100643481B1 (en) | Nonvolatile Semiconductor Memory Device_ | |
JPH05198190A (en) | Flush memory | |
US6091638A (en) | Method for programming, reading and erasing a flash memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010828 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020212 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |