JP3582132B2 - Plate type reformer - Google Patents

Plate type reformer Download PDF

Info

Publication number
JP3582132B2
JP3582132B2 JP04394395A JP4394395A JP3582132B2 JP 3582132 B2 JP3582132 B2 JP 3582132B2 JP 04394395 A JP04394395 A JP 04394395A JP 4394395 A JP4394395 A JP 4394395A JP 3582132 B2 JP3582132 B2 JP 3582132B2
Authority
JP
Japan
Prior art keywords
reforming
chamber
gas
combustion
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04394395A
Other languages
Japanese (ja)
Other versions
JPH08241727A (en
Inventor
一 斉藤
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP04394395A priority Critical patent/JP3582132B2/en
Publication of JPH08241727A publication Critical patent/JPH08241727A/en
Application granted granted Critical
Publication of JP3582132B2 publication Critical patent/JP3582132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、仕切壁を隔てて配置された燃焼室からの加熱により改質室で燃料ガスを改質して改質ガスを生成するプレート型改質器に関する。
【0002】
【従来の技術】
溶融炭酸塩型燃料電池は、高効率で環境への影響が少ないなど、従来の発電装置にない特徴を有しており、水力、火力、原子力に続く発電システムとして注目を集め、現在鋭意研究が進められている。
【0003】
図4は天然ガスを燃料とする溶融炭酸塩型燃料電池を用いた発電設備の一例を示す図である。同図において、発電設備は、天然ガス8と水蒸気9とを混合した燃料ガス1を水素を含むアノードガス2(改質ガス)に改質する改質器10と、酸素を含むカソードガス3と水素を含むアノードガス2とから発電する燃料電池20とを備えており、改質器10で作られるアノードガス2は燃料電池20に供給され、燃料電池20の内でその大部分を消費してアノード排ガス4となり、燃焼用ガスとして改質器10の燃焼室Coに供給される。
【0004】
改質器10ではアノード排ガス4中の可燃成分(水素、一酸化炭素、メタン等)を燃焼室Coで燃焼して高温の燃焼ガスを生成し、この燃焼ガスにより改質室Reを加熱し、改質室Reで改質触媒により燃料ガス1を改質して水素と一酸化炭素を主体とするアノードガス2とする。アノードガス2は燃料予熱器11によって燃料ガス1と熱交換し、冷却した後燃料電池20のアノードAに供給される。また燃焼室Coを出た燃焼排ガス5は空気予熱器32で冷却された後、水分を除去され、空気6と合流してカソードガス3となる。このカソードガス3は燃料電池20内で一部が反応して高温のカソード排ガス7となり、その一部は改質器10の燃焼室Coへ供給され、他の一部は空気6を圧縮するタービン圧縮機40で動力を回収した後、さらに図示しない排熱回収蒸気発生装置で熱エネルギを回収して系外に排出される。なお、この蒸気発生装置で発生した水蒸気9が天然ガス8と混合されて燃料ガス1となる。
【0005】
改質器10として単位容積当たりの伝熱面積が大きく、負荷追従性も優れているプレート型改質器が用いられる。図5はプレート型改質器の構成例を示し、(A)は平面図、(B)は(A)のX−X断面図である。(B)に示すように燃焼用ガス供給路45を挟んで燃焼室Coと改質室Reが仕切壁46を介して重なって配置されている。燃焼用ガス供給路45と燃焼室Coとの隔壁47には多数の開口が設けられ、燃焼室Coに燃焼用ガスを供給する。(B)のY−Y矢視を図6の(A)に、Z−Z矢視を図6の(B)に示す。図6(A)の改質室Reでは燃料ガス1が改質触媒48と加熱により改質ガスとなり、(B)の燃焼室Coでは燃焼用ガス供給路45から供給される燃焼用ガスが空気と混合して燃焼し、燃焼熱を改質室Reへ仕切壁46を介して伝達する。
【0006】
【発明が解決しようとする課題】
図7は図5の(B)に示す断面の燃焼室Coの燃焼反応領域と改質室Reの改質反応領域の温度分布を示す。側壁近傍は放熱により温度低下が著しく、この低下領域を通過した改質ガスの改質率は著しく悪い。
【0007】
本発明は上述の問題点に鑑みてなされたもので、改質室の改質反応領域を温度が均一な範囲に限定して改質率の低下を防止するプレート型改質器を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、仕切壁を隔てて燃焼室と改質室が配置され、燃焼室からの燃焼熱を前記仕切壁を介して伝熱し改質室内で燃料ガスを燃料電池のアノードに供給される改質ガスにするプレート型改質器であって、前記改質室はその側壁の内側に内部隔壁を備え、前記燃焼室での燃焼によりガス流れの幅方向に関しほぼ均一な温度で加熱される前記仕切壁の範囲に前記改質室の改質反応領域を設け、前記内部隔壁間が前記改質反応領域を形成し、前記改質室の側壁と前記内部隔壁との間に断熱空間を形成する、ことを特徴とするプレート型改質器が提供される。
【0009】
【作用】
燃焼室と改質室の側壁近傍は放熱により温度は低下する。このため前記改質室はその側壁の内側に内部隔壁を備え、前記燃焼室での燃焼によりガス流れの幅方向に関しほぼ均一な温度で加熱される前記仕切壁の範囲に前記改質室の改質反応領域を設け、前記内部隔壁間が前記改質反応領域を形成し、前記改質室の側壁と前記内部隔壁との間に断熱空間を形成するので、改質反応は均一な温度で行われ、燃料ガスが水素と一酸化炭素を含む所定の改質ガスに改質される率を示す改質率を所定の値にすることが出来る。
【0010】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
図1及び図2は本実施例の構成図を示す。なお、図4〜図7の符号と同一符号は同一のものを表す。図1の(A)はプレート型改質器の平面図、(B)は(A)のX−X断面を示す。先に説明した図5との相違は改質室Reの側壁50の内側に内部側壁51を設けた点である。図2の(A)は図1(B)のY−Y矢視図で改質室Reを示し、図2の(B)は図1(B)のZ−Z矢視図で燃焼室Coを示す。改質室Reでは水蒸気を含む都市ガスからなる燃料ガス1を加熱して改質触媒48により水素と一酸化炭素を含む改質ガスにする。内部側壁51の位置は内部温度がほぼ均一となる位置に設定される。内部側壁51間が改質反応領域52を構成する。改質反応領域52は改質室Reと同じ範囲となる。側壁50と内部側壁51との間は断熱空間53とし、熱の放出を防止している。
【0011】
燃焼室Coでは隔壁47に多数設けられた開口を通して、燃焼用ガスが燃焼用ガス供給路45から供給され、空気と混合し燃焼用触媒49により燃焼し、仕切壁46を介して改質室Reを加熱する。燃焼用ガスは図4で説明したアノード排ガス4と、カソード排ガス7の一部である。なお改質室Re内のガスの流れと燃焼室Co内のガスの流れは対向した流れとなっている。これにより各ガスの流れ方向の温度分布が均一化される。
【0012】
図3は図1(B)に示す燃焼室Coと改質室Reの断面における温度分布を示し、図7の分布に対し内部側壁51を設け断熱空間53を構成したことにより、温度が均一な範囲が広くなっており、この温度均一な範囲に改質反応領域52を限定した状況を示す。これにより改質室Reでは改質反応が均質に行われ、改質率は低下せず所定の値となる。
【0013】
【発明の効果】
以上の説明から明らかなように、本発明は、燃焼室によって加熱される仕切壁の均一な温度領域を改質室の改質反応領域として改質ガスを生成することにより改質率の低下を防止する。
【図面の簡単な説明】
【図1】実施例のプレート型改質器の構成を示し、(A)は平面図、(B)は(A)のX−X断面図である。
【図2】改質器の構成を示し、(A)は図1(B)のY−Y矢視図、(B)は図1(B)のZ−Z矢視図である。
【図3】改質室と燃焼室の温度分布と改質反応領域を示す図である。
【図4】従来の天然ガスを燃料とする燃料電池発電装置の全体構成図である。
【図5】従来例のプレート型改質器の構成を示し、(A)は平面図、(B)は(A)のX−X断面図である。
【図6】従来例の改質器の構成を示し、(A)は図5(B)のY−Y矢視図、(B)は図5(B)のZ−Z矢視図である。
【図7】改質室と燃焼室の温度分布を示す図である。
【符号の説明】
1 燃料ガス
2 アノードガス(改質ガス)
3 カソードガス
4 アノード排ガス
5 燃焼排ガス
6 空気
7 カソード排ガス
8 天然ガス
9 水蒸気
10 改質器
11 燃料予熱器
12 排出ライン
13 排ガス供給ライン
14 循環ライン
20 燃料電池
22 格納容器
23 高温ブロワ
24 燃料ブロワ
25 脱硫器
32 空気予熱器
33 凝縮器
34 気水分離器
35 低温ブロワ
40 タービン圧縮機
41 バックアップライン
42 電動ブロワ
45 燃焼用ガス供給路
46 仕切壁
47 隔壁
48 改質触媒
49 燃焼触媒
50 側壁
51 内部側壁
52 改質反応領域
53 断熱空間
A アノード
C カソード
Co 燃焼室
Re 改質室
[0001]
[Industrial applications]
The present invention relates to a plate-type reformer that generates a reformed gas by reforming a fuel gas in a reforming chamber by heating from a combustion chamber disposed with a partition wall therebetween.
[0002]
[Prior art]
Molten carbonate fuel cells have features that are not found in conventional power generators, such as high efficiency and little impact on the environment, and have attracted attention as a power generation system following hydro, thermal and nuclear power. Is underway.
[0003]
FIG. 4 is a diagram showing an example of a power generation facility using a molten carbonate fuel cell using natural gas as a fuel. In the figure, a power generation facility includes a reformer 10 for reforming a fuel gas 1 obtained by mixing a natural gas 8 and steam 9 into an anode gas 2 (reformed gas) containing hydrogen, a cathode gas 3 containing oxygen, And a fuel cell 20 that generates electricity from the anode gas 2 containing hydrogen. The anode gas 2 produced in the reformer 10 is supplied to the fuel cell 20, and most of the anode gas 2 is consumed in the fuel cell 20. The anode exhaust gas 4 is supplied to the combustion chamber Co of the reformer 10 as a combustion gas.
[0004]
In the reformer 10, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas 4 are burned in the combustion chamber Co to generate high-temperature combustion gas, and the combustion gas heats the reforming chamber Re. The fuel gas 1 is reformed by the reforming catalyst in the reforming chamber Re to obtain the anode gas 2 mainly composed of hydrogen and carbon monoxide. The anode gas 2 exchanges heat with the fuel gas 1 by the fuel preheater 11 and is cooled and supplied to the anode A of the fuel cell 20. Further, the combustion exhaust gas 5 that has exited the combustion chamber Co is cooled by the air preheater 32, and after removing moisture, merges with the air 6 to become the cathode gas 3. A part of the cathode gas 3 reacts in the fuel cell 20 to become a high-temperature cathode exhaust gas 7, a part of which is supplied to the combustion chamber Co of the reformer 10, and the other part is a turbine which compresses the air 6. After the power is recovered by the compressor 40, the heat energy is further recovered by a waste heat recovery steam generator (not shown) and discharged outside the system. The steam 9 generated by the steam generator is mixed with the natural gas 8 to form the fuel gas 1.
[0005]
As the reformer 10, a plate-type reformer having a large heat transfer area per unit volume and excellent load followability is used. 5A and 5B show a configuration example of a plate-type reformer, wherein FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along line XX of FIG. As shown in (B), the combustion chamber Co and the reforming chamber Re are arranged so as to overlap each other with a partition wall 46 interposed therebetween with the combustion gas supply passage 45 interposed therebetween. A large number of openings are provided in a partition 47 between the combustion gas supply passage 45 and the combustion chamber Co to supply the combustion gas to the combustion chamber Co. FIG. 6A shows a view taken in the direction of arrows Y in FIG. 6B, and FIG. 6B shows a view in the direction of arrows ZZ in FIG. In the reforming chamber Re of FIG. 6A, the fuel gas 1 becomes the reformed gas by heating with the reforming catalyst 48, and in the combustion chamber Co of FIG. 6B, the combustion gas supplied from the combustion gas supply passage 45 is air. And the mixture is burned, and the combustion heat is transmitted to the reforming chamber Re via the partition wall 46.
[0006]
[Problems to be solved by the invention]
FIG. 7 shows the temperature distribution of the combustion reaction region of the combustion chamber Co and the reforming reaction region of the reforming chamber Re in the cross section shown in FIG. The temperature near the side wall is significantly reduced due to heat radiation, and the reforming rate of the reformed gas that has passed through the reduced area is extremely poor.
[0007]
The present invention has been made in view of the above-described problems, and provides a plate-type reformer that limits a reforming reaction region of a reforming chamber to a temperature uniform range to prevent a decrease in a reforming rate. With the goal.
[0008]
[Means for Solving the Problems]
To achieve the above object, the combustion chamber and the reforming chamber is disposed with a partition wall, supplying a fuel gas to the anode of the fuel cell combustion heat from the combustion chamber by heat heated reforming chamber through the partition wall Wherein the reforming chamber is provided with an internal partition inside a side wall thereof , and is heated at a substantially uniform temperature in a width direction of a gas flow by combustion in the combustion chamber. the range of the partition wall provided reforming reaction zone of the reforming chamber, the heat insulating space between the between the internal partition walls forming the reforming reaction zone, wherein the internal partition wall and the side wall of the reforming chamber to be forming a plate-type reformer is provided, characterized in that.
[0009]
[Action]
The temperature in the vicinity of the side walls of the combustion chamber and the reforming chamber decreases due to heat radiation. For this reason, the reforming chamber is provided with an internal partition wall on the inner side of the side wall, and the reforming chamber is located in the area of the partition wall which is heated at a substantially uniform temperature in the width direction of the gas flow by the combustion in the combustion chamber. The reforming reaction is carried out at a uniform temperature because a reforming reaction region is formed, the reforming reaction region is formed between the internal partition walls, and an adiabatic space is formed between the side wall of the reforming chamber and the internal partition wall. Thus, the reforming rate indicating the rate at which the fuel gas is reformed into a predetermined reformed gas containing hydrogen and carbon monoxide can be set to a predetermined value.
[0010]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show the configuration of the present embodiment. In addition, the same code | symbol as the code | symbol of FIG. 1A is a plan view of a plate-type reformer, and FIG. 1B is a cross-sectional view taken along line XX of FIG. 5 in that an inner side wall 51 is provided inside the side wall 50 of the reforming chamber Re. FIG. 2A shows the reforming chamber Re in the YY view of FIG. 1B, and FIG. 2B shows the combustion chamber Co in the ZZ view of FIG. 1B. Is shown. In the reforming chamber Re, the fuel gas 1 composed of city gas containing steam is heated to be reformed by the reforming catalyst 48 into hydrogen and carbon monoxide. The position of the inner side wall 51 is set to a position at which the internal temperature becomes substantially uniform. The space between the inner side walls 51 constitutes a reforming reaction region 52. The reforming reaction region 52 has the same range as the reforming chamber Re. A heat insulating space 53 is provided between the side wall 50 and the inner side wall 51 to prevent heat release.
[0011]
In the combustion chamber Co, a combustion gas is supplied from a combustion gas supply passage 45 through a plurality of openings provided in a partition wall 47, mixed with air, burned by a combustion catalyst 49, and is reformed through a partition wall 46. Heat. The combustion gas is a part of the anode exhaust gas 4 and the cathode exhaust gas 7 described in FIG. The gas flow in the reforming chamber Re and the gas flow in the combustion chamber Co are opposed to each other. Thereby, the temperature distribution in the flow direction of each gas is made uniform.
[0012]
FIG. 3 shows the temperature distribution in the cross section of the combustion chamber Co and the reforming chamber Re shown in FIG. 1 (B). This shows a situation where the range is wide and the reforming reaction region 52 is limited to this temperature uniform range. As a result, the reforming reaction is performed homogeneously in the reforming chamber Re, and the reforming rate does not decrease and reaches a predetermined value.
[0013]
【The invention's effect】
As is clear from the above description, the present invention reduces the reforming rate by generating a reformed gas by using a uniform temperature region of the partition wall heated by the combustion chamber as a reforming reaction region of the reforming chamber. To prevent.
[Brief description of the drawings]
FIG. 1 shows a configuration of a plate-type reformer according to an embodiment, where (A) is a plan view and (B) is a cross-sectional view taken along line XX of (A).
FIGS. 2A and 2B show a configuration of a reformer, wherein FIG. 1A is a view taken in the direction of arrows YY in FIG. 1B, and FIG.
FIG. 3 is a diagram showing a temperature distribution of a reforming chamber and a combustion chamber and a reforming reaction region.
FIG. 4 is an overall configuration diagram of a conventional fuel cell power generator using natural gas as fuel.
5A and 5B show a configuration of a conventional plate-type reformer, wherein FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along line XX of FIG.
6A and 6B show a configuration of a conventional reformer, where FIG. 6A is a view taken along the line YY in FIG. 5B, and FIG. 6B is a view taken along the line ZZ in FIG. 5B. .
FIG. 7 is a diagram showing a temperature distribution in a reforming chamber and a combustion chamber.
[Explanation of symbols]
1 Fuel gas 2 Anode gas (reformed gas)
3 Cathode gas 4 Anode exhaust gas 5 Combustion exhaust gas 6 Air 7 Cathode exhaust gas 8 Natural gas 9 Steam 10 Reformer 11 Fuel preheater 12 Discharge line 13 Exhaust gas supply line 14 Circulation line 20 Fuel cell 22 Storage container 23 High temperature blower 24 Fuel blower 25 Desulfurizer 32 Air preheater 33 Condenser 34 Water separator 35 Low temperature blower 40 Turbine compressor 41 Backup line 42 Electric blower 45 Combustion gas supply path 46 Partition wall 47 Partition wall 48 Reforming catalyst 49 Combustion catalyst 50 Side wall 51 Inner side wall 52 reforming reaction zone 53 adiabatic space A anode C cathode Co combustion chamber Re reforming chamber

Claims (1)

仕切壁を隔てて燃焼室と改質室が配置され、燃焼室からの燃焼熱を前記仕切壁を介して伝熱し改質室内で燃料ガスを燃料電池のアノードに供給される改質ガスにするプレート型改質器であって、
前記改質室はその側壁の内側に内部隔壁を備え、前記燃焼室での燃焼によりガス流れの幅方向に関しほぼ均一な温度で加熱される前記仕切壁の範囲に前記改質室の改質反応領域を設け、前記内部隔壁間が前記改質反応領域を形成し、前記改質室の側壁と前記内部隔壁との間に断熱空間を形成する、ことを特徴とするプレート型改質器。
Combustion chamber and the reforming chamber at a partition wall is positioned to the reformed gas to the fuel gas supplied to the anode of the fuel cell combustion heat from the combustion chamber by heat heated reforming chamber through the partition wall A plate-type reformer ,
The reforming chamber is provided with an internal partition wall inside the side walls thereof, the reforming chamber of the reforming reaction in the range of the partition wall to be heated with a substantially uniform temperature relates width direction of the gas flow by combustion in the combustion chamber A plate-type reformer, wherein a region is provided, the reforming reaction region is formed between the internal partition walls, and an adiabatic space is formed between a side wall of the reforming chamber and the internal partition wall .
JP04394395A 1995-03-03 1995-03-03 Plate type reformer Expired - Fee Related JP3582132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04394395A JP3582132B2 (en) 1995-03-03 1995-03-03 Plate type reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04394395A JP3582132B2 (en) 1995-03-03 1995-03-03 Plate type reformer

Publications (2)

Publication Number Publication Date
JPH08241727A JPH08241727A (en) 1996-09-17
JP3582132B2 true JP3582132B2 (en) 2004-10-27

Family

ID=12677787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04394395A Expired - Fee Related JP3582132B2 (en) 1995-03-03 1995-03-03 Plate type reformer

Country Status (1)

Country Link
JP (1) JP3582132B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR981702A0 (en) * 2002-01-04 2002-01-31 Meggitt (Uk) Limited Steam reformer

Also Published As

Publication number Publication date
JPH08241727A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
JP5061450B2 (en) Fuel cell
JP2002124289A (en) Solid electrolyte fuel cell system
JPH0845523A (en) Fuel cell/gas turbine combined generation system
JP3925756B2 (en) Double-container fuel cell system
JP3407747B2 (en) Fuel cell power generator with moisture separator
JP3611065B2 (en) Integrated fuel cell power generator
JP3582132B2 (en) Plate type reformer
EP2886964B1 (en) Combined fuel cell and boiler system
JP3700162B2 (en) Integrated fuel cell power generator
US6942940B2 (en) System for generating electricity
JP3072630B2 (en) Fuel cell combined cycle generator
JPH11126628A (en) Fuel cell power generating device fitted with carbon deposition preventing device
JP3257604B2 (en) Fuel cell generator
JP3671406B2 (en) Fuel cell power generator
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JPH11135140A (en) Combined power generating facilities recycling anode exhaust gas
JP3240785B2 (en) Internal reforming fuel cell
JP3546234B2 (en) Solid oxide fuel cell / internal combustion type Stirling engine combined system
JP3835996B2 (en) Fuel cell combined cycle
JP2929034B2 (en) Molten carbonate fuel cell power generator
Archer et al. Power generation by combined fuel cell and gas turbine systems
JPH08339815A (en) Fuel cell power generation device
JPH05343083A (en) Fuel cell power generation device
JP3365453B2 (en) Fuel cell
JPH0945349A (en) Fuel cell power generation device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

LAPS Cancellation because of no payment of annual fees