JP3258525B2 - 画像表示装置 - Google Patents

画像表示装置

Info

Publication number
JP3258525B2
JP3258525B2 JP13793195A JP13793195A JP3258525B2 JP 3258525 B2 JP3258525 B2 JP 3258525B2 JP 13793195 A JP13793195 A JP 13793195A JP 13793195 A JP13793195 A JP 13793195A JP 3258525 B2 JP3258525 B2 JP 3258525B2
Authority
JP
Japan
Prior art keywords
electron
display device
emitting device
row
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13793195A
Other languages
English (en)
Other versions
JPH08329865A (ja
Inventor
泉 金井
英明 光武
英俊 鱸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13793195A priority Critical patent/JP3258525B2/ja
Priority to US08/658,080 priority patent/US6140985A/en
Priority to CN96108000A priority patent/CN1127711C/zh
Priority to EP96304156A priority patent/EP0747925A3/en
Publication of JPH08329865A publication Critical patent/JPH08329865A/ja
Application granted granted Critical
Publication of JP3258525B2 publication Critical patent/JP3258525B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、電子源として表面伝導
型放出素子を用い、これらを2次元平面上に複数個配置
した画像表示装置に関するものである。
【0002】
【従来の技術】従来から、電子放出素子としては、熱陰
極素子と冷陰極素子の2種類が知られている。このうち
冷陰極素子では、例えば、表面伝導型電子放出素子や、
電界放出型素子(以下FE型と記す)や、金属/絶縁層
/金属型放出素子(以下MIM型と記す)、などが知ら
れている。
【0003】FE型の例は、例えば、W. P. Dyke&W.
W. Dolan,“Field emission”,Advance in Electron
Physics, 8, 89 (1956)や、或は、C. A. Spindt,“Phys
icalProperties of thin-film field emission catheod
es with molybdenum cones”,J. Appl. Phys., 47, 52
48 (1976)等が知られている。
【0004】また、MIM型の例としては、例えば、C.
A. Mead, “Operation of tunnel-emission Devices,
J. Appl. Phys., 32,646 (1961)などが知られている。
【0005】表面伝導型電子放出素子としては、例え
ば、M. I. Elinson Radio E-ng. Electron Phys., 10,
1290. (1965)や、後述する他の例が知られている。
【0006】また、表面伝導型電子放出素子は、基板上
に形成された小面積の薄膜に、膜面に平行に電流を流す
ことにより電子放出が生ずる現象を利用するものであ
る。この表面伝導型電子放出素子としては、前記エリン
ソン(Elinson)等によるSnO2薄膜を用いたものの他
に、Au薄膜によるもの[G. Dittmer:“Thin Solid Fi
lms”,,9,317(1972)]や、In2 O3 /SnO2 薄膜
によるもの[M. Hartwelland C. G. Fonstad:“IEEE Tr
ans. ED Conf.”,519 (1975)]や、カーボン薄膜による
もの[荒木久 他:真空、第26巻、第1号、22(1
983)]等が報告されている。
【0007】これらの表面伝導型電子放出素子の素子構
成の典型的な例として、M. Hartwellらによる素子の平
面図を図19に示す。同図において、3001は基板
で、3004はスパッタで形成された金属酸化物よりな
る導電性薄膜である。この導電性薄膜3004は図示の
ようにH字形の平面形状に形成されている。この導電性
薄膜3004に後述の通電フォーミングと呼ばれる通電
処理を施すことにより、電子放出部3005が形成され
る。尚、図中の間隔Lは、0.5〜1[mm],Wは
0.1[mm]で設定されている。また、図示の便宜か
ら、電子放出部3005は導電性薄膜3004の中央に
矩形の形状で示したが、これは模式的なものであり、実
際の電子放出部の位置や形状を忠実に表現しているわけ
ではない。
【0008】M. Hartwellらによる素子を初めとして上
述の表面伝導型電子放出素子においては、電子放出を行
う前に導電性薄膜3004に通電フォーミングと呼ばれ
る通電処理を施すことにより電子放出部3005を形成
するのが一般的であった。即ち、通電フォーミングと
は、導電性薄膜3004の両端に一定の直流電圧、もし
くは、例えば1V/分程度の非常にゆっくりとしたレー
トで昇圧する直流電圧を印加して通電し、導電性薄膜3
004を局所的に破壊もしくは変形もしくは変質せし
め、電気的に高抵抗な状態の電子放出部3005を形成
することである。尚、局所的に破壊もしくは変形もしく
は変質した導電性薄膜3004の一部には亀裂が発生す
る。そして、この通電フォーミング後に導電性薄膜30
04に適宜の電圧を印加した場合には、その亀裂付近に
おいて電子放出が行われる。
【0009】上述の表面伝導型放出素子は、構造が単純
で製造も容易であることから、大面積に亙り多数の電子
放出素子を形成できる利点がある。そこで、例えば、本
出願人による特開昭64−31332号公報において開
示されるように、多数の素子を配列して駆動するための
方法が研究されている。
【0010】また、表面伝導型放出素子の応用について
は、例えば、画像表示装置、画像記録装置などの画像形
成装置や、荷電ビーム源、等が研究されている。
【0011】特に画像表示装置への応用としては、例え
ば本出願人によるUSP5,066,883や特開平2
−257551号公報において開示されているように、
表面伝導型放出素子と電子ビームの照射により発光する
蛍光体とを組み合わせて用いた画像表示装置が研究され
ている。表面伝導型放出素子と蛍光体とを組み合わせて
用いた画像表示装置は、従来の他の方式の画像表示装置
よりも優れた特性が期待されている。例えば、近年普及
してきた液晶表示装置と比較しても、自発光型であるた
めバックライトを必要としない点や、視野角が広い点が
優れていると言える。
【0012】図20に示すように、赤(R)、緑
(G)、青(B)3色の画素が三角形状に並んでいる配
列をデルタ配列と呼ぶ。このデルタ配列は、同図に示す
ように上下に隣接している2ラインにおいて、画素のピ
ッチが行方向に1/2ピッチずれている。このようなデ
ルタ配列の表示装置を作るために、液晶表示装置では図
21のように、列方向配線を蛇行させている(特公平3
−64046号)。
【0013】
【発明が解決しようとする課題】このように、デルタ配
列の表示装置において、列方向配線を蛇行させると、列
方向配線が直線である場合に比べて、製造が難しいとい
う問題点があった。本発明は上記従来例に鑑みてなされ
たもので、列方向配線を直線のままにしてデルタ配列さ
れた画像表示装置を提供することを目的とする。
【0014】また本発明の目的は、1つの電子放出素子
で複数の蛍光体を発光駆動することにより、デルタ形状
に配置された蛍光体を通常のマトリクス状に接続された
電子放出素子で駆動できる画像表示装置を提供すること
にある。
【0015】また本発明の目的は、1つの蛍光体が複数
の輝点を有するように発光駆動することにより、蛍光体
の分割駆動を容易にした画像表示装置を提供することに
ある。
【0016】
【課題を解決するための手段】上記目的を達成するため
に本発明の画像表示装置は以下のような構成を備える。
即ち、一対の電極と電子放出部とを具備する表面伝導型
放出素子を複数の行に亙って接続しマトリクス状に形成
したマルチ電子ビーム源と、前記電子ビーム源より放出
される電子により発光する蛍光体とを備えた画像表示装
置において、前記蛍光体が複数行に亙って、隣接する行
間で前記蛍光体の位置が行方向にほぼ1/2ずれて配設
され、前記蛍光体のそれぞれのほぼ中心が行方向に隣接
する表面伝導型放出素子の電子放出部の間のほぼ中央の
上方に来るように配設された蛍光面と、前記表面伝導型
電子放出素子に印加する電位方向を、前記行の1走査期
間の前半と後半とで反転させ画像信号に応じて駆動する
駆動手段とを有する。
【0017】
【作用】以上の構成において、蛍光面では、蛍光体が複
数行に亙って、隣接する行間で蛍光体の位置が行方向に
ほぼ1/2ずれて配設され、蛍光体のそれぞれのほぼ中
心が行方向に隣接する表面伝導型放出素子の電子放出部
の間のほぼ中央の上方に来るように配設されており、表
面伝導型電子放出素子に印加する電位方向を行の1走査
期間の前半と後半とで反転させることにより、画像信号
に応じて駆動するように動作する。
【0018】
【実施例】以下、添付図面を参照して本発明の好適な実
施例を詳細に説明する。
【0019】図1は、本発明の一実施例の画像表示装置
の構成を示すブロック図である。尚、この第1実施例で
は、飛び越し走査を行わない場合で説明する。
【0020】同期分離回路14は、NTSC信号s1の
同期信号と映像信号を分離する。この同期分離回路14
で分離された同期信号はタイミング制御回路3へ、映像
信号は信号処理部1へ送られる。信号処理部1は、映像
信号にA/D変換などの信号処理を施した後、これをス
イッチ15に出力している。スイッチ15は、タイミン
グ制御回路3よりの信号s8により、一水平走査期間
(1H)毎に、その接続を端子e又は端子fに切り替え
られている。これにより、原画像信号の1ライン分のデ
ータは、1ラインずつ交互にメモリ17,18に送られ
て格納される。スイッチ16もまたタイミング制御回路
3よりの信号s9により一水平走査期間(1H)毎に切
り替えられ、メモリ17,18に格納されているデータ
を交互に読み出して変調信号発生部2へ出力している。
変調信号発生部2では、1ライン分の映像信号をシリア
ル−パラレル変換し、パルス幅変調信号s4として、M
OS−FET11のゲートヘ出力している。
【0021】スイッチング回路4は、ゲート11より出
力される映像信号s5の極性を反転させるための回路で
ある。ディスプレイパネル12内の電子放出素子13
は、後述する図3に示すように、対向する一対の電極5
6,57間に電子放出部53が挟まれた構造をしてい
る。この一対の電極56,57にかける電圧の極性を反
転することにより、電子放出素子13は電子を放出する
方向を、例えば図3に示すように図面の右方向に放出し
たり、或はその逆に左方向に放出させることができる。
尚、タイミング制御回路3よりの制御信号s2は、映像
信号s5の極性を反転するタイミングを制御する信号で
ある。また、10は映像信号s5の極性を反転させるた
めのスイッチで、後述するスイッチ8と連動して切り替
えられる。
【0022】スイッチング回路5は、走査信号s6の極
性を反転させるための回路である。パルス発生器6は、
同じ極性のパルス信号s7を発生し続ける。そして、タ
イミング制御回路3よりの信号s3によりスイッチ8が
切り替わることにより、パルス発生器6よりのパルス信
号s7が反転器9を通ると、そのパルス信号s7の極性
が反転し、通らなければ反転しない。そして、このスイ
ッチング回路5を通ったパルス信号s7は、走査行選択
回路7によって表示駆動する行が選択された走査信号s
6としてディスプレイパネル12に送られる。
【0023】図2は、本実施例のディスプレイパネル1
2の構成を説明するための図である。
【0024】電子放出素子13は、対向する2つの電極
56、57と、これら電極56,57に挟まれた電子放
出部53とを有している。これら電極56,57間に、
ある値以上の電圧をかけることにより電子放出部53か
ら電子が放出される。図示のように、電極57は列方向
配線54と接続されており、映像信号s5の電位と同電
位になる。また電極56は行方向配線55に接続されて
おり、このラインが選択されて表示走査されている間は
走査信号s6の電位と同電位になる。ここで、映像信号
s5と走査信号s6の極性を反転すれば、電極56,5
7に加わる電位の極性も反転する。従って、電子放出部
53に印加される電圧の極性も反転する。こうして電子
放出部53に印加される電圧の極性が反転すると、その
電子放出部53から放出される電子の軌道は、図3に示
すように変化する。
【0025】図3は、図2の断面Aで切った場合の1つ
の電子放出素子の構成を示す断面図である。
【0026】フェースプレート101の内側(電子放出
素子部53側)には、図示のように蛍光体110,11
1が塗布されている。電極56,57は、それぞれ行方
向配線55、列方向配線54と接続されており、ある値
以上の電圧(例えばVf[v])が印加されると電子放
出部53から電子が放出される。電子が放出されると、
フェースプレート101と電子放出部53との間に印加
された電圧Va[V]によって、その電子はフェースプ
レート101方向に加速され、フェースプレート101
の蛍光体110又は111にに照射される。このとき電
子は、中心軸100に沿って真上に進むのではなく電子
軌道102、或いは電子軌道103を描いて進む。い
ま、電極56が負極性で電極57が正極性となるように
電圧Vfを印加したとき(図の実線)は、電子放出部5
3から放出された電子は、電子軌道103(実線)に示
す軌道上を進んで蛍光体111を発光させ、逆に、電極
56が正極性で、電極57が負極性となるように電圧V
fが印加された時は(図の点線)、電子放出部53から
放出される電子の軌道は電子軌道102(点線)で示す
ようになリ、蛍光体110が発光される。この時の中心
軸100と電子のランディング位置との距離Lefは、
次式(1)により算出できる。
【0027】 Lef=2×K×Lh×SQRT(Vf/Va) (1) 但し、Lh[m]は、電子放出素子13と蛍光体110
あるいは111との距離を示し、Kは、電子放出素子1
3の種類や形状により決まる定数である。また、SQR
T(Vf/Va)は、Vf/Vaの平方根を示してい
る。
【0028】次に、本実施例の表示装置の動作を、図1
を用いて説明する。
【0029】例えばTV受像回路等より入力されるNT
SC信号は、同期分離回路14で同期信号と映像信号に
分けられる。同期信号はタイミング制御回路3に送ら
れ、映像信号は信号処理部1へ送られる。信号処理部1
では、R,G,B色の復調やA/D変換等を行い、ディ
ジタルの映像信号をスイッチ15に出力する。このスイ
ッチ15の接続は、1H毎に端子eと端子fとに切り替
えられ、1ライン分のイメージデータを記憶するメモリ
17,18に交互に書き込まれる。この原画像の1ライ
ン分のデータは、ディスプレイパネル12の1ラインの
表示データに相当している。
【0030】いま最初にスイッチ15が端子eに接続さ
れ、1ライン分の原画像データがメモリ17に格納され
ると、次にスイッチ15が端子fと接続するように切り
替えられ、次の1ライン分の画像データがメモリ18に
格納される。このメモリ18に画像データが記憶されて
いる間、メモリ17に記憶されている1ライン分の画像
データが、端子gに接続されているスイッチ16を介し
て読み出される。この読み出しの作業は、1/2H間で
行われ、2回繰り返し実行される。尚、これらメモリ1
7,18は例えばシフトレジスタ等で構成され、メモリ
17からのデータの読み出しは、最初の1/2H期間で
はメモリ17の内容がそのまま読み出され、次の1/2
H期間では、メモリ17の内容がディスプレイパネル1
2の右方向に1ビット分だけシフトされて出力される。
またメモリ18の場合は、最初の1/2H期間では1ラ
インデータがそのまま読み出され、次の1/2H期間で
は、そのメモリ18の内容が右方向に2ビットだけシフ
トされて読み出される。これにより、後述する図5に示
すように、同の蛍光体150が、同一のデータに基づい
て発光駆動されることになる。
【0031】こうして読み出された1ライン分の画像デ
ータは変調信号発生部2へ送られる。変調信号発生部2
では、スイッチ16を介して送られてきた1ライン分の
画像データをシリアル−パラレル変換し、パルス幅変調
信号s4としてMOS−FET11のゲートへ送り出
す。尚、スイッチ16は、スイッチ15の接続が端子e
の時は端子hに、スイッチ15の接続が端子fの時は端
子gに接続されるように、1Hごとに切り替えられる。
つまり、スイッチ15が端子eに接続されてメモリ17
に画像データを格納しているときは、スイッチ16は端
子hに接続されてメモリ18から画像データを読み出
す。反対にスイッチ15が端子fに接続されてメモリ1
8にデータを格納しているときは、スイッチ16データ
端子gに接続されてメモリ17からデータが読み出され
ている。
【0032】スイッチング回路4は、映像信号s5の極
性を反転させるための回路で、スイッチ10には、タイ
ミング制御回路3からスイッチ切替え信号s2が入力さ
れており、この切替え信号s2に従って、スイッチ10
の接続がa端子とb端子との間で切り換えられる。いま
スイッチ10がa端子と接続されている時は、負極性の
映像信号s5がディスプレイパネル12に送られ、逆に
スイッチ10が端子bと接続されているときは、正極性
の映像信号s5が出力されることになる。この正と負の
極性の切り換えは1/2水平同期期間(1/2H)ごと
に行われる。
【0033】スイッチング回路5は、ディスプレイパネ
ル12に入力される走査信号s6の極性を反転させるた
めの回路である。まず、パルス発生器6が同じ極性(例
えば正極性)で1/2H周期のパルス信号s7を発生す
る。スイッチ8は、タイミング制御回路3よりのスイッ
チ切替え信号s3により、1/2Hごとに切り替えられ
る。即ち、スイッチ8が端子cと接続しているときは、
パルス信号s7はそのままスイッチング回路5を通過し
て走査行選択回路7に入力される。一方、スイッチ8が
端子dと接続されている時は、パルス信号s7は反転器
9により極性を反転されて(負極性)、走査行選択回路
7へ送られる。従って、スイッチング回路5を通過した
パルスは1/2H毎に反転している。走査行選択回路7
では、選択する行を1H毎に切替えて、走査信号s6を
ディスプレイパネル12に出力する。こうして1/2水
平同期期間ごとに極性が反転された信号が、走査行選択
回路7を介して選択されたディスプレイパネル12の走
査行に送られる。従って、ディスプレイパネル12の1
行は、最初の1/2H期間で1ラインデータそのもので
走査駆動され、次の1/2H期間でシフトされた1ライ
ンデータで走査駆動される。こうして1/2Hずつで2
回走査され、この2回の走査において、電子放出部53
に印加される極性が反転することになる。
【0034】次に、本実施例の動作を図4のタイミング
チャートを用いて説明する。尚、図中の記号は図1と同
じものである。
【0035】NTSC信号s1の映像信号は、信号処理
部1及び変調信号発生部2により信号処理されてパルス
幅変調信号s4となる。図4におけるパルス幅変調信号
s4は、ある一本の列方向の信号線に注目し、そこを流
れる信号を示したものである。このパルス幅変調信号s
4は1/2Hを周期とする信号で、その信号s4の幅L
が長いほど、電子放出部53から電子が放出される時間
が長くなるため、それにより発光される画素の輝度が明
るく感じられる。スイッチング回路4を切替えるスイッ
チ切替え信号s2は、1/2Hごとに発生され、このス
イッチ切替え信号s2によりスイッチ10が切り換えら
れる。
【0036】図4におけるスイッチ切替え信号s2の
a,bは、スイッチ10における端子との接続状態を示
している。即ち、スイッチ10が端子aと接続されてい
る時は映像信号s5が負極性に、端子bと接続されてい
る時は、映像信号s5が正極性になる。このときの映像
信号s5の様子が、図4の映像信号s5で示されてい
る。尚、映像信号s5を示す細実線は接地電位(=0
[V])を表している。この映像信号s5のパルス幅
は、パルス幅変調信号s4の幅Lと等しくなる。
【0037】また、パルス発生器6より出力されるパル
ス信号s7も又前述のように1/2H周期で発生する。
本実施例では、パルス信号s7は正極性とする。タイミ
ング制御回路3より出力されるスイッチ8を切り換える
ための信号s3もまた1/2H周期で発生しており、こ
れによりスイッチ8は、1/2Hごとに端子cと端子d
に切り替えられて接続される。図4における信号s3の
c,dは、スイッチ8における端子,dとの接続状態を
示している。これに伴って走査信号s6は、図4に示す
ように、1/2Hごとに極性が反転された信号となる。
この時常に、映像信号s5と走査信号s6の極性は反対
でなければならない。
【0038】図5は以上のように表示装置を駆動した
際、各々の電子放出部からどのように蛍光体150に電
子が照射されるかを示した図である。
【0039】図5及び図6は、後述する図7のように
X,Y,Z座標系を決めたとき、n行目と(n+1)行
目の電子放出素子13に沿って、XZ平面で切った断面
図を示した図である。図5及び図6において、上側がn
行目の断面図で、下側が(n+1)行目の断面図であ
る。
【0040】本実施例の表示装置は、画素配列がデルタ
配列であるため、図のようにn行目と(n+1)行目と
で、蛍光体150は水平方向に1/2ピッチずれて配設
されている。電極57は列方向配線(配線i〜配線l)
54に接続されており、他方電極56は行方向配線55
に接続されている。図示のように、これら電極56,5
7の位置は、n行目と(n+1)行目とで水平方向にず
れていない。そのため列方向配線i〜配線lは、各々一
本の直線で構成されている。そして、電極56と電極5
7との間に電子放出部53が挟まれて形成されている。
電子放出素子13に存在する電子放出部53から電子が
放出され、電子軌道155を描いて蛍光体150に照射
される。また、図5に示すように、n行目では各蛍光体
の中心は隣接する電子放出部53の間を1:1に分割す
る位置の上方にあり、(n+1)行目では各蛍光体の中
心は電子放出部53の上方にある。本実施例の画像表示
装置では、このような2種類の行が1行おきに配設され
ている。
【0041】次に、n行目と(n+1)行目の2行の電
子放出素子13の駆動方法を説明する。
【0042】まずn行目の行方向配線55が選択され、
この配線に正極性の走査信号s6が入力される。この走
査信号s6を入力する期間は1/2Hである。この走査
信号s6と同期して、列方向配線54に負極性の映像信
号s5が入力される。これにより、電極57の電位は負
極性となり、電極56の電位は正極性になる。これによ
り電子放出部53から図のような電子軌道155(実
線)を描いて、電子が蛍光体150に照射される。次
に、同じくn行目の行方向配線55に負極性の走査信号
s6が入力され、これと同期して列方向配線54に正極
性の映像信号s5が入力される。この時、走査信号s6
を入力する期間はやはり1/2Hである。これにより、
電極57の電位は正極性になり、電極56の電位は負極
性になる。こうして電子放出部53から図のような電子
軌道156(点線)を描いて電子が蛍光体150に照射
される。
【0043】ここで電子軌道155(実線)に沿って駆
動される際の1ラインデータと、電子軌道156(点
線)に沿って駆動される1ラインデータとは、前述した
ように1ビット右方向にシフトした関係にあるため、同
一データが同じ蛍光体150を発光駆動することにな
る。
【0044】次に(n+1)行目の行方向配線55が選
択され、この行方向配線55に正極性の走査信号s6が
入力される。この走査信号s6を入力する期間は1/2
Hである。この走査信号s6と同期して、列方向配線5
4には負極性の映像信号s5が入力される。すると電極
57の電位は負極性となり、電極56の電位は正極性と
なる。これにより電子放出部53から図のような電子軌
道155(実線)を描いて、電子が蛍光体150に照射
される。次に同じく(n+1)行目の行方向配線55に
負極性の走査信号s6が入力され、これに同期して列方
向配線54に正極性の映像信号s5が入力される。この
場合、走査信号s6を入力する期間はやはり1/2Hで
ある。こうして電極57の電位は正極性となり、電極5
6の電位は斜線の方は負極性になる。これにより、電子
放出部53から図のような電子軌道156(点線)を描
いて、電子が蛍光体150に照射される。
【0045】この(n+1)行の表示時には、メモリ1
8より1ラインの画像データが読み出され、前述したよ
うに1Hの最初の1/2H期間で、1ラインデータがそ
のまま読み出されて、ディスプレイパネル12の対応す
る行を走査駆動し、次の1/2H期間では、その1ライ
ンデータが右方向に2ビットシフトされて読み出され、
そのシフトされたデータに基づいて対応する行が走査駆
動されるため、同じ蛍光体が同じ画像データにより発光
駆動されることになる。
【0046】次に、図5における(n+1)行目の電子
軌道P(155),Q(156)を、図4と対応付けて
説明する。いま図4の映像信号s5を、図5の配線jに
入力される信号と仮定する。図4の映像信号s5(列方
向)のpの部分はG(緑)の信号であり、図5の電子軌
道Pをつくるための信号である。また、図4の映像信号
s5のqの部分は、元のラインデータを2ビット右方向
にシフトしたR(赤)の信号であり、図5の電子起動Q
を作るため信号である。
【0047】このように連続する1/2H間で電子放出
部53にかける電極56,57の電圧極性を反転するこ
とにより、蛍光体150がデルタ配列された表示装置を
実現することができる。
【0048】また、図6のように電子軌道を変えること
により、電子放出部53と蛍光体150の組み合わせ
を、図5とは異なるように構成することも可能である。
このような電子軌道の変化は、前述した(1)式のV
a,Vfの値を変えることで可能となる。
【0049】図6の場合も図5と同様に、蛍光体はデル
タ形状に配設され、また各蛍光体150の中心は隣接す
る電子放出部のほぼ中間に来るように位置している。こ
の図6の場合は、電子軌道の傾きが図5の場合に比べて
少ないため、n行目では、同一の電子放出素子により、
最初の1/2H期間で発光駆動される蛍光体と、次の1
/2H期間で発光駆動される蛍光体とは右方向に1つだ
けずれており、(n+1)行目では、同じ蛍光体を発光
駆動している。従って、メモリ17の読み出し時には前
述の図5と同様に、最初の1/2H期間では1ラインデ
ータがそのまま読み出され、次の1/2H期間では、1
ビット右方向にシフトされた1ラインデータが読み出さ
れる。また、メモリ18の読み出し時には、最初の1/
2H期間、次の1/2H期間に関係なく、全く同じライ
ンデータが読み出されることになる。
【0050】尚、本実施例では、1H期間の最初の1/
2H期間と、次の1/2H期間における1ラインデータ
のビットシフトは、メモリ17及び18により行われる
ように説明したが、本発明はこれに限定されるものでな
く、例えば変調信号発生部2により行っても良い。但
し、この場合は、変調信号発生部2は、選択されている
表示行が奇数行か偶数行であるか、更には表示期間が、
最初の1/2H期間であるか、次の1/2H期間である
かをを判別するための何らかの手段、或はタイミング制
御回路3よりの信号入力等が必要となる。
【0051】また図5及び図6から明らかなように、同
じ色の蛍光体であっても、それに電子が衝突する位置を
変更して画素を表示するので、1H期間に1つの蛍光体
に複数の輝点を作ることができるため、蛍光体を2つに
分けて表示させることができるという利点もある。
【0052】[ディスプレイパネル12の構成と製造
法]次に、本実施例に適用した画像表示装置のディスプ
レイパネル12の構成と、その製造法について、具体的
な例を示して説明する。
【0053】図7は、本実施例に用いたディスプレイ
(表示)パネル12の斜視図であり、その内部構造を示
すためにパネル12の1部を切り欠いて示している。
【0054】図中、1005はリアプレートで、前述の
リアプレート153に対応している。1006は側壁、
1007はフェースプレートで、このフェースプレート
1007は、前述のフェースプレート101に対応して
いる。これら1005〜1007により、表示パネル1
2の内部を真空に維持するための気密容器を形成してい
る。このような気密容器を組み立てるにあたっては、各
部材の接合部に十分な強度と気密性を保持させるため封
着する必要があるが、例えばフリットガラスを接合部に
塗布し、大気中あるいは窒素雰囲気中で、摂氏400〜
500度で10分以上焼成することにより封着を達成し
た。気密容器内部を真空に排気する方法については後述
する。
【0055】リアプレート1005には基板1001が
固定されているが、この基板1001上には表面伝導型
放出素子1002がN×M個形成されている。(N,M
は2以上の正の整数であり、目的とする表示画素数に応
じて適宜設定される。例えば、高品位テレビジョンの表
示を目的とした表示装置においては、N=3000,M
=1000以上の数を設定することが望ましい。本実施
例においては、N=3072,M=1024とした)。
N×M個の表面伝導型放出素子1002は、M本の行方
向配線1003とN本の列方向配線1004により単純
マトリクス配線されている。前記1001〜1004に
よって構成される部分をマルチ電子ビーム源と呼ぶ。な
お、マルチ電子ビーム源の製造方法や構造については、
後で詳しく述べる。
【0056】本実施例においては、気密容器のリアプレ
ート1005にマルチ電子ビーム源の基板1001を固
定する構成としたが、マルチ電子ビーム源の基板100
1が十分な強度を有するものである場合には、気密容器
のリアプレートとしてマルチ電子ビーム源の基板100
1自体を用いてもよい。
【0057】また、フェースプレート1007の下面に
は、蛍光膜1008(前述の実施例の蛍光体150に相
当)が形成されている。本実施例はカラー表示装置であ
るため、蛍光膜1008の部分にはCRTの分野で用い
られる赤、緑、青、の3原色の蛍光体が塗り分けられて
いる。各色の蛍光体は、例えば図8に示すように、RG
Bの各色に対応した蛍光体がデルタ形状に配列されてお
り、各色の蛍光体間には黒色の導電材1010が設けら
れている。この黒色の導電材1010を設ける目的は、
電子ビームの照射位置に多少のずれがあっても表示色に
ずれが生じないようにするためや、外光の反射を防止し
て表示コントラストの低下を防ぐため、更には電子ビー
ムによる蛍光膜のチャージアップを防止するためなどで
ある。この黒色の導電体1010には、黒鉛を主成分と
して用いたが、上記の目的に適するものであればこれ以
外の材料を用いても良い。
【0058】尚、モノクロームの表示パネルを作成する
場合には、単色の蛍光体を蛍光膜1008に用いればよ
く、また黒色導電材1010は必ずしも必要としない。
【0059】また、蛍光膜1008のリアプレート10
05側の面には、CRTの分野では公知のメタルバック
1009を設けてある。このメタルバック1009を設
けた目的は、蛍光膜1008が発する光の一部を鏡面反
射して光の利用率を向上させるためや、負イオンの衝突
から蛍光膜1008を保護するため、電子ビームの加速
電圧を印加するための電極として作用させるためや、更
には蛍光膜1008を励起した電子の導電路として作用
させるためなどである。このようなメタルバック100
9は、蛍光膜1008をフェースプレート1007上に
形成した後、蛍光膜表面を平滑化処理し、その上にAl
(アルミニウム)を真空蒸着する方法により形成した。
なお、蛍光膜1008に低電圧用の蛍光体材料を用いた
場合にはメタルバック1009は用いない。
【0060】また、本実施例では用いなかったが、加速
電圧の印加用や蛍光膜の導電性向上を目的として、フェ
ースプレート1007と蛍光膜1008との間に、例え
ばITOを材料とする透明電極を設けてもよい。
【0061】また、Dx1〜Dxm,Dy1〜Dyn及びHv
は、この表示パネル12と不図示の電気回路とを電気的
に接続するために設けた気密構造の電気接続用端子であ
る。これらDx1〜Dxmは、マルチ電子ビーム源の行方向
配線55と接続され、Dy1〜Dynはマルチ電子ビーム源
の列方向配線54と接続され、Hvはフェースプレート
1007のメタルバック1009と電気的に接続されて
いる。
【0062】また、気密容器内部を真空に排気するに
は、気密容器を組み立てた後、不図示の排気管と真空ポ
ンプとを接続し、気密容器内を10のマイナス7乗[T
orr]程度の真空度まで排気する。その後、排気管を
封止するが、気密容器内の真空度を維持するために、封
止の直前或はその封止後に、気密容器内の所定の位置に
ゲッター膜(不図示)を形成する。このゲッター膜と
は、例えばBaを主成分とするゲッター材料をヒータも
しくは高周波加熱により加熱し、蒸着して形成した膜で
あり、該ゲッター膜の吸着作用により気密容器内は1×
10マイナス5乗ないしは1×10マイナス7乗[To
rr]の真空度に維持される。
【0063】以上、本発明の一実施例の表示パネル12
の基本構成とその製法について説明した。
【0064】次に、前記実施例の表示パネル12に用い
たマルチ電子ビーム源の製造方法について説明する。本
実施例の画像表示装置に用いるマルチ電子ビーム源は、
表面伝導型放出素子を単純マトリクス配線した電子源で
あれば、表面伝導型放出素子の材料や形状あるいは製法
に制限はない。しかしながら、本願発明者らは、表面伝
導型放出素子の中で、電子放出部もしくはその周辺部を
微粒子膜から形成したものが電子放出特性に優れ、しか
も製造が容易に行えることを見出している。従って、こ
のようなマルチ電子ビーム源は、高輝度で大画面の画像
表示装置に用いる場合に最も好適であると言える。そこ
で、上記実施例の表示パネル12においては、電子放出
部53もしくはその周辺部を微粒子膜から形成した表面
伝導型放出素子1002を用いている。そこで、まず好
適な表面伝導型放出素子について基本的な構成と製法お
よび特性を説明し、その後で多数の素子を単純マトリク
ス配線したマルチ電子ビーム源の構造について述べる。
【0065】[表面伝導型放出素子の好適な素子構成と
その製法]電子放出部もしくはその周辺部を微粒子膜か
ら形成する表面伝導型放出素子の代表的な構成には、平
面型と垂直型の2種類があげられる。
【0066】<平面型の表面伝導型放出素子>まず最初
に、平面型の表面伝導型放出素子の素子構成と、その製
法について説明する。
【0067】図9(a)(b)に示すのは、平面型の表
面伝導型放出素子の構成を説明するための平面図(a)
および断面図(b)である。
【0068】図中、1101は基板、1102と110
3は素子電極(前述の電極56,57に対応)、110
4は導電性薄膜、1105は通電フォーミング処理によ
り形成した電子放出部、1113は通電活性化処理によ
り形成した薄膜を示している。基板1101としては、
例えば、石英ガラスや青板ガラス等の各種ガラス基板
や、アルミナ等の各種セラミクス基板、あるいは上述の
各種基板上に例えばSiO2 を材料とする絶縁層を積層
した基板などを用いることができる。
【0069】また、基板1101上に基板面と平行に対
向して設けられた素子電極1102と1103は、導電
性を有する材料によって形成されている。例えば、N
i,Cr,Au,Mo,W,Pt,Ti,Cu,Pd,
Ag等の金属、あるいはこれらの金属の合金、あるいは
In2O3 −SnO2 等の金属酸化物、ポリシリコンな
どの半導体、などの中から適宜材料を選択して用いれば
よい。これら電極1102,1103を形成するには、
例えば真空蒸着などの製膜技術とフォトリソグラフィ、
エッチングなどのパターニング技術を組み合わせて用い
れば容易に形成できるが、それ以外の方法(例えば印刷
技術)を用いて形成してもさしつかえない。
【0070】素子電極1102と1103の形状は、当
該電子放出素子の応用目的に合わせて適宜設計される。
一般的には、電極間隔Lは、通常は数百オングストロー
ムから数百マイクロメータの範囲から適当な数値を選ん
で設計されるが、中でも表示装置に応用するために好ま
しいのは数マイクロメータより数十マイクロメータの範
囲である。また、素子電極の厚さdについては、通常は
数百オングストロームから数マイクロメータの範囲から
適当な数値が選ばれる。また、導電性薄膜1104の部
分には、微粒子膜を用いる。ここで述べた微粒子膜と
は、構成要素として多数の微粒子を含んだ膜(島状の集
合体も含む)のことを指す。微粒子膜を微視的に調べれ
ば、通常は、個々の微粒子が離間して配置された構造
か、あるいは微粒子が互いに隣接した構造か、或は微粒
子が互いに重なり合った構造が観測される。
【0071】微粒子膜に用いた微粒子の粒径は、数オン
グストロームから数千オングストロームの範囲に含まれ
るものであるが、なかでも好ましいのは10オングスト
ロームから200オングストロームの範囲のものであ
る。また、微粒子膜の膜厚は、以下に述べるような諸条
件を考慮して適宜設定される。即ち、素子電極1102
或は1103と電気的に良好に接続するのに必要な条
件、後述する通電フォーミングを良好に行うのに必要な
条件、微粒子膜自身の電気抵抗を後述する適宜の値にす
るために必要な条件などである。
【0072】具体的には、数オングストロームから数千
オングストロームの範囲のなかで設定するが、なかでも
好ましいのは10オングストロームから500オングス
トロームの間である。
【0073】また、微粒子膜を形成するのに用いられう
る材料としては、例えば、Pd,Pt,Ru,Ag,A
u,Ti,In,Cu,Cr,Fe,Zn,Sn,T
a,W,Pb,等の金属や、PdO,SnO2 ,In2
O3 ,PbO,Sb2O3 ,等の酸化物や、HfB2 ,
ZrB2 ,LaB6 ,CeB6 ,YB4 ,GdB4 ,等
の硼化物や、TiC,ZrC,HfC,TaC,Si
C,WC,等の炭化物や、TiN,ZrN,HfN,等
の窒化物や、Si,Ge,等の半導体や、カーボン、な
どがあげられ、これらの中から適宜選択される。
【0074】以上述べたように、導電性薄膜1104を
微粒子膜で形成したが、そのシート抵抗値については、
10の3乗から10の7乗[オーム/sq]の範囲に含
まれるよう設定した。
【0075】なお、導電性薄膜1104と素子電極11
02および1103とは、電気的に良好に接続されるの
が望ましいため、互いの一部が重なり合うような構造を
とっている。その重なり方は、図9の例においては、下
から、基板1101、素子電極1102,1103、導
電性薄膜1104の順序で積層したが、場合によっては
下から基板、導電性薄膜、素子電極の順序で積層しても
差し支えない。
【0076】また、電子放出部1105は、導電性薄膜
1104の一部に形成された亀裂状の部分であり、電気
的には周囲の導電性薄膜よりも高抵抗な性質を有してい
る。この亀裂部分は、導電性薄膜1104に対して、後
述する通電フォーミングの処理を行うことにより形成さ
れる。この亀裂内には、数オングストロームから数百オ
ングストロームの粒径の微粒子が配置される場合があ
る。なお、実際の電子放出部の位置や形状を精密かつ正
確に図示するのは困難であるため、図9においては模式
的に示した。
【0077】また、薄膜1113は、炭素もしくは炭素
化合物よりなる薄膜で、電子放出部1105及びその近
傍を被覆している。薄膜1113は、通電フォーミング
処理後に、後述する通電活性化の処理を行うことにより
形成する。
【0078】薄膜1113は、単結晶グラファイト、多
結晶グラファイト、非晶質カーボン、のいずれかか、も
しくはその混合物であり、膜厚は500[オングストロ
ーム]以下とするが、300[オングストローム]以下
とするのより好ましい。
【0079】なお、実際の薄膜1113の位置や形状を
精密に図示するのは困難なため、図9においては模式的
に示し、平面図(a)においては、薄膜1113の一部
を除去した素子を図示した。
【0080】以上、好ましい素子の基本構成を述べた
が、実施例においては以下のような素子を用いた。
【0081】即ち、基板1101には青板ガラスを用
い、素子電極1102と1103にはNi薄膜を用い
た。これら素子電極1102,1103の厚さdは、1
000[オングストローム]、電極間隔Lは2[マイク
ロメータ]とした。微粒子膜の主要材料としてPdもし
くはPdOを用い、微粒子膜の厚さは約100[オング
ストローム]、幅Wは100[マイクロメータ]とし
た。
【0082】次に、好適な平面型の表面伝導型放出素子
の製造方法について説明する。
【0083】図10(a)〜(e)は、本実施例の表面
伝導型放出素子の製造工程を説明するための断面図で、
各部材の表記は前記図9と同一である。
【0084】(1)まず、図10(a)に示すように、
基板1101上に素子電極1102及び1103を形成
する。これら素子電極を形成するにあたっては、予め基
板1101を洗剤、純水、有機溶剤を用いて十分に洗浄
後、素子電極1102,1103の材料を堆積させる。
この堆積させる方法としては、例えば、蒸着法やスパッ
タ法などの真空成膜技術を用ればよい。その後、その堆
積した電極材料を、フォトリソグラフィ・エッチング技
術を用いてパターニングし、図10(a)に示した一対
の素子電極(1102と1103)を形成する。
【0085】(2)次に、図10(b)に示すように、
導電性薄膜1104を形成する。
【0086】この導電性薄膜1104を形成するにあた
っては、まず図10(a)の基板1101に有機金属溶
液を塗布して乾燥し、加熱焼成処理して微粒子膜を成膜
した後、フォトリソグラフィ・エッチングにより所定の
形状にパターニングする。ここで有機金属溶液とは、導
電性薄膜1104に用いる微粒子の材料を主要元素とす
る有機金属化合物の溶液である。具体的には、本実施例
では主要元素としてPdを用いた。また、実施例では塗
布方法として、ディッピング法を用いたが、それ以外の
例えばスピンナー法やスプレー法を用いてもよい。
【0087】また、微粒子膜で作られる導電性薄膜11
04の成膜方法としては、本実施例で用いた有機金属溶
液の塗布による方法以外の、例えば真空蒸着法やスパッ
タ法或は化学的気相堆積法などを用いる場合もある。
【0088】(3)次に、同図(c)に示すように、フ
ォーミング用電源1110から素子電極1102と11
03の間に適宜の電圧を印加し、通電フォーミング処理
を行って電子放出部1105を形成する。
【0089】この通電フォーミング処理とは、微粒子膜
で作られた導電性薄膜1104に通電を行って、その一
部を適宜に破壊、変形、もしくは変質せしめ、電子放出
を行うのに好適な構造に変化させる処理のことである。
この微粒子膜で作られた導電性薄膜のうち電子放出を行
うのに好適な構造に変化した部分(即ち、電子放出部1
105)においては、薄膜に適当な亀裂が形成されてい
る。なお、電子放出部1105が形成される前と比較す
ると、形成された後は素子電極1102と1103の間
で計測される電気抵抗は大幅に増加する。
【0090】このフォーミングのための通電方法をより
詳しく説明するために、図11に、フォーミング用電源
1110から印加する適宜の電圧波形の一例を示す。
【0091】微粒子膜で作られた導電性薄膜1104を
フォーミングする場合には、パルス状の電圧が好まし
く、本実施例の場合には同図に示したようにパルス幅T
1の三角波パルスをパルス間隔T2で連続的に印加し
た。その際には、三角波パルスの波高値Vpfを、順次
昇圧した。また、電子放出部1105の形成状況をモニ
タするためのモニタ・パルスPmを、適宜の間隔で三角
波パルスの間に挿入し、その際に流れる電流を電流計1
111(図10(c))で計測した。
【0092】本実施例においては、例えば10のマイナ
ス5乗[torr]程度の真空雰囲気下において、例え
ばパルス幅T1を1[ミリ秒]、パルス間隔T2を10
[ミリ秒]とし、波高値Vpfを1パルスごとに0.1
[V]ずつ昇圧した。そして、三角波を5パルス印加す
る毎に1回の割合で、モニタ・パルスPmを挿入した。
ここでフォーミング処理に悪影響を及ぼすことがないよ
うに、モニタ・パルスPmの電圧Vpmは0.1[V]
に設定した。そして、素子電極1102と1103の間
の電気抵抗が1×10の6乗[オーム]になった段階、
即ち、モニタ・パルスの印加時に、電流計1111で計
測される電流が1×10のマイナス7乗[A]以下にな
った段階で、フォーミング処理にかかわる通電を終了し
た。
【0093】なお、上記の方法は、本実施例の表面伝導
型放出素子に関する好ましい方法であり、例えば微粒子
膜の材料や膜厚、或は素子電極間隔Lなど、表面伝導型
放出素子の設計を変更した場合には、それに応じて通電
の条件を適宜変更するのが望ましい。
【0094】(4)次に、図10(d)に示すように、
活性化用電源1112から素子電極1102と1103
の間に適宜の電圧を印加し、通電活性化処理を行って、
電子放出特性の改善を行う。
【0095】この通電活性化処理とは、通電フォーミン
グ処理により形成された電子放出部1105に適宜の条
件で通電を行って、その近傍に炭素もしくは炭素化合物
を堆積せしめる処理のことである。図においては、炭素
もしくは炭素化合物よりなる堆積物を部材1113とし
て模式的に示した。尚、このような通電活性化処理を行
うことにより、この活性化処理を行う前と比較して、同
じ印加電圧における放出電流を典型的には100倍以上
に増加させることができる。
【0096】具体的には、10のマイナス4乗ないし1
0のマイナス5乗[torr]の範囲内の真空雰囲気中
で、電圧パルスを定期的に印加することにより、真空雰
囲気中に存在する有機化合物を起源とする炭素もしくは
炭素化合物を堆積させる。堆積物1113は、単結晶グ
ラファイト、多結晶グラファイト、非晶質カーボン、の
いずれかか、もしくはその混合物であり、膜厚は500
[オングストローム]以下、より好ましくは300[オ
ングストローム]以下である。
【0097】この時の通電方法をより詳しく説明するた
めに、図12(a)に、活性化用電源1112から印加
する適宜の電圧波形の一例を示す。本実施例において
は、一定電圧の矩形波を定期的に印加して通電活性化処
理を行ったが、具体的には,矩形波の電圧Vacは14
[V],パルス幅T3は、1[ミリ秒],パルス間隔T
4を10[ミリ秒]とした。尚、上述の通電条件は、本
実施例の表面伝導型放出素子に関する好ましい条件であ
り、表面伝導型放出素子の設計を変更した場合には、そ
れに応じて条件を適宜変更するのが望ましい。
【0098】図10(d)に示す1114は、該表面伝
導型放出素子から放出される放出電流Ieを捕捉するた
めのアノード電極で、直流高電圧電源1115および電
流計1116が接続されている。尚、基板1101を表
示パネル12の中に組み込んでから活性化処理を行う場
合には、表示パネル12の蛍光面をアノード電極111
4として用いる。活性化用電源1112から電圧を印加
する間、電流計1116により放出電流Ieを計測して
通電活性化処理の進行状況をモニタし、活性化用電源1
112の動作を制御する。
【0099】この電流計1116で計測された放出電流
Ieの一例を図12(b)に示すが、活性化電源111
2からパルス電圧を印加しはじめると、時間の経過とと
もに放出電流Ieは増加するが、やがて飽和してほとん
ど増加しなくなる。このように、放出電流Ieがほぼ飽
和した時点で活性化用電源1112からの電圧印加を停
止し、通電活性化処理を終了する。
【0100】なお、上述の通電条件は、本実施例の表面
伝導型放出素子に関する好ましい条件であり、表面伝導
型放出素子の設計を変更した場合には、それに応じて条
件を適宜変更するのが望ましい。
【0101】以上のようにして、図10(e)に示す平
面型の表面伝導型放出素子を製造した。
【0102】[垂直型の表面伝導型放出素子]次に、電
子放出部もしくはその周辺を微粒子膜から形成した表面
伝導型放出素子のもうひとつの代表的な構成、即ち、垂
直型の表面伝導型放出素子の構成について説明する。
【0103】図13は、垂直型の基本構成を説明するた
めの模式的な断面図である。
【0104】図中、1201は基板、1202と120
3は素子電極、1206は段差形成部材、1204は微
粒子膜を用いた導電性薄膜、1205は通電フォーミン
グ処理により形成した電子放出部、1213は通電活性
化処理により形成した薄膜、である。
【0105】垂直型が先に説明した平面型と異なる点
は、素子電極のうちの片方(1202)が段差形成部材
1206上に設けられており、導電性薄膜1204が段
差形成部材1206の側面を被覆している点にある。従
って、前記図9の平面型における素子電極間隔Lは、垂
直型においては段差形成部材1206の段差高Lsとし
て設定される。なお、基板1201、素子電極1202
および1203、微粒子膜を用いた導電性薄膜120
4、については、前記平面型の説明中に列挙した材料を
同様に用いることが可能である。また、段差形成部材1
206には、例えばSiO2 のような電気的に絶縁性の
材料を用いる。
【0106】次に、垂直型の表面伝導型放出素子の製法
について説明する。図14(a)〜(f)は、本実施例
における製造工程を説明するための断面図で、各部材の
表記は図13と同一で、以下の(1)〜(7)に従って
製造される。
【0107】(1)まず、図14(a)に示すように、
基板1201上に素子電極1203を形成する。
【0108】(2)同図(b)に示すように、段差形成
部材を形成するための絶縁層1206を積層する。この
絶縁層1206は、例えばSiO2 をスパッタ法で積層
すればよいが、例えば真空蒸着法や印刷法などの他の成
膜方法を用いてもよい。
【0109】(3)同図(c)に示すように、絶縁層1
206の上に素子電極1202を形成する。
【0110】(4)同図(d)に示すように、絶縁層1
206の一部を、例えばエッチング法を用いて除去し、
素子電極1203を露出させる。
【0111】(5)同図(e)に示すように、微粒子膜
を用いた導電性薄膜1204を形成する。この導電性薄
膜1204を形成するには、前記平面型の場合と同じ
く、例えば塗布法などの成膜技術を用いればよい。
【0112】(6)平面型の場合と同じく、通電フォー
ミング処理を行い、電子放出部1205を形成する。
(図10(c)を用いて説明した平面型の通電フォーミ
ング処理と同様の処理を行えばよい。) (7)平面型の場合と同じく、通電活性化処理を行い、
電子放出部1205近傍に炭素もしくは炭素化合物12
13を堆積させる。(図10(d)を用いて説明した平
面型の通電活性化処理と同様の処理を行えばよい。) 以上のようにして、図14(f)に示す垂直型の表面伝
導型放出素子を製造した。 [表示装置に用いた表面伝導型放出素子の特性]以上、
平面型と垂直型の表面伝導型放出素子について素子構成
と製法を説明したが、次にこの表面伝導型電子放出素子
を表示装置に用いた場合の特性について述べる。
【0113】図15は、本実施例の表面伝導型電子放出
素子を表示装置に用いた素子の(放出電流Ie)対(素
子印加電圧Vf)特性、および(素子電流If)対(素
子印加電圧Vf)特性の典型的な例を示す図である。
尚、放出電流Ieは素子電流Ifに比べて著しく小さ
く、同一尺度で図示するのが困難である上、これらの特
性は素子の大きさや形状等の設計パラメータを変更する
ことにより変化されるものであるため、2本のグラフは
各々任意の単位で図示した。
【0114】本実施例の表示装置に用いた電子放出素子
は、放出電流Ieに関して以下に述べる3つの特性を有
している。
【0115】第1に、ある電圧(これを閾値電圧Vth
と呼ぶ)以上の大きさの電圧を素子に印加すると急激に
放出電流Ieが増加するが、一方、閾値電圧Vth未満
の電圧では放出電流Ieはほとんど検出されない。即
ち、放出電流Ieに関して、明確な閾値電圧Vthを持
った非線形素子である。
【0116】第2に、放出電流Ieは素子に印加する電
圧Vfに依存して変化するため、電圧Vfで放出電流I
eの大きさを制御できる。
【0117】第3に、素子に印加する電圧Vfに対して
素子から放出される電流Ieの応答速度が速いため、電
圧Vfを印加する時間の長さによって素子から放出され
る電子の電荷量を制御できる。
【0118】以上のような特性を有するため、表面伝導
型放出素子を表示装置に好適に用いることができた。例
えば多数の素子を表示画面の画素に対応して設けた表示
装置において、第1の特性を利用すれば、表示画面を順
次走査して表示を行うことが可能である。即ち、駆動中
の素子には所望の発光輝度に応じて閾値電圧Vth以上
の電圧を適宜印加し、非選択状態の素子には閾値電圧V
th未満の電圧を印加する。こうして駆動する素子を順
次切り替えてゆくことにより、表示画面を順次走査して
表示を行うことが可能である。
【0119】また、前述した第2の特性か、又は第3の
特性を利用することにより、発光輝度を制御することが
できるため、諧調表示を行うことが可能である。
【0120】[多数素子を単純マトリクス配線したマル
チ電子ビーム源の構造]次に、上述の表面伝導型放出素
子を基板上に配列して単純マトリクス配線したマルチ電
子ビーム源の構造について述べる。
【0121】図16に示すのは、前記図7の表示パネル
12に用いたマルチ電子ビーム源の平面図である。前述
したように、基板1001上には、図9で示したものと
同様な表面伝導型放出素子が配列され、これらの素子は
行方向配線55と列方向配線54に接続され、単純マト
リクスに配線されている。行方向配線55と列方向配線
54とが交差する部分には、電極間に絶縁層(不図示)
が形成されており、電気的な絶縁が保たれている。
【0122】図16のA−A’に沿った断面形状を図1
7に示す。
【0123】なお、このような構造のマルチ電子源は、
予め基板1001上に行方向配線55、列方向配線5
4、電極間絶縁層(不図示)、および表面伝導型放出素
子の素子電極と導電性薄膜とを形成した後、行方向配線
55および列方向配線54を介して、各素子に給電して
通電フォーミング処理と通電活性化処理を行うことによ
り製造した。
【0124】図18は、本実施例の表面伝導型放出素子
を電子ビーム源として用いたディスプレイパネル12
に、例えばテレビジョン放送等の種々の画像情報源より
提供される画像情報を表示できるように構成した多機能
表示装置の一例を示すためのブロック図である。
【0125】図中、12は前述したディスプレイパネ
ル、2101はディスプレイパネル12の駆動回路で、
2101aは映像信号を出力する駆動回路、2101b
は走査信号を出力する駆動回路を示している。尚、本実
施例の表示装置は、例えばテレビジョン信号のように映
像情報と音声情報の両方を含む信号を受信する場合に
は、当然映像の表示と同時に音声を再生するものである
が、本実施例の特徴と直接関係しない音声情報の受信、
分離、再生、処理、記憶などに関する回路やスピーカな
どについては説明を省略する。
【0126】以下、画像信号の流れに沿って各部の機能
を説明してゆく。
【0127】まず、TV信号受信回路2113は、例え
ば電波や空間光通信などのような無線伝送系を用いて伝
送されるTV画像信号を受信するための回路である。受
信するTV信号の方式は特に限られるものではなく、例
えば、NTSC方式、PAL方式、SECAM方式など
の処方式でもよい。また、これらより更に多数の走査線
よりなるTV信号(例えばMUSE方式等のいわゆる高
品位TV)は、大面積化や大画素数化に適した前記ディ
スプレイパネル12の利点を生かすのに好適な信号源で
ある。TV信号受信回路2113で受信されたTV信号
は、デコーダ2104に出力される。
【0128】また、TV信号受信回路2112は、例え
ば同軸ケーブルや光ファイバなどのような有線伝送系を
用いて伝送されるTV画像信号を受信するための回路で
ある。前記TV信号受信回路2113と同様に、受信す
るTV信号の方式は特に限られるものではなく、また本
回路で受信されたTV信号もデコーダ2104に出力さ
れる。また、画像入力インターフェース回路2111
は、例えばTVカメラや画像読み取りスキャナなどの画
像入力装置から供給される画像信号を取り込むための回
路で、取り込まれた画像信号はデコーダ2104に出力
される。
【0129】画像メモリインターフェース回路2110
は、ビデオテープレコーダ(以下VTRと略す)に記憶
されている画像信号を取り込むための回路で、取り込ま
れた画像信号はデコーダ2104に出力される。画像メ
モリインターフェース回路2109は、ビデオディスク
に記憶されている画像信号を取り込むための回路で、取
り込まれた画像信号はデコーダ2104に出力される。
画像メモリインターフェース回路2108は、いわゆる
静止画ディスクのように、静止画像データを記憶してい
る装置から画像信号を取り込むための回路で、取り込ま
れた静止画像データはデコーダ2104に出力される。
【0130】入出力インターフェース回路2105は、
本表示装置と、外部のコンピュータもしくはコンピュー
タネットワークもしくはプリンタなどの出力装置とを接
続するための回路である。画像データや文字データ・図
形情報の入出力を行うのはもちろんのこと、場合によっ
ては本表示装置の備えるCPU2106と外部との間で
制御信号や数値データの入出力などを行うことも可能で
ある。画像生成回路2107は、前記入出力インターフ
ェース回路2105を介して外部から入力される画像デ
ータや文字・図形情報や、あるいはCPU2106より
出力される画像データや文字・図形情報に基づき表示用
画像データを生成するための回路である。本回路の内部
には、例えば画像データや文字・図形情報を蓄積するた
めの書き換え可能メモリや、文字コードに対応する画像
パターンが記憶されている読みだし専用メモリや、画像
処理を行うためのプロセッサなどの画像の生成に必要な
回路が組み込まれている。
【0131】本実施例の回路により生成された表示用画
像データは、デコーダ2104に出力されるが、場合に
よっては前記入出力インターフェース回路2105を介
して外部のコンピュータネットワークやプリンタ入出力
することも可能である。
【0132】また、CPU2106は、主として本表示
装置の動作制御や、表示画像の生成や選択や編集に関わ
る作業を行う。例えば、マルチプレクサ2103に制御
信号を出力し、ディスプレイパネルに表示する画像信号
を適宜選択したり組み合わせたりする。また、その際に
は表示する画像信号に応じてディスプレイパネル・コン
トローラ2102に対して制御信号を発生し、画面表示
周波数や走査方法(例えばインターレースかノンインタ
ーレースか)や一画面の走査線の数など表示装置の動作
を適宜制御する。前記画像生成回路2107に対して画
像データや文字・図形情報を直接出力したり、あるいは
前記入出力インターフェース回路2105を介して外部
のコンピュータやメモリをアクセスして画像データや文
字・図形情報を入力する。
【0133】なお、CPU2106は、むろんこれ以外
の目的の作業にも関わるものであっても良い。例えば、
パーソナルコンピュータやワードプロセッサなどのよう
に、情報を生成したり処理する機能に直接関わっても良
い。あるいは、前述したように入出力インターフェース
回路2105を介して外部のコンピュータネットワーク
と接続し、例えば数値計算などの作業を外部機器と協同
して行っても良い。
【0134】また、入力部2114は、前記CPU21
06に使用者が命令やプログラム、あるいはデータなど
を入力するためのものであり、例えばキーボードやマウ
スのほか、ジョイスティック,バーコードリーダ,音声
認識装置など多様な入力機器を用いることが可能であ
る。
【0135】デコーダ2104は、前記2107ないし
2113より入力される種々の画像信号を3原色信号、
または輝度信号とI信号,Q信号に逆変換するための回
路である。なお、同図中に点線で示すように、デコーダ
2104は内部に画像メモリを備えるのが望ましい。こ
れは、例えばMUSE方式をはじめとして、逆変換する
に際して画像メモリを必要とするようなテレビ信号を扱
うためである。また、画像メモリを備えることにより、
静止画の表示が容易になる、あるいは前記画像生成回路
2107およびCPU2106と協動して画素の間引
き、補間、拡大、縮小、合成等の画像処理や編集が容易
に行えるようになるという利点が生まれるからである。
【0136】マルチプレクサ2103は、前記CPU2
106より入力される制御信号に基づき表示画像を適宜
選択するものである。即ち、マルチプレクサ2103は
デコーダ2104から入力される逆変換された画像信号
のうちから所望の画像信号を選択して駆動回路2101
a,2101bに出力する。その場合には、一画面表示
時間内で画像信号を切り替えて選択することにより、い
わゆる多画面テレビのように、一画面を複数の領域に分
けて領域によって異なる画像を表示することも可能であ
る。また、ディスプレイパネルコントローラ2102
は、前記CPU2106より入力される制御信号に基づ
き駆動回路2101a,2101bの動作を制御するた
めの回路である。
【0137】まず、ディスプレイパネル12の基本的な
動作にかかわるものとして、例えばディスプレイパネル
の駆動用電源(図示せず)の動作シーケンスを制御する
ための信号を駆動回路2101a,2101bに対して
出力する。
【0138】また、ディスプレイパネルの駆動方法に関
わるものとして、例えば画面表示周波数や走査方法(例
えばインターレースかノンインターレースか)を制御す
るための信号を駆動回路2101a,2101bに対し
て出力する。
【0139】また、場合によっては表示画像の輝度やコ
ントラストや色調やシャープネスといった画質の調整に
関わる制御信号を駆動回路2101a,2101bに対
して出力する場合もある。駆動回路2101a,bは、
ディスプレイパネル12に印加する駆動信号を発生する
ための回路であり、前記マルチプレクサ2103から入
力される画像信号と、前記ディスプレイパネルコントロ
ーラ2102より入力される制御信号に基づいて動作す
るものである。
【0140】以上、各部の機能を説明したが、図18に
例示した構成により、本表示装置においては多様な画像
情報源より入力される画像情報をディスプレイパネル1
2に表示することが可能である。即ち、テレビジョン放
送等の各種の画像信号はデコーダ2104において逆変
換された後、マルチプレクサ2103において適宜選択
され、駆動回路2101a,2101bに入力される。
一方、ディスプレイコントローラ2102は、表示する
画像信号に応じて駆動回路2101a,2101bの動
作を制御するための制御信号を発生する。駆動回路21
01a,2101bは、画像信号と制御信号に基づいて
ディスプレイパネル12に駆動信号を印加する。
【0141】これにより、ディスプレイパネル12にお
いて画像が表示される。これらの一連の動作は、CPU
2106により統括的に制御される。また、本表示装置
においては、前記デコーダ2104に内蔵する画像メモ
リや、画像生成回路2107およびCPU2106が関
与することにより、単に複数の画像情報の中から選択し
たものを表示するだけでなく、表示する画像情報に対し
て、例えば拡大、縮小、回転、移動、エッジ強調、間引
き、補間、色変換、画像の縦横比変換等の画像処理や、
合成、消去、接続、入れ換え、はめ込み等の画像編集を
行うことも可能である。また、本実施例の説明では特に
触れなかったが、上記画像処理や画像編集と同様に、音
声情報に関しても処理や編集を行うための専用回路を設
けても良い。
【0142】従って、本表示装置は、テレビジョン放送
の表示機器、テレビ会議の端末機器、静止画像および動
画像を扱う画像編集機器、コンピュータの端末機器、ワ
ードプロセッサ等の事務用端末機器、ゲーム機などの機
能を一台で兼ね備えることが可能で、産業用あるいは民
生用として極めて応用範囲が広い。
【0143】なお、図20は、表面伝導型放出素子を電
子ビーム源とするディスプレイパネルを用いた表示装置
の構成の一例を示したにすぎず、これのみに限定される
ものではない事は言うまでもない。例えば、図18の構
成要素のうち使用目的上必要のない機能に関わる回路は
省いても差し支えない。またこれとは逆に、使用目的に
よってはさらに構成要素を追加しても良い。例えば、本
表示装置をテレビ電話機として応用する場合には、テレ
ビカメラ、音声マイク、照明機、モデムを含む送受信回
路などを構成要素に追加するのが好適である。
【0144】本表示装置においては、とりわけ表面伝導
型放出素子を電子ビーム源とするディスプレイパネルが
容易に薄形化できるため、表示装置全体の奥行きを小さ
くすることが可能である。それに加えて、表面伝導型放
出素子を電子ビーム源とするディスプレイパネルは大画
面化が容易で輝度が高く視野角特性にも優れるため、本
実施例の表示装置は臨場感あふれ迫力に富んだ画像を視
認性良く表示する事が可能である。
【0145】尚、本発明は、複数の機器から構成される
システムに適用しても、1つの機器から成る装置に適用
しても良い。また、本発明はシステム或は装置に本発明
を実施するプログラムを供給することによって達成され
る場合にも適用できる。
【0146】以上説明したように本実施例によれば、デ
ルタ配列の蛍光板をもつ表示装置において、列方向配線
を蛇行させる必要がなくなる。そのため、列方向配線は
直線でよく、配線作成の負荷が軽減する。
【0147】さらに、この列方向配線の蛇行を防ぐため
に、列方向配線を2倍配設する必要がなくなるため、装
置の大型化、コストアップ等を防止できる。
【0148】更に本実施例によれば、1つの色の蛍光体
に左右2箇所の輝点を作ることが出来るため、蛍光体を
左右2つに分けることが出来る。このように同色の蛍光
体を2つに分け、各々に輝点を作ることで、パネルの分
割作業が容易になる。
【0149】
【発明の効果】以上説明したように本発明によれば、列
方向配線を直線のままにしてデルタ配列された蛍光体を
発光できるという効果がある。
【0150】また本発明によれば、1つの電子放出素子
で複数の蛍光体を発光駆動することにより、デルタ形状
に配置された蛍光体を通常のマトリクス状に接続された
電子放出素子で駆動できるという効果がある。
【0151】また本発明によれば、1つの蛍光体が複数
の輝点を有するように発光駆動することにより、蛍光体
の分割駆動を容易にできるという効果がある。
【0152】
【図面の簡単な説明】
【図1】本実施例の表示装置の表示駆動回路の構成を示
すブロック図である。
【図2】本実施例の表示パネルにおける電子放出素子の
配列を説明する図である。
【図3】本実施例の電子放出素子の電子放出部から放出
された電子の軌道を表す図である。
【図4】本発明の一実施例における表示装置を駆動する
際のタイミングチャートである。
【図5】本実施例において、電子放出部から電子が放出
され蛍光体に照射される様子を示した図である。
【図6】本発明の他の実施例において、電子放出部から
電子が放出され蛍光体に照射される様子を示した図であ
る。
【図7】本発明の実施例の画像形成装置の表示パネルの
構成を示す一部分解斜視図である。
【図8】本実施例の画像形成装置の蛍光面の模式図であ
る。
【図9】本実施例で用いた平面型の表面伝導型放出素子
の平面図(a)と、その断面図(b)である。
【図10】本実施例の平面型の表面伝導型放出素子の製
造工程を示す断面図である。
【図11】本実施例における通電フォーミング処理の印
加電圧波形を示す図である。
【図12】本実施例における通電活性化処理の際の印加
電圧波形(a)と、放出電流Ieの変化(b)を示す図
である。
【図13】本実施例で用いた垂直型の表面伝導型放出素
子の平面図である。
【図14】本実施例の垂直型の表面伝導型放出素子の製
造工程を示す断面図である。
【図15】本実施例で用いた表面伝導型放出素子の典型
的な特性を示すグラフ図である。
【図16】本実施例のマルチ電子源の配列を説明する図
である。
【図17】図16のA−A’で示したマルチ電子ビーム
源の基板の断面図である。
【図18】本発明の実施例の画像形成装置の構成を示す
ブロック図である。
【図19】従来の表面伝導型放出素子の一例を示す図で
ある。
【図20】従来のカラー画像表示装置の画素の配列を示
す図である。
【図21】従来のマトリクス配線された配線を説明する
図である。
【符号の説明】
1 信号処理部 2 変調信号発生部 3 タイミング制御回路 4,5 スイッチング回路 6 パルス発生器 7 走査行選択回路 8,10,15,16 スイッチ 9 反転器 11 MOS−FETゲート 12 ディスプレイパネル 13,1002 電子放出素子 17,18 メモリ 53 電子放出部 54 列方向配線 55 行方向配線 56,57 電極 101,1007 フェースプレート 110,150 蛍光体 154,1005 リアプレート 1001 基板
フロントページの続き (56)参考文献 特開 平3−261028(JP,A) 特開 平2−299142(JP,A) 特開 平1−146236(JP,A) 特開 昭64−31332(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 31/12 G09G 3/22

Claims (9)

    (57)【特許請求の範囲】
  1. 【請求項1】 一対の電極と電子放出部とを具備する表
    面伝導型放出素子を複数の行に亙って接続しマトリクス
    状に形成したマルチ電子ビーム源と、前記電子ビーム源
    より放出される電子により発光する蛍光体とを備えた画
    像表示装置において、 前記蛍光体が複数行に亙って、隣接する行間で前記蛍光
    体の位置が行方向にほぼ1/2ずれて配設され、前記蛍
    光体のそれぞれのほぼ中心が行方向に隣接する表面伝導
    型放出素子の電子放出部の間のほぼ中央の上方に来るよ
    うに配設された蛍光面と、 前記表面伝導型電子放出素子に印加する電位方向を、前
    記行の1走査期間の前半と後半とで反転させ画像信号に
    応じて駆動する駆動手段と、を有することを特徴とする
    画像表示装置。
  2. 【請求項2】 前記蛍光体のそれぞれは、更に列方向に
    関して前記表面伝導型放出素子の電子放出部のほぼ上方
    に来るように配置されていることを特徴とする請求項1
    に記載の画像表示装置。
  3. 【請求項3】 前記蛍光体のそれぞれは、前記表面伝導
    型電子放出素子より放出される電子が照射されることに
    より赤色または緑色または青色のいずれかの色に発光
    し、これら3色が三角形状をなして配置されていること
    を特徴とする請求項1に記載の画像表示装置。
  4. 【請求項4】 前記駆動手段は、更に前記1水平走査期
    間の前半と後半とで1ライン分の表面伝導型電子放出素
    子に印加する表示データを所定ビットだけシフトさせる
    ことを特徴とする請求項1乃至3項のいずれか1項に記
    載の画像表示装置。
  5. 【請求項5】 前記駆動手段は、 前記マルチ電子ビーム源の表面伝導型放出素子の中の駆
    動すべき行を選択するための走査行選択手段と、 前記走査行選択手段により選択された表面伝導型放出素
    子の行に駆動信号を印加するための駆動信号源と、 前記一対の電極に印加する駆動信号の電位方向を1行を
    走査する期間の前半およと後半とで反転するための反転
    手段と、を備えることを特徴とする請求項1に記載の画
    像表示装置。
  6. 【請求項6】 前記駆動信号は、行方向配線に入力する
    走査信号と、列方向配線に入力される映像信号とを含む
    ことを特徴とする請求項1に記載の画像表示装置。
  7. 【請求項7】 n(奇数)行に位置している前記表面伝
    導型電子放出素子は当該表面伝導型電子放出素子をほぼ
    中心として行方向に隣接している2つの蛍光体に向けて
    電子を放出し、(n+1)行に位置している表面伝導型
    電子放出素子は、当該表面伝導型電子放出素子のほぼ真
    上に位置している蛍光体の左右に位置している蛍光体に
    向けて電子を放出することを特徴とする請求項1に記載
    の画像表示装置。
  8. 【請求項8】 n(奇数)行に位置している前記表面伝
    導型電子放出素子は当該表面伝導型電子放出素子をほぼ
    中心として行方向に隣接している2つの蛍光体に向けて
    電子を放出し、(n+1)行に位置している表面伝導型
    電子放出素子は、当該表面伝導型電子放出素子のほぼ真
    上に位置している蛍光体に向けて電子を放出することを
    特徴とする請求項1に記載の画像表示装置。
  9. 【請求項9】 前記駆動信号は、行方向配線に入力する
    走査信号と、列方向配線に入力される映像信号とを含む
    ことを特徴とする請求項1に記載の画像表示装置。
JP13793195A 1995-06-05 1995-06-05 画像表示装置 Expired - Fee Related JP3258525B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13793195A JP3258525B2 (ja) 1995-06-05 1995-06-05 画像表示装置
US08/658,080 US6140985A (en) 1995-06-05 1996-06-04 Image display apparatus
CN96108000A CN1127711C (zh) 1995-06-05 1996-06-05 图象显示设备
EP96304156A EP0747925A3 (en) 1995-06-05 1996-06-05 Image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13793195A JP3258525B2 (ja) 1995-06-05 1995-06-05 画像表示装置

Publications (2)

Publication Number Publication Date
JPH08329865A JPH08329865A (ja) 1996-12-13
JP3258525B2 true JP3258525B2 (ja) 2002-02-18

Family

ID=15210042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13793195A Expired - Fee Related JP3258525B2 (ja) 1995-06-05 1995-06-05 画像表示装置

Country Status (1)

Country Link
JP (1) JP3258525B2 (ja)

Also Published As

Publication number Publication date
JPH08329865A (ja) 1996-12-13

Similar Documents

Publication Publication Date Title
JP3408147B2 (ja) 画像形成装置
JP3342278B2 (ja) 画像表示装置及び該装置における画像表示方法
JPH1039825A (ja) 電子発生装置、画像表示装置およびそれらの駆動回路、駆動方法
JP2000148081A (ja) 電子源と前記電子源を用いた画像形成装置
JP3472016B2 (ja) マルチ電子ビーム源の駆動回路及びそれを用いた画像形成装置
JP3258525B2 (ja) 画像表示装置
JP3274345B2 (ja) 画像表示装置及び前記装置における画像表示方法
JPH11288246A (ja) 画像表示装置及び該装置における表示制御方法
JP3258524B2 (ja) 画像表示装置
JP3372741B2 (ja) 画像形成装置
JP3423600B2 (ja) 画像表示方法及び装置
JP3397556B2 (ja) 電子線発生装置及び該装置を用いた画像形成装置
JP3299062B2 (ja) 電子源の駆動装置及び該電子源を用いた画像形成装置
JP3236465B2 (ja) 表示装置
JPH09258687A (ja) 画像形成装置及びその発光特性の変化防止方法
JPH09134145A (ja) 電子源の駆動装置、画像形成装置およびそれらの方法
JPH08212944A (ja) 画像形成装置および電子ビーム発生源
JPH09199063A (ja) 画像形成装置
JP3382450B2 (ja) 電子源の駆動装置と前記電子源を用いた画像表示装置
JP3450571B2 (ja) 電子源の製造方法及び画像形成装置の製造方法
JPH09199064A (ja) 画像形成装置
JPH09198003A (ja) 画像形成装置
JPH11133911A (ja) 画像形成方法及び装置
JP2000098968A (ja) 画像形成方法及び装置
JPH08331490A (ja) 画像表示装置

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees