JP3220705U - Radiation heat dissipation structure of wireless charging device - Google Patents

Radiation heat dissipation structure of wireless charging device Download PDF

Info

Publication number
JP3220705U
JP3220705U JP2019000108U JP2019000108U JP3220705U JP 3220705 U JP3220705 U JP 3220705U JP 2019000108 U JP2019000108 U JP 2019000108U JP 2019000108 U JP2019000108 U JP 2019000108U JP 3220705 U JP3220705 U JP 3220705U
Authority
JP
Japan
Prior art keywords
radiation
heat
heat dissipation
wireless charging
charging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019000108U
Other languages
Japanese (ja)
Inventor
養明 施
養明 施
宏源 許
宏源 許
Original Assignee
慧隆科技股▲ふん▼有限公司
株式会社ジー・エム・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慧隆科技股▲ふん▼有限公司, 株式会社ジー・エム・エス filed Critical 慧隆科技股▲ふん▼有限公司
Application granted granted Critical
Publication of JP3220705U publication Critical patent/JP3220705U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/025Constructional details relating to cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】無線充電装置の放射放熱構造を提供する。
【解決手段】無線充電装置の放射放熱構造は、筐体100、基板200、誘導コイル300、および熱放射コーティング400を含む。筐体100は熱放射透過領域101を有し、筐体100の熱放射透過領域101が形成される部分は非金属製である。基板200は筐体100内に収容され、基板200の1つの面に放熱面201が形成され、放熱面201は熱放射透過領域101に向かって配置される。誘導コイル300は、基板200の放熱面201に設置される。熱放射コーティング400は基板200の放熱面201を覆い、誘導コイル300を覆う。誘導コイル300に塗布された熱放射コーティング400により、熱放射の方式で、誘導コイル300の動作時に生成される熱エネルギーを取り除く。したがって、放熱手段の設置により、無線充電装置の体積が増加することはない。
【選択図】図2
A radiation heat dissipation structure of a wireless charging device is provided.
A radiation heat dissipation structure of a wireless charging device includes a housing (100), a substrate (200), an induction coil (300), and a heat radiation coating (400). The housing 100 has a heat radiation transmission area 101, and the part of the housing 100 where the heat radiation transmission area 101 is formed is made of nonmetal. The substrate 200 is accommodated in the housing 100, the heat dissipation surface 201 is formed on one surface of the substrate 200, and the heat dissipation surface 201 is disposed toward the heat radiation transmission area 101. The induction coil 300 is installed on the heat dissipation surface 201 of the substrate 200. The thermal radiation coating 400 covers the heat dissipation surface 201 of the substrate 200 and covers the induction coil 300. The thermal radiation coating 400 applied to the induction coil 300 removes the thermal energy generated during operation of the induction coil 300 in a manner of thermal radiation. Therefore, the installation of the heat dissipating means does not increase the volume of the wireless charging device.
[Selected figure] Figure 2

Description

本考案は無線充電装置の放熱構造に関し、特に無線充電装置の放射放熱構造である。   The present invention relates to a heat dissipation structure of a wireless charging device, and more particularly to a radiation heat dissipation structure of a wireless charging device.

現代人の生活は各種携帯電子機器であふれており、ケーブルの使用を減少させるため、無線化は必然的な傾向である。既存の携帯電子機器のほとんどはデータを無線通信する機能がすでに配備されており、さらにデータの通信速度も日増しに高くなっている。現在、携帯電子機器の無線充電技術は普及の最中であり、従来の無線充電装置の出力電力は高くないが、無線充電技術が次第に発展、成熟するのに伴って、無線充電装置が出力することができる電力も日増しに増加している。従来の無線充電装置の出力電力は低いため、充電中の発熱量は高くなく、多くが自然対流による放熱で充分であったが、無線充電装置が出力することができる電力が日増しに増加するのに伴い、充電中の発熱量も増加し、追加の放熱手段も必要な配備となっている。しかし、無線充電装置は携帯する需要を有するため、現在の無線充電装置のほとんどは体積が大きくない。既存の強制対流放熱部材の体積は、無線充電装置自体の体積よりはるかに大きいため、無線充電装置の放熱手段として適さない。さらに、強制対流放熱部材は、一般的に制御装置を使用し、ファンまたはポンプおよび水冷ヘッドを組み合わせて実現する必要があり、したがってそのコストも比較的高い。   Modern people's lives are full of various portable electronic devices, and wireless use is an inevitable trend to reduce the use of cables. Most of the existing portable electronic devices are already equipped with a function to wirelessly communicate data, and further, the data communication speed is getting higher day by day. At present, the wireless charging technology for portable electronic devices is in the process of spreading, and the output power of the conventional wireless charging device is not high, but the wireless charging device outputs as the wireless charging technology is gradually developed and matured. The power that can be done is also increasing day by day. Since the output power of the conventional wireless charging device is low, the calorific value during charging is not high, and most of the heat dissipation by natural convection was sufficient, but the power that the wireless charging device can output increases day by day As a result, the amount of heat generated during charging also increases, and additional heat dissipation measures are also required. However, since wireless charging devices have a demand to carry, most of the current wireless charging devices are not bulky. Since the volume of the existing forced convection heat dissipating member is much larger than the volume of the wireless charging device itself, it is not suitable as a heat dissipating means of the wireless charging device. Furthermore, the forced convection heat dissipating member generally needs to be realized by using a control device and combining a fan or a pump and a water cooling head, and therefore its cost is relatively high.

このことを考慮して、本考案者は上記既存技術に対して鋭意研究を重ね、さらに学理的な利用を組み合わせ、上記の問題点の解決に尽力することは、本考案者の改良の目標となっている。   Taking this into consideration, the present inventor has conducted intensive studies on the above-mentioned existing technology, and further combined the use of academics to make an effort to solve the above-mentioned problems with the aim of the present inventor's improvement. It has become.

本考案は、無線充電装置の放射放熱構造を提供する。   The present invention provides a radiation heat dissipation structure of a wireless charging device.

本考案は無線充電装置の放射放熱構造を提供し、これは筐体、基板、誘導コイル、および熱放射コーティングを含む。筐体は熱放射透過領域を有し、筐体の熱放射透過領域が形成される部分は非金属製である。基板は筐体内に収容され、基板の1つの面に放熱面が形成され、放熱面は熱放射透過領域に向かって配置される。誘導コイルは、基板の放熱面に設置される。熱放射コーティングは基板の放熱面を覆い、誘導コイルを覆う。   The present invention provides a radiating structure for a wireless charging device, which includes a housing, a substrate, an inductive coil, and a thermal radiation coating. The housing has a heat radiation transmission area, and the part of the housing where the heat radiation transmission area is formed is nonmetallic. The substrate is accommodated in the housing, a heat dissipation surface is formed on one surface of the substrate, and the heat dissipation surface is disposed toward the heat radiation transmission area. The induction coil is placed on the heat dissipation surface of the substrate. The thermal radiation coating covers the heat dissipation surface of the substrate and covers the induction coil.

本考案の無線充電装置の放射放熱構造において、基板はフェライト板である。誘導コイルは、該基板上プリントされたプリント回路でよい。誘導コイルは、巻き付けて配置される金属リード線を含むこともできる。筐体は、非金属製である。筐体の内側面における該熱放射透過領域に対応する位置に、熱放射層が設置される。熱放射層は、該筐体に塗布される媒体と、該媒体内に分散する複数の熱放射顆粒とを含むことができる。熱放射層の媒体はパッドでもよく、媒体に複数の熱放射顆粒が分布する。熱放射コーティングは該基板に塗布される媒体と、該媒体内に分散する複数の熱放射顆粒とを含む。熱放射顆粒はグラフェン片またはカーボンナノボールである。   In the radiation heat dissipation structure of the wireless charging device of the present invention, the substrate is a ferrite plate. The induction coil may be a printed circuit printed on the substrate. The induction coil can also include a metal lead that is wound around. The housing is made of nonmetal. A heat emitting layer is disposed at a position corresponding to the heat radiation transmitting area on the inner surface of the housing. The heat emitting layer can include a medium applied to the housing and a plurality of heat emitting granules dispersed in the medium. The medium of the thermally emissive layer may be a pad, and a plurality of thermally emissive granules distributed in the medium. The thermal radiation coating comprises a medium to be applied to the substrate and a plurality of thermal radiation granules dispersed in the medium. The heat emitting granules are pieces of graphene or carbon nanoballs.

本考案の無線充電装置の放射放熱構造において、筐体は熱放射材料で製造することができる。熱放射材料はポリケトン、ナイロンおよびグラファイトの混合物、または熱放射成分を含有するプラスチックでよい。熱放射成分は、グラフェンまたはカーボンナノボールでよい。   In the radiation heat dissipation structure of the wireless charging device of the present invention, the housing can be made of a heat radiation material. The heat emitting material may be a polyketone, a mixture of nylon and graphite, or a plastic containing a heat emitting component. The heat emitting component may be graphene or carbon nanoballs.

本考案の無線充電装置の放射放熱構造において、基板における放熱面と相対するもう1つの面に、熱放射層が設置される。基板における放熱面と相対するもう1つの面に対応する筐体の部分に、もう1つの熱放射層が設置される。   In the radiation heat dissipation structure of the wireless charging device of the present invention, a heat radiation layer is disposed on another surface of the substrate opposite to the heat dissipation surface. Another heat emitting layer is disposed on the portion of the housing corresponding to the other surface opposite to the heat releasing surface of the substrate.

本考案の無線充電装置の放射放熱構造は、誘導コイルに塗布された熱放射コーティングにより、熱放射の方式で、誘導コイルの動作時に生成される熱エネルギーを取り除く。したがって、放熱手段の設置により、無線充電装置の体積が増加することはなく、コストは低い。   The radiation heat dissipation structure of the wireless charging device of the present invention removes the thermal energy generated during operation of the induction coil in the manner of heat radiation by the heat radiation coating applied to the induction coil. Therefore, the installation of the heat dissipation means does not increase the volume of the wireless charging device, and the cost is low.

図1は、本考案の好ましい実施例における無線充電装置の放射放熱構造の立体概要図である。FIG. 1 is a three-dimensional schematic view of a radiation heat dissipation structure of a wireless charging device in a preferred embodiment of the present invention. 図2は、本考案の好ましい実施例における無線充電装置の放射放熱構造の立体分解概要図である。FIG. 2 is a schematic exploded view of a radiation heat dissipating structure of a wireless charging device according to a preferred embodiment of the present invention. 図3は、本考案の好ましい実施例における無線充電装置の放射放熱構造中の基板および誘導コイルの配置概要図である。FIG. 3 is a schematic layout view of a substrate and an induction coil in a radiation heat dissipating structure of a wireless charging device in a preferred embodiment of the present invention. 図4は、本考案の好ましい実施例における無線充電装置の放射放熱構造中の熱放射コーティングの配置概要図である。FIG. 4 is a schematic view of the arrangement of the heat radiation coating in the heat radiation structure of the wireless charging device in the preferred embodiment of the present invention. 図5は、本考案の好ましい実施例における無線充電装置の放射放熱構造の断面図である。FIG. 5 is a cross-sectional view of the radiation heat dissipation structure of the wireless charging device in a preferred embodiment of the present invention. 図6は、図5におけるA領域の部分拡大図である。FIG. 6 is a partial enlarged view of a region A in FIG. 図7は、本考案の好ましい実施例における無線充電装置のその他の変化形態の概要図である。FIG. 7 is a schematic view of another variation of the wireless charging device in a preferred embodiment of the present invention. 図8は、本考案の好ましい実施例における無線充電装置のその他の変化形態の概要図である。FIG. 8 is a schematic view of another variation of the wireless charging device in a preferred embodiment of the present invention. 図9は、本考案の好ましい実施例における無線充電装置のその他の変化形態の概要図である。FIG. 9 is a schematic view of another variation of the wireless charging device in a preferred embodiment of the present invention.

図1から図4を参照されたい。本考案の好ましい実施例は、無線充電装置の放射放熱構造を提供し、筐体100、基板200、誘導コイル300、および熱放射コーティング400を含む。   See Figures 1-4. The preferred embodiment of the present invention provides a radiant heat dissipating structure for a wireless charging device, including a housing 100, a substrate 200, an inductive coil 300, and a thermal radiative coating 400.

筐体100は熱放射透過領域101を有し、金属は熱エネルギーの放射を反射させる特性を有するため、筐体100の熱放射透過領域101が形成される部分は非金属製である。本実施例において、好ましくは、筐体100全体はいずれも非金属(例えばプラスチック)で製造されるため、熱エネルギーを放射の方式で透過させることができる。   Since the housing 100 has a heat radiation transmitting area 101, and the metal has the property of reflecting the radiation of thermal energy, the portion of the housing 100 where the heat radiation transmitting area 101 is formed is made of nonmetal. In the present embodiment, preferably, the entire casing 100 is made of nonmetal (for example, plastic), so that thermal energy can be transmitted in a radiation manner.

基板200は該筐体100内に収容され、本実施例において、基板200は、好ましくはフェライト板(Ferrite)である。基板200の1つの面に放熱面201が形成され、放熱面201は熱放射透過領域101に向かって配置される。   The substrate 200 is housed in the housing 100, and in the present embodiment, the substrate 200 is preferably a ferrite plate (Ferrite). The heat dissipation surface 201 is formed on one surface of the substrate 200, and the heat dissipation surface 201 is disposed toward the heat radiation transmission area 101.

図3から図6を参照されたい。誘導コイル300は基板200の放熱面201に貼り付けて設置され、誘導コイル300は該基板200にプリントされたプリント回路でよい。誘導コイル300は、巻き付けて配置され、基板200の放熱面201に貼り付けられる金属リード線も含み、金属リード線は好ましくは螺旋状に巻き付けられ、平面に配置されるが、本考案は金属リード線を巻き付ける形式を限定しない。   See Figures 3 to 6. The induction coil 300 may be attached to the heat dissipation surface 201 of the substrate 200, and the induction coil 300 may be a printed circuit printed on the substrate 200. The induction coil 300 also includes a metal lead that is wound and disposed and attached to the heat dissipation surface 201 of the substrate 200, and the metal lead is preferably helically wound and disposed in a plane, although the present invention is a metal lead It does not limit the form of winding the wire.

熱放射コーティング400は基板200の放熱面201を覆い、誘導コイル300を覆う。熱放射コーティング400は、基板200に塗布される媒体410(例えばケイ素、ゴム、樹脂または塗料)と、媒体410内に分散する複数の熱放射顆粒420とを含むことができ、その熱放射顆粒420はグラフェン片またはカーボンナノボールである。   The thermal radiation coating 400 covers the heat dissipation surface 201 of the substrate 200 and covers the induction coil 300. The thermal emissive coating 400 may include a medium 410 (eg, silicon, rubber, resin or paint) applied to the substrate 200 and a plurality of thermal emissive granules 420 dispersed within the medium 410, the thermal emissive granules 420. Are graphene pieces or carbon nanoballs.

誘導コイル300は、他に電源または負荷(例えば電池または電子機器内の各機能モジュール)に電気的に接続することができ、誘導コイル300が電源に電気的に接続するとき、通電した誘導コイル300は磁場を生成することができる。誘導コイル300が負荷に電気的に接続するとき、通電していない誘導コイル300を場に装着すると、磁場を誘導して、内部に電流を生成し、負荷に電力供給することができる。したがって、電源および負荷の間に1対の誘導コイル300を配置することにより、電源を無線方式で負荷に供給することができる。   The induction coil 300 can be electrically connected to another power source or load (for example, a battery or each functional module in an electronic device), and the induction coil 300 is energized when the induction coil 300 is electrically connected to the power source. Can generate a magnetic field. When the induction coil 300 is electrically connected to the load, when the non-energized induction coil 300 is attached to the field, a magnetic field can be induced to generate a current inside and supply power to the load. Therefore, by arranging the pair of induction coils 300 between the power supply and the load, the power can be supplied to the load wirelessly.

電力供給時、電流が誘導コイル300を通過して生成される熱エネルギーは、熱放射コーティング400に吸収されて放射、発散することができ、放射、発散された熱エネルギーは筐体100の熱放射透過領域101を通過して筐体100から排出させることができる。   At the time of power supply, the thermal energy generated by the current passing through the induction coil 300 can be absorbed and radiated by the thermal radiation coating 400, and the radiated and radiated thermal energy is the thermal radiation of the housing 100. It can be discharged from the housing 100 through the transmission region 101.

図2、図5および図6を参照されたい。筐体100の内側面における熱放射透過領域101に対応する位置に、選択可能に熱放射層500を追加設置することを選択することができる。特に筐体100の一部分のみが非金属で製造され、熱放射透過領域101を構成するとき、熱放射は金属製の部分を透過することができないため、熱放射層500を追加設置して、熱放射、伝達を補助する。熱放射層500は、筐体100に塗布する媒体510(例えばケイ素、ゴム、樹脂または塗料)と、媒体510内に分散する複数の熱放射顆粒520とを含むが、本考案はこれに限定されない。例えば熱放射層500の媒体510は、筐体100の内側面に貼り付けるパッドでもよく、媒体510内部または媒体510の表面に複数の熱放射顆粒520が分布し、その熱放射顆粒520はグラフェン片またはカーボンナノボールである。熱放射層500は熱放射コーティング400が放射、発散した熱エネルギーを吸収し、さらに外側に放射して筐体100から排出させる。   See FIG. 2, FIG. 5 and FIG. It is possible to select to additionally install the heat emitting layer 500 at a position corresponding to the heat radiation transmitting area 101 on the inner surface of the housing 100. In particular, when only a part of the housing 100 is made of nonmetal and the heat radiation transmitting region 101 is configured, the heat radiation can not be transmitted through the metal part, so that the heat radiation layer 500 is additionally provided to Assist in radiation and transmission. The heat emitting layer 500 includes a medium 510 (eg, silicon, rubber, resin or paint) to be applied to the housing 100, and a plurality of heat emitting granules 520 dispersed in the medium 510, but the invention is not limited thereto . For example, the medium 510 of the heat radiation layer 500 may be a pad attached to the inner surface of the housing 100, and a plurality of heat radiation granules 520 are distributed in the medium 510 or on the surface of the medium 510, and the heat radiation granules 520 are graphene pieces Or carbon nanoballs. The thermal radiation layer 500 absorbs the thermal energy radiated and dissipated by the thermal radiation coating 400, and radiates it further to discharge it from the housing 100.

図7を参照されたい。全体が非金属製の筐体100で、熱放射層500を配置する場合、筐体100全体が非金属で製造されるため、いずれも熱放射透過領域101とすることができ、したがって熱放射層500は、好ましくは筐体100の内側面に一面に配置することもできる。   See FIG. When the heat radiation layer 500 is disposed in the whole nonmetallic casing 100, since the whole casing 100 is manufactured with nonmetal, any of them can be a heat radiation transmission region 101, and thus the heat radiation layer 500 may also be preferably disposed on the inside surface of the housing 100.

図8を参照されたい。筐体100全体が非金属で製造されるとき、熱放射層500を設置しないことを選択することができる。非金属製の筐体100は熱放射材料、例えば、改質したポリケトン(Polyketone);ナイロンおよびグラファイトの混合物;または熱放射成分(グラフェン、カーボンナノボール)を有するプラスチックを選択して製造することができる。したがって筐体100自体が熱放射することにより、誘導コイルが放出する熱放射を吸収することができ、さらに筐体から外側に熱放射し、発散させる。一般的なプラスチックが熱放射、透過することしかできないことと比較して、前記熱放射材料製の筐体100は、さらに熱放射を吸収して、放熱効率を高めることができる。   See FIG. If the entire enclosure 100 is manufactured non-metallic, it may be chosen not to install the heat emitting layer 500. The non-metallic housing 100 can be manufactured by selecting a plastic having a thermally emitting material, for example, a modified polyketone; a mixture of nylon and graphite; or a thermally emitting component (graphene, carbon nanoballs) . Therefore, when the housing 100 itself radiates heat, it can absorb the thermal radiation emitted by the induction coil, and further radiate heat from the housing to the outside and radiate it. The housing 100 made of the heat radiation material can further absorb the heat radiation to enhance the heat radiation efficiency, as compared with the fact that a general plastic can only radiate and transmit heat.

図9を参照されたい。基板200における放熱面201と相対するもう1つの面に、選択的に熱放射層600を追加設置することもでき、この放射層600は誘導コイル300の動作時に生成される熱エネルギーの発散を補助するのに用いることができる。さらに、前記基板200におけるもう1つの面に対応する筐体100の部分にも、選択的に熱放射層500を設置して、前記基板の熱放射層600が発散する熱エネルギーを吸収し、さらに筐体100の外側に発散させることができる。ここで、熱放射層500/600は筐体100または基板200に塗布して設置することができる。熱放射層500/600はパッドの形式でもよく、筐体100または基板200に貼り付けて固定される。   See FIG. A thermal radiation layer 600 can be selectively provided additionally on another surface of the substrate 200 opposite to the thermal radiation surface 201, and this radiation layer 600 helps to dissipate the thermal energy generated when the induction coil 300 operates. Can be used to Furthermore, the heat radiation layer 500 is selectively provided also on the portion of the housing 100 corresponding to the other surface of the substrate 200 so that the heat radiation layer 600 of the substrate absorbs the diverging heat energy, It can diverge outside the housing 100. Here, the heat radiation layer 500/600 can be applied and installed on the housing 100 or the substrate 200. The thermal radiation layer 500/600 may be in the form of a pad and is affixed to the housing 100 or the substrate 200 and fixed.

本考案の無線充電装置の放射放熱構造は、誘導コイル300に塗布した熱放射コーティング400により、熱放射の方式で、誘導コイル300の動作時に生成される熱エネルギーを取り除く。したがって放熱手段の設置により、無線充電装置の体積が増加することはなく、さらに熱放射コーティング400の配置コストも相当低い。   The radiant heat dissipating structure of the wireless charging device of the present invention removes thermal energy generated during operation of the inductive coil 300 by means of the thermal radiation coating 400 applied to the inductive coil 300 in the manner of thermal radiation. Therefore, the installation of the heat radiation means does not increase the volume of the wireless charging device, and the cost of arranging the heat radiation coating 400 is also considerably low.

以上の記載は本考案の好ましい実施例に過ぎず、本考案の実用新案登録請求の範囲を限定しない。その他の本考案の趣旨を利用して同等に変化させたものは、いずれも本考案の実用新案登録請求の範囲に属するべきである。   The above description is only a preferred embodiment of the present invention, and does not limit the scope of the utility model registration request of the present invention. Anything that is equally changed using the purpose of the present invention should belong to the scope of the utility model registration request of the present invention.

100 筐体
101 熱放射透過領域
200 基板
210 放熱面
300 誘導コイル
400 熱放射コーティング
410 媒体
420 熱放射顆粒
500/600 熱放射層
510 媒体
520 熱放射顆粒
Reference Signs List 100 housing 101 heat radiation transmission area 200 substrate 210 heat radiation surface 300 induction coil 400 heat radiation coating 410 medium 420 heat radiation granule 500/600 heat radiation layer 510 medium 520 heat radiation granule

Claims (15)

無線充電装置の放射放熱構造であって、
熱放射透過領域を有し、該熱放射透過領域を形成する部分は非金属製である筐体と;
該筐体内に収容され、1つの面に放熱面が形成され、該放熱面が該熱放射透過領域に向かって配置される基板と;
該基板の該放熱面に設置される誘導コイルと;
基板の該放熱面を覆い、該誘導コイルを覆う熱放射コーティングと;を含む構造。
The radiation heat dissipation structure of the wireless charging device,
A housing having a heat radiation transmissive area, the portion forming the heat radiation transmissive area being made of non-metal;
A substrate housed in the housing, the heat dissipation surface being formed on one surface, the heat dissipation surface being disposed toward the heat radiation transmission area;
An induction coil mounted on the heat dissipation surface of the substrate;
A thermal radiation coating covering the heat dissipation surface of the substrate and covering the induction coil.
該基板がフェライト板である、請求項1に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of the wireless charging device according to claim 1, wherein the substrate is a ferrite plate. 該誘導コイルが該基板にプリントされたプリント回路である、請求項1に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of a wireless charging device according to claim 1, wherein the induction coil is a printed circuit printed on the substrate. 該誘導コイルが巻き付けて配置される金属リード線を含む、請求項1に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of a wireless charging device according to claim 1, further comprising a metal lead wire on which the induction coil is disposed. 該筐体が非金属製である、請求項1に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of the wireless charging device according to claim 1, wherein the housing is made of nonmetal. 該筐体の内側面における該熱放射透過領域に対応する位置に、熱放射層が設置される、請求項1に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of the wireless charging device according to claim 1, wherein a heat radiation layer is provided at a position corresponding to the heat radiation transmission region on the inner side surface of the housing. 該熱放射層が該筐体に塗布される媒体と、該媒体内に分散する複数の熱放射顆粒とを含む、請求項6に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of a wireless charging device according to claim 6, wherein the heat radiation layer comprises a medium to be applied to the housing and a plurality of heat radiation granules dispersed in the medium. 該熱放射層が該筐体に設置される媒体を含み、該媒体はパッドであり、該媒体に複数の熱放射顆粒が分布する、請求項6に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of a wireless charging device according to claim 6, wherein the heat radiation layer comprises a medium installed in the housing, the medium is a pad, and a plurality of heat radiation granules are distributed in the medium. 該熱放射コーティングが該基板に塗布される媒体と、該媒体内に分散する複数の熱放射顆粒とを含む、請求項1に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of a wireless charging device according to claim 1, wherein the heat radiation coating comprises a medium to be applied to the substrate and a plurality of heat radiation granules dispersed in the medium. 該熱放射顆粒がグラフェン片またはカーボンナノボールである、請求項7〜9のいずれか1項に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of the wireless charging device according to any one of claims 7 to 9, wherein the heat emitting granules are graphene pieces or carbon nanoballs. 該筐体が熱放射材料で製造される、請求項1に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of a wireless charging device according to claim 1, wherein the housing is made of a heat radiation material. 該熱放射材料はポリケトン、ナイロンおよびグラファイトの混合物、または熱放射成分を含有するプラスチックである、請求項11に記載の無線充電装置の放射放熱構造。   The radiation heat dissipating structure of a wireless charging device according to claim 11, wherein the heat emitting material is a polyketone, a mixture of nylon and graphite, or a plastic containing a heat emitting component. 該熱放射成分はグラフェンまたはカーボンナノボールである、請求項12に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of a wireless charging device according to claim 12, wherein the heat radiation component is graphene or carbon nanoballs. 該基板における該放熱面と相対するもう1つの面に、熱放射層が設置される、請求項1に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of the wireless charging device according to claim 1, wherein a heat radiation layer is provided on another surface of the substrate opposite to the heat dissipation surface. 該基板における該放熱面と相対するもう1つの面に対応する該筐体の部分に、もう1つの熱放射層が設置される、請求項14に記載の無線充電装置の放射放熱構造。   The radiation heat dissipation structure of the wireless charging device according to claim 14, wherein another heat radiation layer is provided on a portion of the housing corresponding to the other surface of the substrate facing the heat dissipation surface.
JP2019000108U 2018-09-04 2019-01-16 Radiation heat dissipation structure of wireless charging device Active JP3220705U (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW107212088 2018-09-04
TW107212088 2018-09-04
TW107213605 2018-10-08
TW107213605 2018-10-08

Publications (1)

Publication Number Publication Date
JP3220705U true JP3220705U (en) 2019-03-28

Family

ID=65895156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000108U Active JP3220705U (en) 2018-09-04 2019-01-16 Radiation heat dissipation structure of wireless charging device

Country Status (2)

Country Link
JP (1) JP3220705U (en)
KR (1) KR20200000579U (en)

Also Published As

Publication number Publication date
KR20200000579U (en) 2020-03-13

Similar Documents

Publication Publication Date Title
US20170338023A1 (en) Wireless Charging Pad Having Coolant Assembly
US9482419B2 (en) Electric light bulb type light source apparatus
CN107112809A (en) The heat management system and method for wireless charging device
KR101733579B1 (en) Wireless charging apparatus having the outer peripheral surface heat sink to emit heat to the outside
JP7379312B2 (en) wireless charging device
WO2016147598A1 (en) Heat sink device
CN109168302B (en) Wearable equipment
JP7126284B2 (en) Vehicle wireless power transmitter
JP2009004513A (en) Non-contact power transmission equipment
TW201528927A (en) New heat spreading packaging design
CN209072105U (en) A kind of wireless charging base with Piezoelectric Ceramic Fan radiator structure
JP2015053385A (en) Power supply device
KR101502269B1 (en) Speaker device
JP3220705U (en) Radiation heat dissipation structure of wireless charging device
KR101922022B1 (en) Wireless charging system with heat prevention
TWI631887B (en) Heat dissipation structure and electronic device using same
CN113726027A (en) Wireless charging device
CN209168894U (en) The heat loss through radiation structure of wireless charging device
JP3216229U (en) Graphite radiator
JP5880245B2 (en) Light bulb type light source device
JP2011233304A (en) Induction heating cooker
JP3220706U (en) Electronic device heat dissipation structure
CN210042634U (en) Wireless charging seat adopting phase change inhibition heat transfer material and piezoelectric ceramic fan
JP3700881B2 (en) Cooling structure
JP5906916B2 (en) Light bulb type light source device

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3220705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250