JP2004186074A - Method for recovering carbon dioxide using molten carbonate type fuel cell - Google Patents

Method for recovering carbon dioxide using molten carbonate type fuel cell Download PDF

Info

Publication number
JP2004186074A
JP2004186074A JP2002353764A JP2002353764A JP2004186074A JP 2004186074 A JP2004186074 A JP 2004186074A JP 2002353764 A JP2002353764 A JP 2002353764A JP 2002353764 A JP2002353764 A JP 2002353764A JP 2004186074 A JP2004186074 A JP 2004186074A
Authority
JP
Japan
Prior art keywords
carbon dioxide
fuel cell
molten carbonate
cathode
carbonate fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002353764A
Other languages
Japanese (ja)
Inventor
Tomonori Matsubara
智典 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002353764A priority Critical patent/JP2004186074A/en
Publication of JP2004186074A publication Critical patent/JP2004186074A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering a carbon dioxide using a molten carbonate type fuel cell having a high carbon dioxide recovery. <P>SOLUTION: The method for recovering the carbon dioxide using the molten carbonate type fuel cell includes the steps of supplying a gas containing an oxygen to be exhausted from an exhaust gas generator (9) and the carbon dioxide to the cathode (2) side of the molten carbonate type fuel cell for constituting the cell by holding an electrolyte plate (1) between an anode (3) and a cathode (2), supplying a cathode exhaust gas to be exhausted from the cathode (2) of the molten carbonate type fuel cell to the cathode side of the other molten carbonate type fuel cell installed in alignment with the molten carbonate type fuel cell, and recovering the carbon dioxides generated from the anodes (3) of the molten carbonate type fuel cell and the other molten carbonate type fuel cell by a carbon dioxide recovering unit (11). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、溶融炭酸塩型燃料電池を用いた二酸化炭素回収方法に関する。
【0002】
【従来の技術】
溶融炭酸塩型燃料電池は、高効率で環境への影響が少ないなど、従来の発電装置にない特徴を有しており、水力、火力、原子力に続く発電システムとして注目を集め、現在鋭意研究が進められている。
【0003】
図4は溶融炭酸塩型燃料電池の発電原理を模式的に示した図である。アノード(燃料極)には水素が供給され、もう一方のカソード(空気極)には酸素と二酸化炭素が供給される。炭酸イオンは、カソードで酸素と二酸化炭素および外部回路を通ってきた電子との電気化学反応により生成される。この炭酸イオンは電解質を通ってアノードへと移動し、そこで電子を放出した水素イオンと反応して水と二酸化炭素を生成する。放出された電子は、外部回路を通じてカソードへと向かい、カソードで炭酸イオンとなる。そして、このアノードから放出された電子が外部回路を通りアノードへ移動することにより発電が行われる。
【0004】
この溶融炭酸型燃料電池においてはカソードでの反応に二酸化炭素を必要とし、アノードでの反応に同一量の二酸化炭素を生成する。すなわち、溶融炭酸塩型燃料電池のカソードに入った二酸化炭素が電解質を通り、アノードから濃縮されて排出されることになる。
【0005】
ところで、近年、地球温暖化現象が世界的な問題となっており、COガスの排出量低減が重要な課題となっている。かかるCOの排出量低減対象の1つが、火力発電所排ガス等の工業的燃焼排ガスであり、低濃度かつ大量のCOガスが高温で排出される特徴がある。現在、火力発電の他に水力、火力、原子力等の発電システムが利用されているが、火力発電はこれら発電システムにおいて中心的役割を担っており、火力発電なしでは電力需要を満足することはできない。したがって、火力発電所により排出されるCOガスの量を抑制することができれば、地球温暖化防止に寄与するところが大きいといえる。
【0006】
上記低濃度のCOガスを濃縮して分離回収する代表的な方法としては、▲1▼吸収液にCOを化学反応で吸収させ、それを加熱することなどにより、COを分離回収する化学吸収法、▲2▼ゼオライトなどの固体吸着剤の細孔にCOを物理的に吸着させ、圧力を下げることによってCOを分離、回収する物理吸着法、▲3▼高分子膜に対する機体の透過速度の違いを利用してCOを分離、回収する膜分離(透過)法、等が知られている(例えば、特許文献1参照。)。
【0007】
しかし、上記▲1▼の化学吸収法の場合には、吸収液(溶媒)側の制約で、COガスの温度を低くする必要があるので、分離のためには大きな加熱エネルギーが必要になり、かつ吸収液の使用量が多く高価となる問題がある。また、上記▲2▼の物理吸着法の場合には、COの分離に非常に大きなエネルギーが必要であり、大容量化が困難である等の問題がある。一方、上記▲3▼の膜分離法の場合には、膜が非常に高価なためコストが高く、かつ膨大な面積の膜が必要なため大容量化が困難であり、更に不純物が多い排ガスに適した膜の開発が必要である等の問題がある。
【0008】
一方、上述した溶融炭酸塩型燃料電池の二酸化炭素濃縮機能を利用して、火力発電所から排出される低濃度の二酸化炭素を溶融炭酸塩型燃料電池のカソードで利用することにより、これより更に低濃度の二酸化炭素を排出し、アノードで濃縮された二酸化炭素を回収する手段が考えられている。
【0009】
【特許文献1】
特開平11−33340号公報
【0010】
【発明が解決しようとする課題】
溶融炭酸塩型燃料電池を用いて二酸化炭素を回収する手段では、カソードに二酸化炭素を含む排出ガスを供給するが、カソードの二酸化炭素利用率には限界があり(例えば、300kW級溶融炭酸塩型燃料電池で40%程度。)、このため、カソード排ガスには二酸化炭素が残留することになる(例えば、300kW級溶融炭酸塩型燃料電池定格時で300m/h程度)。しかし、現在考えられている手段ではカソード出口から排出されるガスはそのまま大気に放出されるため、カソード排ガスに残留している二酸化炭素は依然として回収できていない。
【0011】
本発明は、上記問題点を解決するために創案されたものである。すなわち、本発明は、従来よりも二酸化炭素回収率の高い溶融炭酸塩型燃料電池を用いた二酸化炭素回収方法を提供することにある。
【0012】
【発明を解決するための手段】
本発明によれば、電解質板(1)をアノード(3)とカソード(2)で挟持してセルを構成する溶融炭酸塩型燃料電池のカソード(2)側に排ガス発生装置(9)から排出される酸素と二酸化炭素を含むガスを供給し、該溶融炭酸塩型燃料電池のカソード(2)から排出されるカソード排ガスを該溶融炭酸塩型燃料電池に並設された他の溶融炭酸塩型燃料電池のカソード側に供給し、前記溶融炭酸塩型燃料電池と前記他の溶融炭酸塩型燃料電池のアノード(3)で生成される二酸化炭素を二酸化炭素回収装置(11)により回収する、ことを特徴とする溶融炭酸塩型燃料電池を用いた二酸化炭素回収方法が提供される。
【0013】
本発明の好ましい実施の形態によれば、前記他の溶融炭酸塩型燃料電池のカソード側に排ガス発生装置(9)から排出される酸素と二酸化炭素を含むガスを供給する。
【0014】
上記手段によれば、溶融炭酸塩型燃料電池のカソード(2)から排出されるカソード排ガスを他の溶融炭酸塩型燃料電池のカソード(2)側に供給するので、カソード排ガスの大気放出は最下流側の溶融炭酸塩型燃料電池でのみ行われ、かつ、各溶融炭酸塩型燃料電池のアノード(3)で生成された二酸化炭素は二酸化炭素回収装置(11)により回収されるので、二酸化炭素回収率が向上する。
【0015】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
【0016】
図1は、火力発電所等の低濃度かつ大量のCOガスが低温で排出される設備(排ガス発生設備9)の下流側に設置した本発明に係る第1の実施の形態による二酸化炭素回方法を実施するための設備の全体構成図である。図中4は溶融炭酸塩型燃料電池(以下、MCFCという。)であり、
最上流側のMCFC4のカソード側には、排ガス発生装置から排出される二酸化炭素を含む排ガスと圧縮機12により圧縮された空気とを混合したガスを供給する排ガスライン5が接続されている。最上流側のMCFC4を除いて各MCFC4のカソード側と、このMCFC4の上流側に隣接するMCFC4のカソード出口は、カソード排ガスライン6により接続されている。図中11は各MCFCのアノードで生成される二酸化炭素を回収する二酸化炭素回収装置であり、各MCFCのアノード側と二酸化炭素回収ライン8により接続されている。
【0017】
図中10は水蒸気を含む燃料ガスを水素を含むアノードガスに改質する改質器であり、燃料ライン7により各MCFC4のアノード側に接続されている。天然ガスは図示しない燃料ブロワで加圧され脱硫機で脱硫後、水蒸気と混合し燃料ガスとして改質器10に供給される。改質器10は、燃焼室と、燃焼室からの伝熱により燃料ガスを改質しアノードガスを発生する改質室とからなる。燃料室には十分な燃焼が行われるよう燃焼媒体が充填され、改質室には燃料ガスを水素を主体とするアノードガスに改質するための改質媒体が充填されている。
【0018】
図3は、本発明の方法に係るMCFC4の概念図である。この図に示すように、MCFCは、溶融炭酸塩を電解質とする電解質板1とこれを両面から挟持する多孔質のカソード2及びアノード3とからなる濃縮セルとからなる。
【0019】
電解質板1は、電解質としての溶融塩を浸み込ませた多孔質平板であり、例えば、リチウムアルミネート(LiAlO)により構成したマトリックスに電解質である炭酸塩を主成分とする溶融塩を含浸させたものを用いる。電解質としては、リチウム、ナトリウム、カリウム等をはじめとするアルカリ金属の炭酸塩、マグネシウム、カルシウム等をはじめとするアルカリ土類金属の炭酸塩を単独または複数混合した状態で使用する。
【0020】
また、カソード2及びアノード3としては、高温かつ酸化雰囲気に耐えられる導電性金属酸化物として、どちらも、酸化ニッケル、酸化鉄、或いは、酸化銅その他の金属酸化物が単独又は複合されたものにリチウムがドープされた多孔質を用いる。
【0021】
カソード側では、
CO+1/2O+2e→CO 2−
の電気化学反応が行われ、炭酸イオンCO 2−が生成される。このカソードで未反応となった二酸化炭素と酸素を含むガスは、カソード出口より排出される。
【0022】
次に、上記生成された炭酸イオンCO 2−は、電解質板1中を永動してアノード3へ達し、アノード側で、
+CO 2−→HO+CO+2e
の電気化学反応が行われ、電子が奪われることにより、炭酸イオンからCOが濃縮分離され、ガス出口から排出される。
【0023】
各MCFC4のアノード出口から排出される水蒸気と二酸化炭素は、図示しない第1の冷却装置により冷却される。この冷却により、水蒸気は凝縮して液化し分離回収される。水蒸気と分離された二酸化炭素は、図示しない第2の冷却装置により−78.5℃以下に冷却されることにより液化されて二酸化炭素回収装置11により回収される。
【0024】
各MCFC4のカソード出口から排出されるカソード排ガスは、その下流側に隣接するMCFC4のカソード側に供給される。最上流側のMCFC4のカソード側に供給されるガスは排ガス発生装置9により排出されるガスであり、そのCOガス濃度は約8%である。一方、この最上流側のMCFC4のカソード出口から排出されるカソード排ガスのCOガス濃度は5%となる。このように、上流側から下流側のMCFC4のカソードを経由することにより、最下流側のMCFC4のカソード出口から排出されるカソード排ガスのCOガス濃度は、最上流側のMCFC4のカソード出口から排出されるカソード排ガスと比較して低濃度となる。これにより、COガスの大気への排出量を削減するとともに、高濃度のCOガスを二酸化炭素回収装置により回収するので、二酸化炭素回収率が向上する。
【0025】
図2は、本発明に係る第2の実施の形態による二酸化炭素回方法を実施するための設備の全体構成図であり、全てのMCFC4のカソード側に排ガス発生装置9から排出される酸素と二酸化炭素を含むガスと圧縮機12により圧縮された空気とを混合したガスを供給する排ガスライン5が接続されている。その他の構成は前記第1の実施の形態と同様である。
【0026】
第2の実施の形態によれば、MCFC4による発電に必要な酸素と二酸化炭素の濃度を確保するために、排ガス発生装置9から排出される酸素と二酸化炭素を含むガスと圧縮機12により圧縮された空気とを混合したガスを各MCFC4のカソード側に供給するので、MCFC4による発電効率を低下させることなく、二酸化炭素回収率を向上させることができる。
【0027】
なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0028】
【発明の効果】
以上説明したように、本発明の溶融炭酸塩型燃料電池を用いた二酸化炭素回収方法によれば、溶融炭酸塩型燃料電池のカソードから排出されるカソード排ガスを他の溶融炭酸塩型燃料電池のカソード側に供給するため、カソード排ガスの大気放出は最下流側の溶融炭酸塩型燃料電池でのみ行われ、かつ、各溶融炭酸塩型燃料電池のアノードで生成された二酸化炭素は二酸化炭素回収装置により回収されるので、二酸化炭素回収率が向上する。
【図面の簡単な説明】
【図1】本発明に係る第1の実施の形態による溶融炭酸塩型燃料電池を用いた二酸化炭素回収方法を実施するための設備の全体構成図である。
【図2】本発明に係る第2の実施の形態による溶融炭酸炎型燃料電池を用いた二酸化炭素回収方法を実施するための設備の全体構成図である。
【図3】本発明の実施に係る溶融炭酸塩型燃料電池の概念図である。
【図4】溶融炭酸塩型燃料電池の発電原理を模式的に示した図である。
【符号の説明】
1 電解質板
2 カソード(空気極)
3 アノード(燃料極)
4 溶融炭酸塩型燃料電池
5 排ガスライン
6 カソード排ガスライン
7 燃料ライン
8 二酸化炭素回収ライン
9 排ガス発生設備
10 改質器
11 二酸化炭素回収装置
12 圧縮機
[0001]
[Industrial applications]
The present invention relates to a method for recovering carbon dioxide using a molten carbonate fuel cell.
[0002]
[Prior art]
Molten carbonate fuel cells have features that are not found in conventional power generators, such as high efficiency and little impact on the environment, and have attracted attention as a power generation system following hydro, thermal and nuclear power. Is underway.
[0003]
FIG. 4 is a diagram schematically illustrating the power generation principle of a molten carbonate fuel cell. Hydrogen is supplied to the anode (fuel electrode), and oxygen and carbon dioxide are supplied to the other cathode (air electrode). Carbonate ions are generated at the cathode by an electrochemical reaction of oxygen with carbon dioxide and electrons that have passed through an external circuit. The carbonate ions travel through the electrolyte to the anode, where they react with the hydrogen ions that have released electrons to produce water and carbon dioxide. The emitted electrons travel to the cathode through an external circuit and become carbonate ions at the cathode. Then, the electrons emitted from the anode move to the anode through an external circuit to generate power.
[0004]
In this molten carbon dioxide fuel cell, carbon dioxide is required for the reaction at the cathode, and the same amount of carbon dioxide is generated for the reaction at the anode. That is, the carbon dioxide that has entered the cathode of the molten carbonate fuel cell passes through the electrolyte, is concentrated from the anode, and is discharged.
[0005]
By the way, in recent years, the global warming phenomenon has become a global problem, and reducing the emission of CO 2 gas has become an important issue. One of such CO 2 emission reduction targets is industrial combustion exhaust gas such as thermal power plant exhaust gas, which is characterized in that a large amount of CO 2 gas with low concentration is emitted at high temperature. Currently, in addition to thermal power generation, power generation systems such as hydropower, thermal power and nuclear power are used, but thermal power generation plays a central role in these power generation systems, and it is not possible to satisfy electricity demand without thermal power generation . Therefore, it can be said that if the amount of CO 2 gas emitted from the thermal power plant can be suppressed, it greatly contributes to the prevention of global warming.
[0006]
A typical method for concentrating and separating and recovering the low-concentration CO 2 gas is as follows: (1) CO 2 is separated and recovered by absorbing CO 2 by a chemical reaction in an absorbing solution and heating it. Chemical absorption method, (2) Physical adsorption method in which CO 2 is physically adsorbed in pores of a solid adsorbent such as zeolite, and CO 2 is separated and recovered by lowering pressure, (3) Airframe for polymer membrane A membrane separation (permeation) method for separating and recovering CO 2 by utilizing the difference in the permeation speed of a membrane is known (for example, see Patent Document 1).
[0007]
However, in the case of the above chemical absorption method (1), since the temperature of the CO 2 gas needs to be lowered due to the restriction on the absorption liquid (solvent) side, a large heating energy is required for separation. In addition, there is a problem in that the amount of the absorbing solution used is large and expensive. Further, in the case of the physical adsorption method of the above (2), there is a problem that very large energy is required for separating CO 2 and it is difficult to increase the capacity. On the other hand, in the case of the membrane separation method of the above (3), the cost is high because the membrane is very expensive, and it is difficult to increase the capacity because a large area of the membrane is required. There are problems such as the need to develop a suitable film.
[0008]
On the other hand, by utilizing the carbon dioxide concentration function of the molten carbonate fuel cell described above, the low concentration carbon dioxide discharged from the thermal power plant is utilized at the cathode of the molten carbonate fuel cell, thereby further improving this. Means for discharging low-concentration carbon dioxide and recovering carbon dioxide concentrated at the anode have been considered.
[0009]
[Patent Document 1]
JP-A-11-33340
[Problems to be solved by the invention]
In the means for recovering carbon dioxide using a molten carbonate fuel cell, an exhaust gas containing carbon dioxide is supplied to the cathode, but the carbon dioxide utilization of the cathode is limited (for example, 300 kW class molten carbonate fuel cell). As a result, carbon dioxide remains in the cathode exhaust gas (for example, about 300 m 3 / h at the time of a rated 300 kW class molten carbonate fuel cell). However, since the gas discharged from the cathode outlet is released to the atmosphere as it is by the means currently considered, the carbon dioxide remaining in the cathode exhaust gas has not yet been recovered.
[0011]
The present invention has been made to solve the above problems. That is, an object of the present invention is to provide a carbon dioxide recovery method using a molten carbonate fuel cell having a higher carbon dioxide recovery rate than before.
[0012]
[Means for Solving the Invention]
According to the present invention, the electrolyte plate (1) is sandwiched between the anode (3) and the cathode (2) and discharged from the exhaust gas generator (9) to the cathode (2) side of a molten carbonate fuel cell constituting a cell. A gas containing oxygen and carbon dioxide to be supplied is supplied, and the cathode exhaust gas discharged from the cathode (2) of the molten carbonate fuel cell is subjected to another molten carbonate fuel cell arranged in parallel with the molten carbonate fuel cell. Supplying carbon dioxide to the cathode side of the fuel cell and recovering carbon dioxide generated at the anode (3) of the molten carbonate fuel cell and the other molten carbonate fuel cell by a carbon dioxide recovery device (11); A method for recovering carbon dioxide using a molten carbonate fuel cell is provided.
[0013]
According to a preferred embodiment of the present invention, a gas containing oxygen and carbon dioxide discharged from the exhaust gas generator (9) is supplied to the cathode side of the other molten carbonate fuel cell.
[0014]
According to the above means, the cathode exhaust gas discharged from the cathode (2) of the molten carbonate fuel cell is supplied to the cathode (2) side of another molten carbonate fuel cell, so that the discharge of the cathode exhaust gas to the atmosphere is minimized. The process is performed only in the molten carbonate fuel cell on the downstream side, and the carbon dioxide generated at the anode (3) of each molten carbonate fuel cell is recovered by the carbon dioxide recovery device (11). Recovery rate is improved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same reference numerals are given to the common parts in the respective drawings, and the duplicate description will be omitted.
[0016]
FIG. 1 shows a carbon dioxide recovery system according to the first embodiment of the present invention installed downstream of a facility (exhaust gas generation facility 9) such as a thermal power plant that emits a low concentration and large amount of CO 2 gas at a low temperature. FIG. 1 is an overall configuration diagram of equipment for performing a method. In the figure, reference numeral 4 denotes a molten carbonate fuel cell (hereinafter, referred to as MCFC).
An exhaust gas line 5 for supplying a gas obtained by mixing an exhaust gas containing carbon dioxide discharged from the exhaust gas generator and air compressed by the compressor 12 is connected to a cathode side of the MCFC 4 on the most upstream side. Except for the most upstream MCFC 4, the cathode side of each MCFC 4 and the cathode outlet of the MCFC 4 adjacent to the upstream side of the MCFC 4 are connected by a cathode exhaust gas line 6. In the figure, reference numeral 11 denotes a carbon dioxide capture device that captures carbon dioxide generated at the anode of each MCFC, and is connected to the anode side of each MCFC by a carbon dioxide capture line 8.
[0017]
In the figure, reference numeral 10 denotes a reformer for reforming a fuel gas containing water vapor into an anode gas containing hydrogen, and is connected to the anode side of each MCFC 4 by a fuel line 7. Natural gas is pressurized by a fuel blower (not shown), desulfurized by a desulfurizer, mixed with steam, and supplied to the reformer 10 as fuel gas. The reformer 10 includes a combustion chamber and a reforming chamber that reforms fuel gas by heat transfer from the combustion chamber to generate anode gas. The fuel chamber is filled with a combustion medium so that sufficient combustion is performed, and the reforming chamber is filled with a reforming medium for reforming the fuel gas into an anode gas mainly composed of hydrogen.
[0018]
FIG. 3 is a conceptual diagram of the MCFC 4 according to the method of the present invention. As shown in this figure, the MCFC comprises an enrichment cell comprising an electrolyte plate 1 using molten carbonate as an electrolyte and a porous cathode 2 and anode 3 sandwiching the electrolyte plate 1 from both sides.
[0019]
The electrolyte plate 1 is a porous flat plate impregnated with a molten salt as an electrolyte. For example, a matrix made of lithium aluminate (LiAlO 2 ) is impregnated with a molten salt mainly composed of a carbonate as an electrolyte. Use what has been done. As the electrolyte, a carbonate of an alkali metal such as lithium, sodium, potassium or the like, or a carbonate of an alkaline earth metal such as magnesium or calcium is used alone or in a mixed state.
[0020]
The cathode 2 and the anode 3 are each made of nickel oxide, iron oxide, copper oxide or other metal oxides alone or in combination as conductive metal oxides that can withstand high temperatures and oxidizing atmospheres. A porous material doped with lithium is used.
[0021]
On the cathode side,
CO 2 + 1 / 2O 2 + 2e → CO 3 2-
Electrochemical reaction takes place, the carbonate ion CO 3 2- is generated. The gas containing unreacted carbon dioxide and oxygen at the cathode is discharged from the cathode outlet.
[0022]
Next, the generated carbonate ion CO 3 2- permeates in the electrolyte plate 1 and reaches the anode 3, and on the anode side,
H 2 + CO 3 2- → H 2 O + CO 2 + 2e
Is performed and CO 2 is concentrated and separated from the carbonate ions, and is discharged from the gas outlet.
[0023]
Water vapor and carbon dioxide discharged from the anode outlet of each MCFC 4 are cooled by a first cooling device (not shown). By this cooling, the steam is condensed and liquefied to be separated and collected. The carbon dioxide separated from the water vapor is liquefied by being cooled to −78.5 ° C. or lower by a second cooling device (not shown), and is recovered by the carbon dioxide recovery device 11.
[0024]
The cathode exhaust gas discharged from the cathode outlet of each MCFC 4 is supplied to the cathode side of the MCFC 4 adjacent to the downstream side. The gas supplied to the cathode side of the most upstream MCFC 4 is a gas discharged by the exhaust gas generator 9, and its CO 2 gas concentration is about 8%. On the other hand, the CO 2 gas concentration of the cathode exhaust gas discharged from the cathode outlet of the MCFC 4 on the most upstream side is 5%. As described above, the CO 2 gas concentration of the cathode exhaust gas discharged from the cathode outlet of the MCFC 4 on the most downstream side by passing through the cathode of the MCFC 4 on the downstream side from the upstream side is discharged from the cathode outlet of the MCFC 4 on the most upstream side. Concentration is lower than that of the cathode exhaust gas. This reduces the amount of CO 2 gas emitted into the atmosphere and also collects high-concentration CO 2 gas with the carbon dioxide capture device, thereby improving the carbon dioxide capture rate.
[0025]
FIG. 2 is an overall configuration diagram of a facility for performing a carbon dioxide recovery method according to a second embodiment of the present invention, in which oxygen and carbon dioxide discharged from an exhaust gas generator 9 are disposed on the cathode side of all MCFCs 4. An exhaust gas line 5 for supplying a gas obtained by mixing a gas containing carbon and air compressed by the compressor 12 is connected. Other configurations are the same as those in the first embodiment.
[0026]
According to the second embodiment, the gas containing oxygen and carbon dioxide discharged from the exhaust gas generator 9 is compressed by the compressor 12 in order to secure the concentration of oxygen and carbon dioxide necessary for power generation by the MCFC 4. Since the gas mixed with the air is supplied to the cathode side of each MCFC 4, the carbon dioxide recovery rate can be improved without lowering the power generation efficiency of the MCFC 4.
[0027]
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the spirit of the present invention.
[0028]
【The invention's effect】
As described above, according to the method for recovering carbon dioxide using the molten carbonate fuel cell of the present invention, the cathode exhaust gas discharged from the cathode of the molten carbonate fuel cell is used for the other molten carbonate fuel cell. Since the cathode exhaust gas is supplied to the cathode side, the discharge of cathode exhaust gas into the atmosphere is performed only in the molten carbonate fuel cell on the most downstream side, and the carbon dioxide generated at the anode of each molten carbonate fuel cell is converted into a carbon dioxide capture device. As a result, the carbon dioxide recovery rate is improved.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of equipment for performing a carbon dioxide recovery method using a molten carbonate fuel cell according to a first embodiment of the present invention.
FIG. 2 is an overall configuration diagram of equipment for performing a carbon dioxide recovery method using a molten carbon dioxide fuel cell according to a second embodiment of the present invention.
FIG. 3 is a conceptual diagram of a molten carbonate fuel cell according to an embodiment of the present invention.
FIG. 4 is a diagram schematically showing the power generation principle of a molten carbonate fuel cell.
[Explanation of symbols]
1 electrolyte plate 2 cathode (air electrode)
3 Anode (fuel electrode)
4 Molten carbonate fuel cell 5 Exhaust gas line 6 Cathode exhaust gas line 7 Fuel line 8 Carbon dioxide recovery line 9 Exhaust gas generation equipment 10 Reformer 11 Carbon dioxide recovery device 12 Compressor

Claims (2)

電解質板(1)をアノード(3)とカソード(2)で挟持してセルを構成する溶融炭酸塩型燃料電池のカソード側に排ガス発生装置(9)から排出される酸素と二酸化炭素を含むガスを供給し、該溶融炭酸塩型燃料電池のカソード(2)から排出されるカソード排ガスを該溶融炭酸塩型燃料電池に並設された他の溶融炭酸塩型燃料電池のカソード側に供給し、前記溶融炭酸塩型燃料電池と前記他の溶融炭酸塩型燃料電池のアノード(3)で生成される二酸化炭素を二酸化炭素回収装置(11)により回収する、ことを特徴とする溶融炭酸塩型燃料電池を用いた二酸化炭素回収方法。A gas containing oxygen and carbon dioxide discharged from an exhaust gas generator (9) on the cathode side of a molten carbonate fuel cell constituting a cell by sandwiching an electrolyte plate (1) between an anode (3) and a cathode (2) And supplying the cathode exhaust gas discharged from the cathode (2) of the molten carbonate fuel cell to the cathode side of another molten carbonate fuel cell juxtaposed to the molten carbonate fuel cell, Carbon dioxide produced at the anode (3) of the molten carbonate fuel cell and the other molten carbonate fuel cell is recovered by a carbon dioxide recovery device (11). A carbon dioxide recovery method using a battery. 前記他の溶融炭酸塩型燃料電池のカソード側に排ガス発生装置(9)から排出される酸素と二酸化炭素を含むガスを供給する、ことを特徴とする請求項1に記載の溶融炭酸塩型燃料電池を用いた二酸化炭素回収方法。The molten carbonate fuel according to claim 1, wherein a gas containing oxygen and carbon dioxide discharged from the exhaust gas generator (9) is supplied to the cathode side of the other molten carbonate fuel cell. A carbon dioxide recovery method using a battery.
JP2002353764A 2002-12-05 2002-12-05 Method for recovering carbon dioxide using molten carbonate type fuel cell Pending JP2004186074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353764A JP2004186074A (en) 2002-12-05 2002-12-05 Method for recovering carbon dioxide using molten carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353764A JP2004186074A (en) 2002-12-05 2002-12-05 Method for recovering carbon dioxide using molten carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JP2004186074A true JP2004186074A (en) 2004-07-02

Family

ID=32754971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353764A Pending JP2004186074A (en) 2002-12-05 2002-12-05 Method for recovering carbon dioxide using molten carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JP2004186074A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196268A (en) * 2005-01-12 2006-07-27 Chugoku Electric Power Co Inc:The Power generation facility and power generation method
JP2010129286A (en) * 2008-11-26 2010-06-10 Chugoku Electric Power Co Inc:The Power generation system
JP2010228963A (en) * 2009-03-27 2010-10-14 Chugoku Electric Power Co Inc:The Carbon dioxide recovery unit
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
JP2016535238A (en) * 2013-09-30 2016-11-10 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Fuel cell integration in a heat recovery steam generator
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
JP2018521464A (en) * 2015-06-05 2018-08-02 フュエルセル エナジー, インコーポレイテッドFuelcell Energy, Inc. High efficiency fuel cell system and method with carbon dioxide capture assembly
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196268A (en) * 2005-01-12 2006-07-27 Chugoku Electric Power Co Inc:The Power generation facility and power generation method
JP2010129286A (en) * 2008-11-26 2010-06-10 Chugoku Electric Power Co Inc:The Power generation system
JP2010228963A (en) * 2009-03-27 2010-10-14 Chugoku Electric Power Co Inc:The Carbon dioxide recovery unit
JP2016515297A (en) * 2013-03-15 2016-05-26 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Integrated power generation and carbon capture using fuel cells
JP2016517616A (en) * 2013-03-15 2016-06-16 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9077006B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9178234B2 (en) 2013-03-15 2015-11-03 Exxonmobil Research And Engineering Company Integrated power generation using molten carbonate fuel cells
US9257711B2 (en) 2013-03-15 2016-02-09 Exxonmobil Research And Engineering Company Integrated carbon capture and chemical production using fuel cells
US9263755B2 (en) 2013-03-15 2016-02-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
JP2016511525A (en) * 2013-03-15 2016-04-14 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company NOx mitigation in integrated power generation
JP2016512917A (en) * 2013-03-15 2016-05-09 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9343764B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in methanol synthesis
US9343763B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells for synthesis of nitrogen compounds
US9923219B2 (en) 2013-03-15 2018-03-20 Exxonmobile Research And Engineering Company Integrated operation of molten carbonate fuel cells
US9362580B2 (en) 2013-03-15 2016-06-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in a refinery setting
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9419295B2 (en) 2013-03-15 2016-08-16 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells at a reduced electrical efficiency
US9455463B2 (en) 2013-03-15 2016-09-27 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US10676799B2 (en) 2013-03-15 2020-06-09 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9520607B2 (en) 2013-03-15 2016-12-13 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells with fermentation processes
US9553321B2 (en) 2013-03-15 2017-01-24 Exxonmobile Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9647284B2 (en) 2013-03-15 2017-05-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9650246B2 (en) 2013-03-15 2017-05-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US9735440B2 (en) 2013-03-15 2017-08-15 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US10093997B2 (en) 2013-03-15 2018-10-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9786939B2 (en) 2013-03-15 2017-10-10 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9941534B2 (en) 2013-03-15 2018-04-10 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US10283802B2 (en) 2013-09-30 2019-05-07 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
JP2016535238A (en) * 2013-09-30 2016-11-10 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Fuel cell integration in a heat recovery steam generator
JP2018521464A (en) * 2015-06-05 2018-08-02 フュエルセル エナジー, インコーポレイテッドFuelcell Energy, Inc. High efficiency fuel cell system and method with carbon dioxide capture assembly
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11616248B2 (en) 2018-11-30 2023-03-28 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11843150B2 (en) 2018-11-30 2023-12-12 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11888199B2 (en) 2019-11-26 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level

Similar Documents

Publication Publication Date Title
US6821663B2 (en) Solid oxide regenerative fuel cell
JP2004186074A (en) Method for recovering carbon dioxide using molten carbonate type fuel cell
JP5106461B2 (en) Carbon dioxide recovery device
US20030207161A1 (en) Hydrogen production and water recovery system for a fuel cell
JP2014511012A (en) Recirculation facility for increasing yield from fuel cells using CO2 capture
CA2397682A1 (en) Multipurpose reversible electrochemical system
WO2008121189A1 (en) Sofc system producing reduced atmospheric carbon dioxide using a molten carbonate carbon dioxide pump
US20140234735A1 (en) High temperature fuel cell/electrolyzer system with energy storage media and auxiliaries outside the fuel cell power generator
JP2007128716A (en) Fuel cell
JP2002319428A (en) Molten carbonate fuel cell power generating device
US6277509B1 (en) Hydride bed water recovery system for a fuel cell power plant
JPH11169661A (en) Carbon dioxide recovering device
JP2023525988A (en) Electrochemically driven carbon dioxide separator
JP4100479B2 (en) Carbon dioxide decomposition method
JP2001023670A (en) Fuel cell power generating system
JP3246515B2 (en) Fuel cell system
JPH11191427A (en) Electric power recovering method from exhaust gas
JP4385424B2 (en) Carbon dioxide concentration method and apparatus
JP2000021431A (en) Method of stopping reforming equipment for fuel cell
JP4849201B2 (en) Solid oxide fuel cell
JP5245194B2 (en) Liquid fuel direct supply fuel cell system
JP2024027957A (en) Carbon monoxide production equipment
JP3240785B2 (en) Internal reforming fuel cell
JPH0828233B2 (en) Power plant using molten carbonate fuel cell
JP2023085880A (en) Carbon dioxide processing apparatus