JP3220706U - Electronic device heat dissipation structure - Google Patents

Electronic device heat dissipation structure Download PDF

Info

Publication number
JP3220706U
JP3220706U JP2019000109U JP2019000109U JP3220706U JP 3220706 U JP3220706 U JP 3220706U JP 2019000109 U JP2019000109 U JP 2019000109U JP 2019000109 U JP2019000109 U JP 2019000109U JP 3220706 U JP3220706 U JP 3220706U
Authority
JP
Japan
Prior art keywords
electronic device
dissipation structure
heat dissipation
heat
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019000109U
Other languages
Japanese (ja)
Inventor
養明 施
養明 施
宏源 許
宏源 許
Original Assignee
慧隆科技股▲ふん▼有限公司
株式会社ジー・エム・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慧隆科技股▲ふん▼有限公司, 株式会社ジー・エム・エス filed Critical 慧隆科技股▲ふん▼有限公司
Application granted granted Critical
Publication of JP3220706U publication Critical patent/JP3220706U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】熱放射式の電子機器放熱構造を提供し、これは金属筐体を有する電子機器に適用される。【解決手段】電子機器放熱構造は、金属筐体100、回路基板200、熱放射放出層410および熱放射吸収層420を含む。回路基板200は金属筐体100内に収容され、回路基板200の1つの面に発熱源300が設置される。熱放射放出層410は、発熱源300を覆う。熱放射吸収層420は金属筐体100の内壁に貼り付けられ、熱放射放出層410と向かい合って配置される。熱放射吸収層420により、熱放射放出層410から発散された放射熱エネルギーを、効果的に金属筐体100に伝達する。【選択図】図1The present invention provides a heat radiation electronic device heat dissipation structure, which is applied to an electronic device having a metal housing. An electronic device heat dissipation structure includes a metal casing (100), a circuit board (200), a thermal radiation emitting layer (410) and a thermal radiation absorbing layer (420). The circuit board 200 is accommodated in the metal casing 100, and the heat source 300 is installed on one surface of the circuit board 200. The thermal radiation emitting layer 410 covers the heat source 300. The heat radiation absorption layer 420 is attached to the inner wall of the metal housing 100 and is disposed to face the heat radiation emission layer 410. The thermal radiation absorbing layer 420 effectively transfers the radiant heat energy emitted from the thermal radiation emitting layer 410 to the metal housing 100. [Selected figure] Figure 1

Description

本考案は放熱装置に関し、特に熱放射式の電子機器放熱構造であり、金属筐体を有する電子機器に適用される。   The present invention relates to a heat dissipation device, and more particularly to a heat dissipation type electronic device heat dissipation structure, which is applied to an electronic device having a metal casing.

従来の熱伝導または熱対流による放熱構造は、発熱源および外部環境の間に媒体を配置して、発熱源が生成する熱エネルギーを外部環境に発散させる必要があり、したがってその応用は装置の空間に制限される。   The conventional heat conduction or convection heat dissipation structure needs to place the medium between the heat source and the external environment to dissipate the thermal energy generated by the heat source to the external environment, so its application is the space of the device Limited to

熱放射伝達方式は透過性を有するため、熱放射式放熱構造は装置の空間による制限を克服することができ、発熱源が生成する熱エネルギーは装置の構造体を透過して外部環境に発散される。しかし、金属表面は熱放射を反射することができるため、熱放射式放熱構造が金属筐体を有する装置に用いられるとき、発散された熱エネルギーの大部分は金属筐体の内壁に反射され、金属筐体中に蓄えられるため、放熱効果は好ましくない。   Since the heat radiation transfer system is transparent, the heat radiation heat dissipation structure can overcome the space limitation of the device, and the heat energy generated by the heat source is transmitted through the device structure and dissipated to the external environment. Ru. However, since metal surfaces can reflect heat radiation, when a heat-radiating heat dissipating structure is used in a device having a metal housing, most of the emitted thermal energy is reflected to the inner wall of the metal housing, Since it is stored in a metal case, the heat radiation effect is not preferable.

このことを考慮して、本考案者は上記既存技術に対して鋭意研究を行い、さらに学理的な利用を組み合わせ、上記問題点の解決に尽力することは、本考案者の改良の目標となっている。   Taking this into consideration, it is the goal of the present inventor's improvement that the present inventor carries out earnest research on the above-mentioned existing technology, and further combines scientific use and makes an effort to solve the above-mentioned problems. ing.

本考案は熱放射式の電子機器放熱構造を提供し、これは金属筐体を有する電子機器に適用される。   The present invention provides a heat radiation electronic device heat dissipation structure, which is applied to an electronic device having a metal housing.

本考案は電子機器放熱構造を提供し、金属筐体、回路基板、熱放射放出層および熱放射吸収層を含む。回路基板は金属筐体内に収容され、回路基板の1つの面に発熱源が設置される。熱放射放出層は、発熱源を覆う。熱放射吸収層は金属筐体の内壁に貼り付けられ、熱放射放出層と向かい合って配置される。   The present invention provides an electronic device heat dissipation structure, which includes a metal housing, a circuit board, a heat radiation emission layer, and a heat radiation absorption layer. The circuit board is housed in a metal casing, and a heat source is installed on one side of the circuit board. The thermal radiation emitting layer covers the heat source. The thermal radiation absorbing layer is affixed to the inner wall of the metal housing and is disposed opposite the thermal radiation emitting layer.

本考案の電子機器放熱構造において、回路基板のもう1つの面は金属筐体の内壁と相互に間隔を開けて配置することができる。回路基板のもう1つの面はもう1つの熱放射放出層を覆い、金属筐体の内壁に、対応し、向かい合って配置されるもう1つの熱放射吸収層が貼り付けて設置される。回路基板のもう1つの面は、金属筐体の内壁に貼り付けることもできる。   In the electronic device heat dissipation structure of the present invention, the other side of the circuit board can be spaced apart from the inner wall of the metal housing. The other side of the circuit board covers another heat radiation emitting layer, and another heat radiation absorbing layer disposed corresponding to and disposed opposite to the inner wall of the metal housing is attached. The other side of the circuit board can also be attached to the inner wall of the metal housing.

本考案の電子機器放熱構造において、熱放射吸収層の面積は対応する熱放射放出層の面積より大きい。熱放射放出層は延伸して、回路基板の少なくとも一部分を覆う。熱放射放出層は、グラフェン片でよい。熱放射放出層は、グラフェン片またはカーボンナノボールを含むことができる。熱放射吸収層は、グラフェン片でよい。熱放射吸収層は、グラフェン片またはカーボンナノボールを含むことができる。   In the electronic device heat dissipation structure of the present invention, the area of the heat radiation absorption layer is larger than the area of the corresponding heat radiation emission layer. The thermal radiation emitting layer is stretched to cover at least a portion of the circuit board. The thermal emission layer may be a piece of graphene. The thermal emission layer may comprise graphene strips or carbon nanoballs. The thermal radiation absorbing layer may be graphene pieces. The thermal radiation absorbing layer can include graphene pieces or carbon nanoballs.

本考案は、金属筐体の内壁に熱放射吸収層を配置することにより、熱放射放出層から発散される放射熱エネルギーが金属筐体に反射されるのを防止することができる。さらにグラファイト材料自体も良好な熱伝導特性を有し、熱放射放出層から発散される放射熱エネルギーを吸収後、効果的に金属筐体に伝達することができる。   The present invention can prevent the radiation thermal energy emitted from the thermal radiation emitting layer from being reflected to the metal casing by arranging the thermal radiation absorbing layer on the inner wall of the metal casing. Furthermore, the graphite material itself also has good heat transfer properties, and after absorbing the radiant heat energy emitted from the thermal radiation emitting layer, it can be effectively transferred to the metal casing.

図1は、本考案の第1実施例における電子機器放熱構造の概要図である。FIG. 1 is a schematic view of a heat dissipation structure of an electronic device according to a first embodiment of the present invention. 図2は、本考案の第2実施例における電子機器放熱構造の概要図である。FIG. 2 is a schematic view of a heat dissipation structure of an electronic device according to a second embodiment of the present invention.

図1を参照されたい。本考案の第1実施例は電子機器放熱構造を提供し、これは金属筐体100、回路基板200、熱放射放出層410および熱放射吸収層420を含む。   See FIG. The first embodiment of the present invention provides an electronic device heat dissipation structure, which includes a metal housing 100, a circuit board 200, a thermal radiation emitting layer 410 and a thermal radiation absorbing layer 420.

本実施例において、金属筐体100は、好ましくは閉鎖された金属筐体である。回路基板200は金属筐体100内に収容され、回路基板200の1つの面に発熱源300が設置され、発熱源300は電子部品または部分的なプリント回路のリード線でよい。本実施例において、回路基板200のもう1つの面は、好ましくは金属筐体内壁の1つの面に貼り付けられる。   In the present example, the metal housing 100 is preferably a closed metal housing. The circuit board 200 is housed in the metal housing 100, and the heat source 300 is installed on one surface of the circuit board 200, and the heat source 300 may be an electronic component or a lead wire of a partial printed circuit. In this embodiment, the other side of the circuit board 200 is preferably affixed to one side of the inner wall of the metal housing.

熱放射放出層410は発熱源300を覆い、熱放射放出層410の外縁がさらに延伸して、回路基板200の少なくとも一部分も覆うことができる。熱放射放出層410はグラフェン片で構成することができ、貼り付ける方式により発熱源300に設置される。熱放射放出層410はグラフェン片またはカーボンナノボールを含む混合物で構成することもでき、貼り付け、吹き付けまたはプリントの方式により発熱源300に設置される。   The thermal radiation emitting layer 410 covers the heat source 300, and the outer edge of the thermal radiation emitting layer 410 can be further extended to cover at least a portion of the circuit board 200. The thermal radiation emission layer 410 can be composed of graphene pieces, and is installed on the heat source 300 by a pasting method. The thermal radiation emitting layer 410 can also be composed of a mixture containing graphene pieces or carbon nanoballs, and is attached to the heat source 300 by a method of pasting, spraying or printing.

熱放射吸収層420は、金属筐体100の内壁に貼り付けられる。本実施例において、熱放射吸収層420は金属筐体100内壁の相対する面に貼り付けられるため、熱放射吸収層420および熱放射放出層410は向かい合って配置される。好ましくは、熱放射吸収層420の面積は、対応する熱放射放出層410の面積より大きい。熱放射吸収層420はグラフェン片(Graphene)で構成することができ、貼り付ける方式により金属筐体100の内壁に設置される。熱放射吸収層420はグラフェン片またはカーボンナノボール(Nanocarbon ball)を含む混合物を固化させて構成することもでき、貼り付け、吹き付けまたはプリントの方式により、金属筐体100の内壁に設置される。   The heat radiation absorption layer 420 is attached to the inner wall of the metal housing 100. In the present embodiment, the heat radiation absorption layer 420 and the heat radiation emission layer 410 are disposed to face each other because the heat radiation absorption layer 420 is attached to the opposite surface of the inner wall of the metal housing 100. Preferably, the area of the thermal radiation absorbing layer 420 is larger than the area of the corresponding thermal radiation emitting layer 410. The heat radiation absorption layer 420 may be formed of graphene pieces, and is installed on the inner wall of the metal casing 100 by a bonding method. The heat radiation absorption layer 420 may be formed by solidifying a mixture containing graphene pieces or carbon nanoballs (Nanocarbon balls), and is installed on the inner wall of the metal housing 100 by a method of pasting, spraying or printing.

グラフェンまたはカーボンナノボールなどのグラファイト材料は、良好な熱伝導および熱放射特性を有するため、熱放射放出層410は、熱伝導の方式により、発熱源300が生成する熱エネルギーを急速に吸収することができる。さらに、熱放射放出層410は、熱放射の方式により、吸入した熱エネルギーを急速に発散させることができる。熱放射吸収層420は、熱放射の方式により、熱放射放出層410から発散される熱エネルギーを吸収して発熱する。熱放射の伝達方向は発散式であるため、本実施例で配置される熱放射吸収層420の面積は、対応する熱放射放出層410の面積より大きい。これにより、熱放射吸収層420が熱放射放出層410から発散される熱エネルギーを完全に吸収することができることを確実に保証し、そうでなければ、熱放射吸収層420に達しない放射熱は、金属筐体100の内壁により発熱源300に向かって反射する。熱放射吸収層420は、熱伝導の方式により、吸収した熱エネルギーを急速に金属筐体100に伝達し、さらに金属筐体100の外表面を通過して、熱対流の方式で環境中に発散させる。他に、回路基板200のもう1つの面を金属筐体100に貼り付け、熱伝導の方式で、回路基板200の熱エネルギーを金属筐体100に伝達することができる。   Because graphite materials such as graphene or carbon nanoballs have good thermal conductivity and thermal emission characteristics, the thermal radiation emitting layer 410 can rapidly absorb the thermal energy generated by the heat source 300 by means of thermal conductivity. it can. Furthermore, the thermal radiation emitting layer 410 can rapidly dissipate the inhaled thermal energy by means of thermal radiation. The heat radiation absorption layer 420 absorbs heat energy emitted from the heat radiation emission layer 410 to generate heat in a manner of heat radiation. Since the heat radiation transfer direction is divergent, the area of the heat radiation absorption layer 420 disposed in the present embodiment is larger than the area of the corresponding heat radiation emission layer 410. This ensures that the thermal radiation absorbing layer 420 can completely absorb the thermal energy emitted from the thermal radiation emitting layer 410, otherwise radiation heat that does not reach the thermal radiation absorbing layer 420 is The light is reflected toward the heat source 300 by the inner wall of the metal casing 100. The heat radiation absorption layer 420 rapidly transmits the absorbed heat energy to the metal casing 100 by the heat conduction method, and further passes through the outer surface of the metal casing 100 and is dissipated into the environment by the heat convection method. Let In addition, the other surface of the circuit board 200 can be attached to the metal housing 100, and the thermal energy of the circuit board 200 can be transmitted to the metal housing 100 by a heat conduction method.

図2を参照されたい。本考案の第2実施例は電子機器放熱構造を提供し、これは金属筐体100、回路基板200、熱放射放出層410および熱放射吸収層420を含む。本実施例の構造は、前記第1実施例とおおよそ同じであり、同じ部分はここでは省略し、本実施例における第1実施例と異なる部分を以下に詳述する。   See FIG. A second embodiment of the present invention provides an electronic device heat dissipation structure, which includes a metal housing 100, a circuit board 200, a thermal radiation emitting layer 410 and a thermal radiation absorbing layer 420. The structure of this embodiment is approximately the same as that of the first embodiment, and the same parts are omitted here, and parts different from the first embodiment in the present embodiment will be described in detail below.

本実施例において、回路基板200のもう1つの面は、少なくとも1つの支持具210でかさ上げすることにより、金属筐体100の内壁と相互に間隔を開けて配置される。回路基板200における発熱源300と反対の面は、もう1つの熱放射放出層410aを覆い、金属筐体100の内壁に、対応し、向かい合って配置されるもう1つの熱放射吸収層420aが貼り付けて設置される。したがって回路基板200も、第1実施例の記載と同じ熱放射放出/吸収の方式により、回路基板200の熱エネルギーを金属筐体100に伝達することができる。   In this embodiment, the other side of the circuit board 200 is spaced apart from the inner wall of the metal housing 100 by being raised by at least one support 210. The surface of the circuit board 200 opposite to the heat source 300 covers another heat radiation emission layer 410a, and another heat radiation absorption layer 420a disposed opposite to the corresponding heat radiation absorption layer is attached to the inner wall of the metal housing 100. Will be installed. Therefore, the circuit board 200 can also transfer the thermal energy of the circuit board 200 to the metal casing 100 by the same method of thermal radiation emission / absorption as described in the first embodiment.

本考案は、金属筐体100の内壁に、熱放射吸収層420/420aを配置することにより、熱放射放出層410/410aから発散される放射熱エネルギーが金属筐体100により反射されるのを防止することができる。さらにグラファイト材料自体も良好な熱伝導特性を有し、熱放射放出層410/410aから発散される放射熱エネルギーを吸収後、効果的に金属筐体100に伝達することができる。   According to the present invention, by disposing the heat radiation absorbing layer 420 / 420a on the inner wall of the metal case 100, the radiation heat energy emitted from the heat radiation emitting layer 410 / 410a is reflected by the metal case 100. It can be prevented. Furthermore, the graphite material itself also has good heat transfer characteristics, and can effectively transmit the heat energy radiated from the heat radiation emitting layer 410 / 410a to the metal housing 100 after being absorbed.

以上の記載は本考案の好ましい実施例に過ぎず、本考案の実用新案登録請求の範囲を限定しない。その他の本考案の趣旨を利用して同等に変化させたものは、いずれも本考案の実用新案登録請求の範囲に属するべきである。   The above description is only a preferred embodiment of the present invention, and does not limit the scope of the utility model registration request of the present invention. Anything that is equally changed using the purpose of the present invention should belong to the scope of the utility model registration request of the present invention.

100 金属筐体
200 回路基板
210 支持具
300 発熱源
410/410a 熱放射放出層
420/420a 熱放射吸収層
DESCRIPTION OF SYMBOLS 100 metal housing 200 circuit board 210 support 300 heat source 410 / 410a thermal radiation emission layer 420 / 420a thermal radiation absorption layer

Claims (10)

電子機器放熱構造であって、
金属筐体と;
該金属筐体内に収容され、1つの面に発熱源が設置される回路基板と;
該発熱源を覆う熱放射放出層と;
該金属筐体の内壁に貼り付けられ、該熱放射放出層と向かい合って配置される熱放射吸収層と;を含む構造。
Electronic device heat dissipation structure,
With metal casings;
A circuit board housed in the metal casing and having a heat source installed on one side thereof;
A thermal radiation emitting layer covering the heat source;
A thermal radiation absorbing layer affixed to the inner wall of the metal housing and disposed facing the thermal radiation emitting layer.
該回路基板のもう1つの面が、該金属筐体の内壁と相互に間隔を開けて配置される、請求項1に記載の電子機器放熱構造。   The electronic device heat dissipation structure according to claim 1, wherein another surface of the circuit board is spaced apart from the inner wall of the metal housing. 該回路基板のもう1つの面がもう1つの熱放射放出層を覆い、該金属筐体の内壁に、対応し、向かい合って配置されるもう1つの熱放射吸収層が貼り付けて設置される、請求項2に記載の電子機器放熱構造。   The other side of the circuit board covers another heat radiation emitting layer, and another heat radiation absorbing layer, which is disposed corresponding to and opposite to the heat radiation emitting layer, is attached to the inner wall of the metal housing. The electronic device heat dissipation structure according to claim 2. 該回路基板のもう1つの面が、該金属筐体の内壁に貼り付けられる、請求項1に記載の電子機器放熱構造。   The electronic device heat dissipation structure according to claim 1, wherein another surface of the circuit board is attached to an inner wall of the metal housing. 熱放射吸収層の面積が、対応する該熱放射放出層の面積より大きい、請求項1に記載の電子機器放熱構造。   The electronic device heat dissipation structure according to claim 1, wherein the area of the heat radiation absorption layer is larger than the area of the corresponding heat radiation emission layer. 該熱放射放出層が延伸して、該回路基板の少なくとも一部分を覆う、請求項1に記載の電子機器放熱構造。   The electronic device heat dissipation structure according to claim 1, wherein the thermal radiation emitting layer is stretched to cover at least a portion of the circuit board. 該熱放射放出層がグラフェン片である、請求項1に記載の電子機器放熱構造。   The electronic device heat dissipation structure according to claim 1, wherein the thermal radiation emission layer is a graphene piece. 該熱放射放出層がグラフェン片またはカーボンナノボールを含む、請求項1に記載の電子機器放熱構造。   The electronic device heat dissipation structure according to claim 1, wherein the thermal radiation emitting layer comprises graphene pieces or carbon nanoballs. 該熱放射吸収層がグラフェン片である、請求項1に記載の電子機器放熱構造。   The electronic device heat dissipation structure according to claim 1, wherein the heat radiation absorption layer is a graphene piece. 該熱放射吸収層がグラフェン片またはカーボンナノボールを含む、請求項1に記載の電子機器放熱構造。   The electronic device heat dissipation structure according to claim 1, wherein the heat radiation absorption layer comprises graphene pieces or carbon nanoballs.
JP2019000109U 2018-01-17 2019-01-16 Electronic device heat dissipation structure Active JP3220706U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107101696A TWI697271B (en) 2018-01-17 2018-01-17 Heat dissipation structure for electronic device
TW107101696 2018-01-17

Publications (1)

Publication Number Publication Date
JP3220706U true JP3220706U (en) 2019-03-28

Family

ID=65895155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000109U Active JP3220706U (en) 2018-01-17 2019-01-16 Electronic device heat dissipation structure

Country Status (2)

Country Link
JP (1) JP3220706U (en)
TW (1) TWI697271B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021017676A1 (en) * 2019-07-27 2021-02-04 深圳市麟富科技有限公司 Radiation-resistant protection cover, and processing process for same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205883820U (en) * 2016-06-30 2017-01-11 慧隆科技股份有限公司 Radiation heat dissipation formula electron device
CN206614861U (en) * 2017-02-20 2017-11-07 慧隆科技股份有限公司 Graphite material fin
TWM541701U (en) * 2017-02-24 2017-05-11 Amazing Cool Tech Corp Directional heat dissipation structure of electronic device
CN206506817U (en) * 2017-02-27 2017-09-19 慧隆科技股份有限公司 The oriented heat dissipating structure of electronic installation
TWM560761U (en) * 2018-01-17 2018-05-21 慧隆科技股份有限公司 Heat dissipation structure for electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021017676A1 (en) * 2019-07-27 2021-02-04 深圳市麟富科技有限公司 Radiation-resistant protection cover, and processing process for same

Also Published As

Publication number Publication date
TW201933974A (en) 2019-08-16
TWI697271B (en) 2020-06-21

Similar Documents

Publication Publication Date Title
JP5794225B2 (en) Light-emitting device cooling system and light-emitting device using the same
TW201528927A (en) New heat spreading packaging design
JP4006795B2 (en) Information processing apparatus having heat dissipation structure
WO2021083142A1 (en) Electronic device
JP2000106495A (en) Inner structure of electric/electronic apparatus
US20090073654A1 (en) Compact surface-mount heat exchanger
JP3220706U (en) Electronic device heat dissipation structure
CN207948002U (en) Electronic apparatus heat radiation construction
JP2006339223A (en) Heat dissipation structure of cpu
JP2005150429A (en) Radiation cabinet structure and display unit employing it
TWM560761U (en) Heat dissipation structure for electronic device
TWM511068U (en) Heat spreading device
JP2011171237A (en) Luminaire
JPH10117078A (en) Heat-dissipating structure for electronic device
TWM547096U (en) Graphite heat dissipation piece
JP2004200533A (en) Heat radiation structure of device
JP4309189B2 (en) Portable electronic equipment
US7816629B2 (en) Vacuum heating device
JP3699869B2 (en) Flat light emitting display
TWM532141U (en) Radiative heat-dissipation type electronic device
CN209821767U (en) Novel heat dissipation server
JP5408528B2 (en) Electronics
JP3220705U (en) Radiation heat dissipation structure of wireless charging device
JP4194180B2 (en) Outdoor electronics housing
CN209525618U (en) Heat-dissipation type chassis

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3220706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250