JP3240785B2 - Internal reforming fuel cell - Google Patents
Internal reforming fuel cellInfo
- Publication number
- JP3240785B2 JP3240785B2 JP29172593A JP29172593A JP3240785B2 JP 3240785 B2 JP3240785 B2 JP 3240785B2 JP 29172593 A JP29172593 A JP 29172593A JP 29172593 A JP29172593 A JP 29172593A JP 3240785 B2 JP3240785 B2 JP 3240785B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- fuel cell
- anode
- flow path
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は燃料ガスを水素ガスを主
成分とするアノードガスに改質する改質器を燃料電池に
内蔵した溶融炭酸塩型の内部改質燃料電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate type internal reforming fuel cell in which a reformer for reforming a fuel gas into an anode gas mainly composed of hydrogen gas is incorporated in the fuel cell.
【0002】[0002]
【従来の技術】溶融炭酸塩型燃料電池は、高効率、かつ
環境への悪影響が少ないなど、従来の発電装置にはない
特徴を有しており、水力・火力・原子力に続く発電シス
テムとして注目を集め、現在世界各国で鋭意研究開発が
行われている。2. Description of the Related Art Molten carbonate fuel cells have features that are not found in conventional power generation equipment, such as high efficiency and little adverse effect on the environment, and have attracted attention as power generation systems following hydro, thermal and nuclear power. Are being researched and developed in various countries around the world.
【0003】特に天然ガスを燃料とする溶融炭酸塩型燃
料電池を用いた発電設備では、図4に示すように天然ガ
ス等の燃料ガス1を水素を含むアノードガス2に改質す
る改質器10と、アノードガス2と酸素を含むカソード
ガス3とから発電する燃料電池12とを一般的に備えて
おり、改質器10で作られたアノードガス2は燃料電池
12に供給され、燃料電池12内でその大部分(例えば
80%)を消費した後、アノード排ガス4として改質器
10の燃焼室Coに供給される。燃料ガス1は燃料予熱
器11で予熱されて改質器10の改質室Reに入る。改
質器10ではアノード排ガス4中の可燃成分(水素、一
酸化炭素、メタン等)を燃焼室Coで燃焼し、高温の燃
焼ガスにより改質室Reを加熱し内部を流れる燃料を改
質する。In particular, in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, as shown in FIG. 4, a reformer for reforming a fuel gas 1 such as natural gas into an anode gas 2 containing hydrogen. And a fuel cell 12 for generating electricity from the anode gas 2 and the cathode gas 3 containing oxygen. The anode gas 2 produced by the reformer 10 is supplied to the fuel cell 12 and After consuming a large part (for example, 80%) of the gas in the fuel cell 12, the gas is supplied to the combustion chamber Co of the reformer 10 as the anode exhaust gas 4. The fuel gas 1 is preheated by the fuel preheater 11 and enters the reforming chamber Re of the reformer 10. In the reformer 10, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas 4 are burned in the combustion chamber Co, and the reforming chamber Re is heated by the high-temperature combustion gas to reform the fuel flowing inside. .
【0004】改質室10を出た燃焼排ガス5は、空気予
熱器13で熱回収され、凝縮器14と気水分離器15で
水分を除去され、タービン圧縮機(動力回収装置16)
で加圧された空気6が混入し、この混合ガスが空気予熱
器13で加熱されてカソードガス3に合流する。これに
より、電池のアノード側で発生した二酸化炭素が、燃焼
排ガス5を介して燃料電池用のカソードガス3に入り、
燃料電池12のカソード反応に必要な二酸化炭素をカソ
ード側Cに供給する。カソードガス3は燃料電池内でそ
の一部が反応してカソード排ガス7となり、その一部は
カソード入口側に再循環され、一部は改質器10の燃焼
室Coに供給されてアノード排ガス4を燃焼させ、残り
は動力回収装置16に供給されて圧力回収され、系外に
排出される。なお、図中12aは燃料電池12の格納容
器、8は格納容器12aに供給されるパージガスであ
る。[0004] The combustion exhaust gas 5 that has exited the reforming chamber 10 is heat-recovered by an air preheater 13, water is removed by a condenser 14 and a steam-water separator 15, and the turbine compressor (power recovery device 16)
The mixed gas is heated by the air preheater 13 and merges with the cathode gas 3. Thereby, the carbon dioxide generated on the anode side of the cell enters the cathode gas 3 for the fuel cell via the combustion exhaust gas 5, and
Carbon dioxide necessary for the cathode reaction of the fuel cell 12 is supplied to the cathode side C. A part of the cathode gas 3 reacts in the fuel cell to form a cathode exhaust gas 7, a part of which is recirculated to the cathode inlet side, and a part of which is supplied to the combustion chamber Co of the reformer 10 and the anode exhaust gas 4. Is burned, and the remainder is supplied to the power recovery device 16 to recover the pressure, and is discharged out of the system. In the figure, 12a is a storage container of the fuel cell 12, and 8 is a purge gas supplied to the storage container 12a.
【0005】改質室10では内部を流れる燃料ガス1を
改質するため燃焼室Coでの高温の燃焼ガスにより改質
室Reを加熱する。一方燃料電池12の運転は発熱作用
を伴うため、燃料電池12のアノード側Aに改質触媒を
直接充填し、改質器10と燃料電池12を一体化した内
部改質燃料電池が用いられている。かかる内部改質燃料
電池は、改質により発生した水素が直ちに燃料電池で消
費されるため、改質器の温度(例えば、800℃以上)
よりも低い燃料電池の運転温度(約600〜700℃)
においても、改質率が高い利点がある。In the reforming chamber 10, the reforming chamber Re is heated by the high-temperature combustion gas in the combustion chamber Co in order to reform the fuel gas 1 flowing inside. On the other hand, since the operation of the fuel cell 12 involves an exothermic effect, an internal reforming fuel cell in which the reformer 10 and the fuel cell 12 are integrated by directly filling the reforming catalyst into the anode A of the fuel cell 12 is used. I have. In such an internal reforming fuel cell, since the hydrogen generated by the reforming is immediately consumed in the fuel cell, the temperature of the reformer (for example, 800 ° C. or higher)
Lower operating temperature of fuel cell (about 600-700 ° C)
Also has the advantage of a high reforming rate.
【0006】図5はこのような内部改質燃料電池の模式
図である。燃料電池12は電解質板20を挟んでアノー
ド電極21とカソード電極22よりなり、アノード側A
とカソード側Cとの間のガスシールは燃料電池12の運
転温度(約600〜700℃)における電解質の濡れ
(表面張力)によっている(ウェットシールと呼ぶ)。
燃料電池12はセパレータ23を挟んで多段に積層され
ており、アノード電極21と接する面にはアノードガス
を供給するアノードガス流路23aが設けられ、カソー
ド電極22と接する面にはカソードガス3を供給するカ
ソードガス流路23bが設けられている。アノードガス
流路23aには改質触媒24が充填されており、燃料ガ
ス1は燃料電池12によって加熱された改質触媒24に
より水素ガスに改質されアノード電極21に供給されて
電池反応行われる。FIG. 5 is a schematic view of such an internal reforming fuel cell. The fuel cell 12 includes an anode electrode 21 and a cathode electrode 22 with an electrolyte plate 20 interposed therebetween.
The gas seal between the fuel cell 12 and the cathode side C depends on the electrolyte wetting (surface tension) at the operating temperature of the fuel cell 12 (about 600 to 700 ° C.) (referred to as a wet seal).
The fuel cells 12 are stacked in multiple stages with a separator 23 interposed therebetween. An anode gas flow channel 23 a for supplying anode gas is provided on a surface in contact with the anode electrode 21, and a cathode gas 3 is provided on a surface in contact with the cathode electrode 22. A supply cathode gas flow path 23b is provided. The anode gas flow path 23a is filled with a reforming catalyst 24. The fuel gas 1 is reformed into hydrogen gas by the reforming catalyst 24 heated by the fuel cell 12, and supplied to the anode electrode 21 to perform a cell reaction. .
【0007】[0007]
【発明が解決しようとする課題】改質触媒24はアノー
ド電極21に直接接触しているため電解質による濡れに
よって改質触媒が汚染され劣化する。また燃料ガス入力
付近では改質触媒と殆ど接触しない燃料ガスがアノード
電極21に供給されたり、また、アノード電極21面に
添って流れるガスは改質触媒24とあまり接触しない。
このように改質触媒24に十分接触しない燃料ガスは水
素ガスに改質されないので改質器としての効率が悪くな
り、燃料電池の出力も低下する。Since the reforming catalyst 24 is in direct contact with the anode electrode 21, the reforming catalyst is contaminated and deteriorated by the wetting by the electrolyte. In the vicinity of the fuel gas input, a fuel gas that hardly comes into contact with the reforming catalyst is supplied to the anode electrode 21, and a gas flowing along the surface of the anode electrode 21 hardly comes into contact with the reforming catalyst 24.
As described above, since the fuel gas that does not sufficiently contact the reforming catalyst 24 is not reformed into hydrogen gas, the efficiency of the reformer is reduced, and the output of the fuel cell is reduced.
【0008】本発明は上述の問題点に鑑みてなされたも
ので、電解質による改質触媒の汚染を防止し、さらに燃
料ガスの改質触媒への接触を改善した内部改質燃料電池
を提供することを目的とする。The present invention has been made in view of the above-mentioned problems, and provides an internal reforming fuel cell in which the reforming catalyst is prevented from being contaminated by the electrolyte and the contact of the fuel gas with the reforming catalyst is improved. The purpose is to:
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、水素を含むアノードガス(2)を
アノード電極(21)に供給し、酸素を含むカソードガ
ス(3)をカソード電極(22)に供給して発電する燃
料電池(12)と、該燃料電池(12)間を分離するセ
パレータ(23)を備え、前記セパレータ(23)のア
ノード電極(21)に接する側には、燃料電池(12)
から伝熱される熱で燃料ガス(1)を改質するために、
アノードガス流路(23a)が形成され、カソード電極
(22)に接する側には、カソードガス流路(23b)
が形成され、前記アノードガス流路(23a)内には周
囲を囲壁で囲まれ、内部に改質触媒(24)が充填され
た触媒室(25)がアノードガス流路(23a)の流れ
方向と軸方向を直交するように配置され、かつ各触媒室
(25)はほぼ触媒室(25)と同じ断面形状の空間
(26)と交互に配置された構成より成り、前記触媒室
(25)はアノードガス流路(23a)を遮断する囲壁
(27)を有し、該囲壁(27)には流路を構成する複
数の開口(28)が設けられていることを特徴とする内
部改質燃料電池が提供される。 According to the present invention, an anode gas (2) containing hydrogen is supplied to an anode electrode (21) , and a cathode gas (3) containing oxygen is supplied to a cathode. an electrode fuel cell (12) for generating electricity by supplying (22) comprises a separator (23) for separating between the fuel cell (12), on the side in contact with the anode electrode (21) of the separator (23) , Fuel cell (12)
To reform the fuel gas (1) with the heat transferred from
An anode gas flow path (23a) is formed, and a cathode electrode is formed.
On the side in contact with (22), a cathode gas flow path (23b)
Is formed in the anode gas flow path (23a).
A catalyst chamber (25) surrounded by a surrounding wall and filled with a reforming catalyst (24) flows through the anode gas flow path (23a).
Direction and axial direction are orthogonal to each other, and each catalyst chamber
(25) is a space having substantially the same cross-sectional shape as the catalyst chamber (25).
(26) and consists arranged alternately configured, the catalyst chamber
(25) is an enclosure for blocking the anode gas flow path (23a)
(27) , wherein the surrounding wall (27) is provided with a plurality of openings (28) constituting a flow path .
【0010】また、前記アノードガス流路(23a)を
遮断する囲壁(27)に設けられた開口(28)は、ア
ノード電極(21)面近傍より離れて下側に配置されて
いる。An opening (28) provided in the surrounding wall (27 ) for blocking the anode gas flow path (23a) is arranged at a lower position away from the vicinity of the anode electrode (21) .
【0011】[0011]
【作用】上記発明の構成では、改質触媒(24)を充填
した触媒室(25)が、アノードガス流路(23a)の
流れ方向と軸方向を直交するように配置され、かつ各触
媒室(25)はほぼ触媒室(25)と同じ断面形状の空
間(26)と交互に配置された構成となっており、触媒
室(25)にはアノードガス流路(23a)を遮断する
囲壁(27)が設けられ、この囲壁(27)には流路を
構成する複数の開口(28)が設けられている。改質触
媒(24)は触媒室(25)内に充填されているので電
解質に接する可能性は少なく、劣化が防止される。また
触媒室(25)の囲壁(27)に設けられた開口(2
8)を通って燃料ガス(1)や改質された水素ガスは流
れてゆくので、改質触媒(24)と十分接するような位
置に開口(28)を設けることにより燃料ガス(1)が
改質されない状態でアノード電極(21)に供給される
ことはなくなる。In the structure of the present invention, the catalyst chamber (25) filled with the reforming catalyst (24 ) is provided in the anode gas flow path (23a).
It is arranged so that the flow direction and the axial direction are orthogonal to each other.
The medium chamber (25) is an empty space having substantially the same cross-sectional shape as the catalyst chamber (25).
During (26) has a arranged alternately configured and, in the catalyst chamber (25) enclosing wall that blocks (27) is provided the anode gas flow path (23a), in the enclosure (27) flow path a plurality of openings (28) is provided which constitutes the. Since the reforming catalyst (24) is filled in the catalyst chamber (25) , there is little possibility that the reforming catalyst comes into contact with the electrolyte, and deterioration is prevented. The opening (2 ) provided in the surrounding wall (27) of the catalyst chamber (25)
Since the fuel gas (1) and the reformed hydrogen gas flow through 8) , the opening of the fuel gas (1) is provided by providing an opening (28) at a position sufficiently in contact with the reforming catalyst (24). It is no longer supplied to the anode electrode (21) without being modified.
【0012】また、触媒室(25)の上部、つまりアノ
ード電極(21)面近傍のところは、改質触媒(24)
が十分充填されず間隙の生じやすい所である。そこでア
ノードガス流路(23a)を遮断する囲壁(27)に設
けられた開口(28)はアノード電極(21)面近傍よ
り下側に配置することにより、燃料ガス(1)が改質触
媒(24)とより多く接触するようになり、改質効率が
向上する。The upper part of the catalyst chamber (25) , that is, in the vicinity of the surface of the anode (21), is provided with a reforming catalyst (24).
Are not sufficiently filled and gaps are likely to occur. Therefore, by disposing the opening (28) provided in the surrounding wall (27 ) for blocking the anode gas flow path (23a) below the vicinity of the surface of the anode electrode (21) , the fuel gas (1) allows the reforming catalyst ( 24) , and the reforming efficiency is improved.
【0013】[0013]
【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は実施例の構成の模式図であり、図2
は実施例の立体的分解図、図3は図1のX−X断面図で
ある。図1において、図4と同一符号は同一の機能を有
するものを表す。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of the configuration of the embodiment, and FIG.
FIG. 3 is a three-dimensional exploded view of the embodiment, and FIG. 3 is a sectional view taken along line XX of FIG. In FIG. 1, the same reference numerals as those in FIG. 4 indicate those having the same functions.
【0014】電解質板20を挟んでアノード電極21と
カソード電極22により燃料電池12が構成され、セパ
レータ23を挟んで燃料電池12は積層される。セパレ
ータ23のアノード電極21に接する側にはアノードガ
ス流路23aが形成され、カソード電極22に接する側
にはカソードガス流路23bが形成されている。アノー
ドガス流路23a内には周囲を囲壁で囲まれ、内部に改
質触媒24を充填された角柱状の触媒室25がアノード
ガス流路23aの流れ方向と軸方向を直交するように配
置されている。触媒室25の囲壁は耐食性のあるステン
レス鋼などが用いられている。各触媒室25はほぼ触媒
室25と同じ断面形状の空間26と交互に配置され、こ
の空間26においてアノードガス流路23aはアノード
電極21と接し、改質された水素ガスがアノード電極2
1に供給される。アノードガス流路23aの流れ方向と
直交する触媒室25の囲壁27には、図3に示すように
多数の開口28が設けられ流路を形成する。開口28は
アノード電極21近傍の上部からある程度離れた高さ以
下(即ち、アノード電極21面近傍より下側)に設け
る。これは触媒室25の天井壁近傍は改質触媒24が十
分充填されない場合があり、ここを燃料ガス1が通らな
いようにするためである。なお、両側および下側からも
ある程度離れた位置から開口28が設けられている。カ
ソードガス流路23bは一面がカソード電極22に接
し、カソードガスの流れ方向に流路が形成されている。A fuel cell 12 is constituted by an anode electrode 21 and a cathode electrode 22 with an electrolyte plate 20 interposed therebetween, and the fuel cells 12 are stacked with a separator 23 interposed therebetween. An anode gas passage 23a is formed on the side of the separator 23 that contacts the anode electrode 21, and a cathode gas passage 23b is formed on the side of the separator 23 that contacts the cathode electrode 22. Inside the anode gas flow channel 23a, a rectangular column-shaped catalyst chamber 25 which is surrounded by a surrounding wall and is filled with a reforming catalyst 24 is disposed so that the flow direction of the anode gas flow channel 23a is orthogonal to the axial direction. ing. The surrounding wall of the catalyst chamber 25 is made of corrosion-resistant stainless steel or the like. Each of the catalyst chambers 25 is alternately arranged with a space 26 having substantially the same cross-sectional shape as the catalyst chamber 25. In this space 26, the anode gas flow path 23a is in contact with the anode electrode 21, and the reformed hydrogen gas is supplied to the anode electrode 2
1 is supplied. As shown in FIG. 3, a large number of openings 28 are provided in the surrounding wall 27 of the catalyst chamber 25 orthogonal to the flow direction of the anode gas flow path 23a to form a flow path. The opening 28 is provided at a height less than a certain distance from the upper portion near the anode electrode 21 (that is, below the vicinity of the anode electrode 21 surface) . This is because the vicinity of the ceiling wall of the catalyst chamber 25 may not be sufficiently filled with the reforming catalyst 24 and the fuel gas 1 does not pass therethrough. Note that the openings 28 are provided from both sides and from a position somewhat away from the lower side. One surface of the cathode gas flow path 23b is in contact with the cathode electrode 22, and a flow path is formed in the flow direction of the cathode gas.
【0015】次に動作について説明する。燃料電池12
の運転により触媒室25内の改質触媒24は電池運転温
度(約600〜700℃)に加熱されている。燃料ガス
1が入ってくると最初の触媒室25である程度の燃料ガ
スが改質され水素を主成分とする改質ガスとなり、空間
26でアノード電極21に供給される。次の触媒室25
には燃料ガス1と改質ガスと電池反応により発生したア
ノード排ガスが入り、燃料ガス1は改質ガスとなり、改
質ガスとアノード排ガスはそのまま次の空間26に出て
きて、改質ガスがアノード電極21に供給される。以降
同様にして各触媒室25を通るごとに燃料ガス1は改質
ガスとなって減少してゆき、アノード排ガスは増加し、
改質ガスも最終の触媒室25に近づくにつれて少なくな
ってゆく。最終触媒室25を出るガスはアノード排ガス
4が大部分で多少の改質ガスが含まれる。この改質ガス
を含むアノード排ガス4は燃焼室Coで燃焼される。こ
の燃焼排ガスにはアノード排ガス4に含まれる二酸化炭
素と、燃焼によって生じた二酸化炭素が含まれる。Next, the operation will be described. Fuel cell 12
, The reforming catalyst 24 in the catalyst chamber 25 is heated to the battery operating temperature (about 600 to 700 ° C.). When the fuel gas 1 enters, a certain amount of the fuel gas is reformed in the first catalyst chamber 25 to become a reformed gas containing hydrogen as a main component, and is supplied to the anode electrode 21 in the space 26. Next catalyst chamber 25
The anode exhaust gas generated by the cell reaction between the fuel gas 1, the reformed gas, and the fuel enters the fuel gas 1, the fuel gas 1 becomes the reformed gas, and the reformed gas and the anode exhaust gas come out to the next space 26 as they are, It is supplied to the anode electrode 21. Thereafter, similarly, each time the fuel gas 1 passes through each catalyst chamber 25, the fuel gas 1 becomes a reformed gas and decreases, and the anode exhaust gas increases.
The reformed gas also decreases as it approaches the final catalyst chamber 25. The gas leaving the final catalyst chamber 25 is mostly the anode exhaust gas 4 and contains some reformed gas. The anode exhaust gas 4 containing the reformed gas is burned in the combustion chamber Co. This combustion exhaust gas contains carbon dioxide contained in the anode exhaust gas 4 and carbon dioxide generated by combustion.
【0016】カソード排ガス7の一部と、燃焼室Coよ
り出た燃焼排ガスは空気6と混入しカソードガス3とな
り高温ブロワ18でカソードガス流路23bに供給され
る。カソードガス3には空気6に含まれる酸素と燃焼排
ガスに含まれる二酸化炭素が含まれ、カソード反応が行
われる。A part of the cathode exhaust gas 7 and the combustion exhaust gas discharged from the combustion chamber Co are mixed with the air 6 to become the cathode gas 3, which is supplied to the cathode gas passage 23 b by the high-temperature blower 18. The cathode gas 3 contains oxygen contained in the air 6 and carbon dioxide contained in the combustion exhaust gas, and performs a cathode reaction.
【0017】[0017]
【発明の効果】以上の説明から明らかなように、本発明
はアノード電極に接した触媒室を流路に添って空間と交
互に設け、触媒室の囲壁によって改質触媒を電解質と分
離しているので、改質触媒の劣化を防止することができ
る。また、触媒室の囲壁に複数の開口を設け、改質触媒
と燃料ガスが十分接触するよう開口位置を設定すること
により、燃料ガスが改質されずに直接アノード電極に供
給される量を少なくしている。また、燃料ガスが多段の
触媒層を通過しながら電池反応を行ってゆくので各反応
が均一になり、改質反応による吸熱作用との相乗効果に
より、燃料電池出入口の温度差が小さくなるため、カソ
ードリサイクル用の高温ブロワの動力は極めて小さくな
り燃料電池プラントの効率を向上することができる。As is apparent from the above description, in the present invention, the catalyst chamber in contact with the anode electrode is provided alternately with the space along the flow path, and the reforming catalyst is separated from the electrolyte by the surrounding wall of the catalyst chamber. Therefore, deterioration of the reforming catalyst can be prevented. Further, by providing a plurality of openings in the surrounding wall of the catalyst chamber and setting the opening positions so that the reforming catalyst and the fuel gas are in sufficient contact, the amount of the fuel gas directly supplied to the anode electrode without reforming is reduced. are doing. In addition, since the fuel gas carries out the cell reaction while passing through the multi-stage catalyst layer, each reaction becomes uniform, and the temperature difference between the inlet and the outlet of the fuel cell becomes small due to a synergistic effect with the endothermic effect by the reforming reaction, The power of the high-temperature blower for cathode recycling is extremely small, and the efficiency of the fuel cell plant can be improved.
【図1】実施例の内部改質燃料電池の構成を示す模式図
である。FIG. 1 is a schematic diagram showing a configuration of an internal reforming fuel cell of an example.
【図2】実施例の内部改質燃料電池の立体的分解図であ
る。FIG. 2 is a three-dimensional exploded view of the internal reforming fuel cell of the embodiment.
【図3】図1のX−X断面図で開口の配置を示す図であ
る。FIG. 3 is a view showing the arrangement of openings in the XX cross-sectional view of FIG. 1;
【図4】従来の溶融炭酸塩型燃料電池を用いた発電設備
の全体構造図である。FIG. 4 is an overall structural diagram of a power generation facility using a conventional molten carbonate fuel cell.
【図5】従来の内部改質燃料電池の模式図である。FIG. 5 is a schematic view of a conventional internal reforming fuel cell.
1 燃料ガス 2 アノードガス 3 カソードガス 4 アノード排ガス 5 燃焼排ガス 6 空気 7 カソード排ガス 12 燃料電池 18 高温ブロワ 20 電解質板 21 アノード電極 22 カソード電極 23 セパレータ 23a アノードガス流路 23b カソードガス流路 24 改質触媒 25 触媒室 26 空間 27 囲壁 28 開口 DESCRIPTION OF SYMBOLS 1 Fuel gas 2 Anode gas 3 Cathode gas 4 Anode exhaust gas 5 Combustion exhaust gas 6 Air 7 Cathode exhaust gas 12 Fuel cell 18 High temperature blower 20 Electrolyte plate 21 Anode electrode 22 Cathode electrode 23 Separator 23a Anode gas channel 23b Cathode gas channel 24 Reforming Catalyst 25 Catalyst chamber 26 Space 27 Enclosure wall 28 Opening
Claims (2)
ド電極(21)に供給し、酸素を含むカソードガス
(3)をカソード電極(22)に供給して発電する燃料
電池(12)と、該燃料電池(12)間を分離するセパ
レータ(23)を備え、 前記セパレータ(23)のアノード電極(21)に接す
る側には、燃料電池(12)から伝熱される熱で燃料ガ
ス(1)を改質するために、アノードガス流路(23
a)が形成され、カソード電極(22)に接する側に
は、カソードガス流路(23b)が形成され、 前記アノードガス流路(23a)内には周囲を囲壁で囲
まれ、内部に 改質触媒(24)が充填された触媒室(2
5)がアノードガス流路(23a)の流れ方向と軸方向
を直交するように配置され、かつ各触媒室(25)はほ
ぼ触媒室(25)と同じ断面形状の空間(26)と交互
に配置された構成より成り、前記 触媒室(25)はアノードガス流路(23a)を遮
断する囲壁(27)を有し、該囲壁(27)には流路を
構成する複数の開口(28)が設けられていることを特
徴とする内部改質燃料電池。An anode gas (2) containing hydrogen is supplied to an anode electrode (21) and a cathode gas containing oxygen is supplied.
(3) and a fuel cell (12) for generating electricity is supplied to the cathode electrode (22) comprises a separator (23) for separating between the fuel cell (12), said anode electrode (21) of the separator (23) The anode gas flow path (23 ) is provided on the side in contact with the anode gas flow path for reforming the fuel gas (1) with heat transferred from the fuel cell (12).
a) is formed and on the side in contact with the cathode electrode (22)
Is formed with a cathode gas flow path (23b ), and a surrounding wall is formed in the anode gas flow path (23a).
Rarely, a catalyst chamber (2 ) filled with a reforming catalyst (24)
5) The flow direction and the axial direction of the anode gas flow path (23a)
Are arranged at right angles, and each catalyst chamber (25) is
URN catalyst chamber consists configurations are disposed alternately with the space (26) of the same cross-sectional shape (25), the catalyst chamber (25) has a surrounding wall (27) for interrupting the anode gas flow path (23a), An internal reforming fuel cell, wherein the surrounding wall (27) is provided with a plurality of openings (28) constituting a flow path.
する囲壁(27)に設けられた開口(28)は、アノー
ド電極(21)面近傍より離れて下側に配置されている
ことを特徴とする請求項1記載の内部改質燃料電池。2. An opening (28) provided in the surrounding wall (27 ) for blocking the anode gas flow path (23a) is arranged at a lower position away from the vicinity of the surface of the anode electrode (21). The internal reforming fuel cell according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29172593A JP3240785B2 (en) | 1993-11-22 | 1993-11-22 | Internal reforming fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29172593A JP3240785B2 (en) | 1993-11-22 | 1993-11-22 | Internal reforming fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07142073A JPH07142073A (en) | 1995-06-02 |
JP3240785B2 true JP3240785B2 (en) | 2001-12-25 |
Family
ID=17772591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29172593A Expired - Fee Related JP3240785B2 (en) | 1993-11-22 | 1993-11-22 | Internal reforming fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3240785B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100731329B1 (en) * | 2006-02-10 | 2007-06-21 | 두산중공업 주식회사 | Separate plate having fuel reforming chamber for mcfc and manufacturing method thereof |
-
1993
- 1993-11-22 JP JP29172593A patent/JP3240785B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07142073A (en) | 1995-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5061450B2 (en) | Fuel cell | |
EP0376219B1 (en) | Electric power producing system using molten carbonate type fuel cell | |
JPH0364866A (en) | Fuel cell system | |
JP4956946B2 (en) | Fuel cell | |
JP4942952B2 (en) | Operation method of high temperature fuel cell | |
JP2007128680A (en) | Fuel cell system | |
JP2004186074A (en) | Method for recovering carbon dioxide using molten carbonate type fuel cell | |
JP4501367B2 (en) | Fuel cell | |
JP2006086053A (en) | Solid oxide fuel cell | |
JP4570904B2 (en) | Hot standby method of solid oxide fuel cell system and its system | |
JP3240785B2 (en) | Internal reforming fuel cell | |
JP3611065B2 (en) | Integrated fuel cell power generator | |
JP2007005134A (en) | Steam generator and fuel cell | |
JPH065301A (en) | Fuel cell power generation device equipped with water content separator | |
JPH11126628A (en) | Fuel cell power generating device fitted with carbon deposition preventing device | |
JP3257604B2 (en) | Fuel cell generator | |
JP3582132B2 (en) | Plate type reformer | |
JP6800367B1 (en) | Fuel cell system | |
JPH05343083A (en) | Fuel cell power generation device | |
JP3240783B2 (en) | Internal reforming fuel cell | |
JP3538943B2 (en) | Pipe penetration structure of molten carbonate fuel cell pressure vessel | |
JP3436272B2 (en) | Plate reformer | |
JPS63231878A (en) | Power generating method by fuel cell and its system | |
JPH04101364A (en) | Fuel cell | |
JP3671406B2 (en) | Fuel cell power generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |