TWM547096U - Graphite heat dissipation piece - Google Patents
Graphite heat dissipation piece Download PDFInfo
- Publication number
- TWM547096U TWM547096U TW106202032U TW106202032U TWM547096U TW M547096 U TWM547096 U TW M547096U TW 106202032 U TW106202032 U TW 106202032U TW 106202032 U TW106202032 U TW 106202032U TW M547096 U TWM547096 U TW M547096U
- Authority
- TW
- Taiwan
- Prior art keywords
- heat
- graphite
- heat radiation
- conductive sheet
- radiation layer
- Prior art date
Links
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本創作係有關於散熱器,特別是一種石墨材料輻射散熱片。 This creation is about radiators, especially a graphite material radiating fin.
現有的散熱器以金屬散熱器為主流,其主要藉由熱傳導的方式自發熱源吸收熱能,再進一步藉由熱對流的方式輻射發散至環境空氣中。考量在金屬材料的熱傳遞特性、價格以及重量之間取得平衡,一般金屬散散熱器常使用的金屬材料為鋁或者銅,鋁的熱傳導係數(K)約為200W/(m.K),而銅的熱傳導係數(K)約為400W/(m.K),為熱傳導效率較佳的金屬材料之中價格相對較低者。傳統的金屬散熱器藉由改變其鰭片的構造以求達到更好的熱對流效率,但現有的金屬散熱器受限於金屬本身的熱傳遞特性極限,已難有更大幅的進展。 The existing heat sink is mainly composed of a metal heat sink, which mainly absorbs heat energy from a heat source by means of heat conduction, and further radiates into the ambient air by means of heat convection. Considering the balance between the heat transfer characteristics, price and weight of metal materials, the metal material commonly used for metal heat sinks is aluminum or copper, and the heat transfer coefficient (K) of aluminum is about 200 W/(m.K). Copper has a heat transfer coefficient (K) of about 400 W/(m.K), which is a relatively low price among metal materials having better heat conduction efficiency. Conventional metal heat sinks have been designed to achieve better thermal convection efficiency by changing the structure of their fins. However, existing metal heat sinks are limited by the heat transfer characteristics of the metal itself, and it has been difficult to make further progress.
等有鑑於此,本創作人遂針對上述現有技術,特潛心研究並配合學理的運用,盡力解決上述之問題點,即成為本創作人改良之目標。 In view of this, the creator has focused on the above-mentioned prior art, and has devoted himself to researching and cooperating with the use of academics to try to solve the above problems, which is the goal of the creator's improvement.
本創作提供一種石墨材料製成的輻射散熱片。 This creation provides a radiation fin made of graphite material.
本創作提供一種石墨材料散熱片,用以對應一發熱源設置,其包含一石墨導熱片及一熱輻射層。石墨導熱片的其中一面用以吸收所述發熱源產生的熱能。熱輻射層覆蓋在石墨導熱片的另一面。 The present invention provides a graphite material heat sink for corresponding to a heat source, comprising a graphite heat conductive sheet and a heat radiation layer. One side of the graphite thermal sheet absorbs thermal energy generated by the heat source. The heat radiating layer covers the other side of the graphite thermally conductive sheet.
本創作的石墨材料散熱片,其熱輻射層與石墨導熱片之間夾設有一黏著層。熱輻射層為片狀熱輻射材料。熱輻射層為由一片狀石墨烯構成。熱輻射層可以為由單一片狀石墨烯構成;熱輻射層也可以為相互接合延伸的複數片狀石墨烯構成。 The graphite material heat sink of the present invention has an adhesive layer sandwiched between the heat radiation layer and the graphite heat conductive sheet. The heat radiating layer is a sheet-like heat radiating material. The heat radiation layer is composed of a piece of graphene. The heat radiation layer may be composed of a single sheet of graphene; the heat radiation layer may also be composed of a plurality of sheet-like graphenes which are joined to each other.
本創作的石墨材料散熱片,其熱輻射層包含有覆蓋在石墨導熱片一固著結構,以及分散嵌埋在固著結構的複數熱輻射顆粒。熱輻射顆粒可以為石墨烯碎片。熱輻射顆粒也可以為奈米碳球。固著結構為固化的膠態材料。 The graphite material heat sink of the present invention has a heat radiation layer comprising a fixed structure covering the graphite heat conductive sheet, and a plurality of heat radiation particles dispersed in the fixed structure. The heat radiating particles may be graphene fragments. The heat radiating particles may also be nanocarbon spheres. The anchoring structure is a solidified colloidal material.
本創作的石墨材料散熱片能夠藉由其石墨導熱片自發熱源吸收熱能並且快速擴散,再進一步藉由熱輻射層以熱輻射方式快速發散。其相較於現有的金屬散熱器具有更好的散熱效率 The graphite material heat sink of the present invention can absorb heat energy from the heat source by its graphite heat conductive sheet and rapidly diffuse, and further rapidly diverge by heat radiation layer by heat radiation layer. It has better heat dissipation efficiency than existing metal heat sinks.
10‧‧‧發熱源 10‧‧‧heat source
20‧‧‧外殼 20‧‧‧ Shell
100‧‧‧石墨導熱片 100‧‧‧ graphite thermal film
200‧‧‧熱輻射層 200‧‧‧thermal radiation layer
210‧‧‧固著結構 210‧‧‧Fixed structure
220‧‧‧熱輻射顆粒 220‧‧‧thermal radiation particles
300‧‧‧黏著層 300‧‧‧Adhesive layer
400‧‧‧保護層 400‧‧‧Protective layer
圖1係本創作第一實施例之石墨材料散熱片之示意圖。 1 is a schematic view of a graphite material heat sink of the first embodiment of the present invention.
圖2係本創作第二實施例之石墨材料散熱片之示意圖。 2 is a schematic view of a graphite material heat sink of the second embodiment of the present invention.
圖3係本創作第三實施例之石墨材料散熱片之示意圖。 Fig. 3 is a schematic view showing a graphite material heat sink of the third embodiment of the present invention.
圖4係本創作之石墨材料散熱片之另一配置方式示意圖。 FIG. 4 is a schematic view showing another configuration mode of the graphite material heat sink of the present invention.
參閱圖1,本創作之第一實施例提供一種石墨材料散熱片,其用以對應一發熱源10設置以進行輻射散熱,其中發熱源10利如IC晶片、電路板或是其他發熱元件。於本實施例中,本創作的石墨材料散熱片包含有一石墨導熱片100以及一熱輻射層200。 Referring to FIG. 1, a first embodiment of the present invention provides a graphite material heat sink for disposing a heat source 10 for radiating heat, wherein the heat source 10 is like an IC chip, a circuit board or other heat generating components. In the present embodiment, the graphite material heat sink of the present invention comprises a graphite thermal conductive sheet 100 and a heat radiation layer 200.
石墨導熱片100為片狀的石墨(Graphite),石墨烯為碳原子的六邊形鍵結相連構成的多層層疊結構,其可以是天然石墨或是人工石墨,天然石墨的 熱傳導係數(K)約為600W/(m.K)以上,而人工石墨的熱傳導係數(K)約為1500W/(m.K)以上。石墨導熱片100的其中一面用以吸收發熱源10產生的熱能,並且將該些熱能傳導擴散至石墨導熱片100的各部分。 The graphite thermal conductive sheet 100 is a sheet of graphite (Graphite), and the graphene is a multi-layered laminated structure composed of hexagonal bonds of carbon atoms, which may be natural graphite or artificial graphite, natural graphite. The heat transfer coefficient (K) is about 600 W/(m.K) or more, and the artificial graphite has a heat transfer coefficient (K) of about 1500 W/(m.K) or more. One side of the graphite thermally conductive sheet 100 absorbs thermal energy generated by the heat generating source 10 and conducts the thermal energy to the respective portions of the graphite thermal conductive sheet 100.
熱輻射層200覆蓋在石墨導熱片100的另一面。於本實施例中熱輻射層200為片狀熱輻射材料製成,其較佳地為一片片狀的石墨烯(Graphene)所構成,石墨烯為碳原子的六邊形鍵結相連構成的單層平面狀鍵結構。其中,片狀的石墨烯可以是單一的片狀石墨烯,也可以是複數片狀石墨烯平鋪相接而構成。熱輻射層200與石墨導熱片100之間夾設有一黏著層300,藉由黏著層300將熱輻射層200黏著固定在石墨導熱片100之上,而且熱輻射層200覆蓋有一保護層400,保護層400為絕緣且能夠被熱輻射穿透,其保護層400較佳地是由PET(聚對苯二甲酸乙二酯;polyethylene terephthalate)製成。由於片狀的石墨烯難以直接覆蓋在石墨導熱片100上,因此片狀的石墨較佳地先行形成在黏著層300或是保護層400再貼附至石墨導熱片100。 The heat radiation layer 200 covers the other side of the graphite heat conductive sheet 100. In the present embodiment, the heat radiation layer 200 is made of a sheet-like heat radiation material, which is preferably composed of a piece of graphene (Graphene), and the graphene is a hexagonal bond of carbon atoms. Layer flat key structure. The sheet-like graphene may be a single sheet-like graphene, or may be formed by tiling a plurality of sheet-like graphenes. An adhesive layer 300 is interposed between the heat radiation layer 200 and the graphite heat conductive sheet 100. The heat radiation layer 200 is adhered and fixed on the graphite heat conductive sheet 100 by the adhesive layer 300, and the heat radiation layer 200 is covered with a protective layer 400 for protection. Layer 400 is insulating and capable of being penetrated by thermal radiation, and protective layer 400 is preferably made of PET (polyethylene terephthalate). Since the sheet-like graphene is difficult to directly cover the graphite thermal conductive sheet 100, the sheet-like graphite is preferably formed in advance on the adhesive layer 300 or the protective layer 400 and then attached to the graphite thermal conductive sheet 100.
參閱圖2,本創作之第二實施例提供一種石墨材料散熱片,其用以對應一發熱源10設置以進行輻射散熱,其中發熱源10利如IC晶片。於本實施例中,本創作的石墨材料散熱片包含有一石墨導熱片100以及一熱輻射層200。 Referring to FIG. 2, a second embodiment of the present invention provides a graphite material heat sink for disposing a heat source 10 for radiating heat, wherein the heat source 10 is like an IC chip. In the present embodiment, the graphite material heat sink of the present invention comprises a graphite thermal conductive sheet 100 and a heat radiation layer 200.
石墨導熱片100為片狀的石墨,其可以是天然石墨或是人工石墨。石墨導熱片100的其中一面用以吸收發熱源10產生的熱能,並且將該些熱能傳導擴散至石墨導熱片100的各部分。 The graphite thermal conductive sheet 100 is flake graphite, which may be natural graphite or artificial graphite. One side of the graphite thermally conductive sheet 100 absorbs thermal energy generated by the heat generating source 10 and conducts the thermal energy to the respective portions of the graphite thermal conductive sheet 100.
熱輻射層200覆蓋在石墨導熱片100的另一面。於本實施例中,熱輻射層200與石墨導熱片100之間夾設有一黏著層300,藉由黏著層300將熱輻射層200黏著固定在石墨導熱片100之上,而且熱輻射層200覆蓋有一保護層400, 保護層400為絕緣且能夠被熱輻射穿透,其保護層400較佳地是由PET(聚對苯二甲酸乙二酯;polyethylene terephthalate)製成。 The heat radiation layer 200 covers the other side of the graphite heat conductive sheet 100. In the present embodiment, an adhesive layer 300 is interposed between the heat radiation layer 200 and the graphite heat conductive sheet 100, and the heat radiation layer 200 is adhered and fixed on the graphite heat conductive sheet 100 by the adhesive layer 300, and the heat radiation layer 200 is covered. There is a protective layer 400, The protective layer 400 is insulated and can be penetrated by thermal radiation, and the protective layer 400 is preferably made of PET (polyethylene terephthalate).
熱輻射層200包含有覆蓋在石墨導熱片100一固著結構210以及分散嵌埋在固著結構210的複數熱輻射顆粒220。固著結構210為固化的膠態材料(例如膠或是漆)且較佳地為絕緣的膠態材料以避免導電至發熱源而造成發熱源損壞,熱輻射顆粒220可以是石墨烯碎片,熱輻射顆粒220也可以是奈米碳球,奈米碳球為碳原子所構成的球狀鍵結結構。 The heat radiation layer 200 includes a plurality of heat radiation particles 220 covering the graphite heat conductive sheet 100 and the fixing structure 210 and dispersed in the fixing structure 210. The fixing structure 210 is a cured colloidal material (such as glue or lacquer) and is preferably an insulating colloidal material to avoid conduction to a heat source to cause damage to the heat source. The heat radiating particles 220 may be graphene fragments, heat. The radiation particles 220 may also be nano carbon spheres, which are spherical bonding structures composed of carbon atoms.
其製作方式可以先將熱輻射顆粒220與未固化的膠態材料混合後能夠均勻分散,而後再將混合物以噴塗、塗佈或是印刷之方式覆蓋在黏著層300,再藉由黏著層300貼附石墨導熱片100而構成。另一種其製作方式可以將輻射顆粒與未固化的膠態材料的混合物以噴塗、塗佈或是印刷之方式覆蓋在保護層400,再上噴塗、塗佈或是印刷之方式在熱輻射層200上覆蓋黏著層300,再藉由黏著層300貼附石墨導熱片100而構成。 The method can be prepared by first mixing the heat radiation particles 220 with the uncured colloidal material, and then uniformly dispersing the mixture, and then coating the mixture on the adhesive layer 300 by spraying, coating or printing, and then pasting the adhesive layer 300. The graphite heat transfer sheet 100 is attached. Another way of making the mixture of the radiant particles and the uncured colloidal material is to cover the protective layer 400 by spraying, coating or printing, and then spraying, coating or printing on the thermal radiation layer 200. The adhesive layer 300 is covered on the upper surface, and the graphite thermal conductive sheet 100 is attached by the adhesive layer 300.
參閱圖3,本創作之第三實施例提供一種石墨材料散熱片,其用以對應一發熱源10設置以進行輻射散熱,其中發熱源10利如IC晶片。於本實施例中,本創作的石墨材料散熱片包含有一石墨導熱片100以及一熱輻射層200。 Referring to FIG. 3, a third embodiment of the present invention provides a graphite material heat sink for disposing a heat source 10 for radiating heat, wherein the heat source 10 is like an IC chip. In the present embodiment, the graphite material heat sink of the present invention comprises a graphite thermal conductive sheet 100 and a heat radiation layer 200.
石墨導熱片100為片狀的石墨,其可以是天然石墨或是人工石墨。石墨導熱片100的其中一面用以吸收發熱源10產生的熱能,並且將該些熱能傳導擴散至石墨導熱片100的各部分。 The graphite thermal conductive sheet 100 is flake graphite, which may be natural graphite or artificial graphite. One side of the graphite thermally conductive sheet 100 absorbs thermal energy generated by the heat generating source 10 and conducts the thermal energy to the respective portions of the graphite thermal conductive sheet 100.
熱輻射層200覆蓋在石墨導熱片100的另一面。於本實施例中熱輻射層200包含有覆蓋在石墨導熱片100一固著結構210,以及分散嵌埋在固著結構210的複數熱輻射顆粒220。固著結構210為固化的膠態材料(例如膠或是漆)且較 佳地為絕緣的膠態材料以避免導電至發熱源而造成發熱源損壞,熱輻射顆粒220可以是石墨烯碎片,熱輻射顆粒220也可以是奈米碳球,奈米碳球為碳原子所構成的球狀鍵結結構。而且熱輻射層200覆蓋有一保護層400,保護層400為絕緣且能夠被熱輻射穿透,其保護層400較佳地是由PET(聚對苯二甲酸乙二酯;polyethylene terephthalate)製成。 The heat radiation layer 200 covers the other side of the graphite heat conductive sheet 100. In the present embodiment, the heat radiation layer 200 includes a fixed structure 210 covering the graphite heat conductive sheet 100, and a plurality of heat radiation particles 220 dispersed and embedded in the fixing structure 210. The fixing structure 210 is a solidified colloidal material (such as glue or lacquer) and Preferably, the insulating material is an insulating colloidal material to avoid heat source damage caused by conduction to the heat source. The heat radiation particles 220 may be graphene fragments, and the heat radiation particles 220 may also be nano carbon spheres, and the carbon spheres are carbon atoms. A spherical bond structure is formed. Moreover, the heat radiation layer 200 is covered with a protective layer 400 which is insulated and can be penetrated by heat radiation, and the protective layer 400 is preferably made of PET (polyethylene terephthalate).
其製作方式可以先將熱輻射顆粒220與未固化的膠態材料混合後能夠均勻分散,而後再將混合物以噴塗、塗佈或是印刷之方式覆蓋在石墨導熱片100而構成。 The heat radiation particles 220 can be uniformly dispersed after being mixed with the uncured colloidal material, and then the mixture is covered by the graphite thermal conductive sheet 100 by spraying, coating or printing.
於前述的各實施例中,本創作的石墨材料散熱片皆是貼附設置在發熱源10,其石墨導熱片100接觸發熱源10而能夠藉由熱傳導的方式吸收發熱源10產生的熱能,但是本創作不限於此。參閱圖4,本創作的石墨材料散熱片也可以貼附設置在一電子裝置的外殼20之內壁,較佳地,熱輻射層200貼附於電子裝置的外殼20的非金屬區域之內壁,石墨導熱片100對應電子裝置內的發熱源10配置但未接觸發熱源10,其藉由熱輻射的方式吸收發熱源10產生的熱能。而且,熱輻射層200能夠以熱輻射的方式將該些熱能穿透外殼20的非金屬區域發散至電子裝置之外。 In the foregoing embodiments, the graphite material heat sink of the present invention is attached to the heat source 10, and the graphite heat conductive sheet 100 contacts the heat source 10 to absorb the heat energy generated by the heat source 10 by heat conduction, but This creation is not limited to this. Referring to FIG. 4, the graphite material heat sink of the present invention may also be attached to the inner wall of the outer casing 20 of the electronic device. Preferably, the heat radiation layer 200 is attached to the inner wall of the non-metallic region of the outer casing 20 of the electronic device. The graphite heat conductive sheet 100 is disposed corresponding to the heat source 10 in the electronic device but is not in contact with the heat source 10, and absorbs heat energy generated by the heat source 10 by means of heat radiation. Moreover, the heat radiating layer 200 is capable of radiating the non-metallic regions of the heat-permeable outer casing 20 to the outside of the electronic device in a manner of heat radiation.
綜上所述,本創作的石墨材料散熱片能夠藉由其石墨導熱片100自發熱源10吸收熱能並藉由石墨導熱片100以熱傳導的方式快速擴散,再進一步藉由熱輻射層200以熱輻射方式快速發散。其相較於現有的金屬散熱器具有更好的散熱效率且能夠穿透塑膠結構的阻礙,再者其體形輕巧而能夠適用更多的用途,且成低廉且便於運送及安裝。 In summary, the graphite material heat sink of the present invention can absorb heat energy from the heat source 10 by the graphite heat conductive sheet 100 and rapidly diffuse by the graphite heat conductive sheet 100 in a heat conduction manner, and further radiate heat by the heat radiation layer 200. The way is quickly diverging. Compared with the existing metal heat sink, it has better heat dissipation efficiency and can penetrate the plastic structure, and the body shape is light and can be applied for more purposes, and is inexpensive and convenient to transport and install.
以上所述僅為本創作之較佳實施例,非用以限定本創作之專利範圍,其他運用本創作之專利精神之等效變化,均應俱屬本創作之專利範圍。 The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the patents of the present invention. Other equivalent variations of the patent spirit using the present invention are all within the scope of the patent.
10‧‧‧發熱源 10‧‧‧heat source
100‧‧‧石墨導熱片 100‧‧‧ graphite thermal film
200‧‧‧熱輻射層 200‧‧‧thermal radiation layer
300‧‧‧黏著層 300‧‧‧Adhesive layer
400‧‧‧保護層 400‧‧‧Protective layer
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106202032U TWM547096U (en) | 2017-02-10 | 2017-02-10 | Graphite heat dissipation piece |
JP2018000418U JP3216229U (en) | 2017-02-10 | 2018-02-06 | Graphite radiator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106202032U TWM547096U (en) | 2017-02-10 | 2017-02-10 | Graphite heat dissipation piece |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM547096U true TWM547096U (en) | 2017-08-11 |
Family
ID=60188820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106202032U TWM547096U (en) | 2017-02-10 | 2017-02-10 | Graphite heat dissipation piece |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3216229U (en) |
TW (1) | TWM547096U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114610133A (en) * | 2022-04-02 | 2022-06-10 | 广东德瑞源新材料科技有限公司 | Semi-solid die-casting formed radiator and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102428088B1 (en) * | 2021-11-10 | 2022-08-03 | (주)테라시스 | Heat dissipation sheet using graphene-graphite composite and manufacturing method thereof |
-
2017
- 2017-02-10 TW TW106202032U patent/TWM547096U/en unknown
-
2018
- 2018-02-06 JP JP2018000418U patent/JP3216229U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114610133A (en) * | 2022-04-02 | 2022-06-10 | 广东德瑞源新材料科技有限公司 | Semi-solid die-casting formed radiator and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3216229U (en) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN206614861U (en) | Graphite material fin | |
JP6435507B2 (en) | COMPOSITE SHEET, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE USING COMPOSITE SHEET | |
JP2008192697A (en) | Heat diffusion sheet and method of positioning heat diffusion sheet | |
CN106574155A (en) | Heat radiation adhesive, heat radiation sheet using same, and electronic device having same | |
TWM547096U (en) | Graphite heat dissipation piece | |
WO2020071073A1 (en) | Heat radiation material, method for producing heat radiation material, heat radiation material kit, and heat generator | |
TWM300003U (en) | Improved circuit board structure capable of combining heat sink | |
KR20170080096A (en) | Radiating sheet | |
JP2005150249A (en) | Heat conductive member and heat radiating structure using the same | |
TWI612270B (en) | Graphite heat dissipation piece | |
WO2017185960A1 (en) | Terminal device and related method | |
JP2005228855A (en) | Radiator | |
TWM529148U (en) | Stereo type radiation heat dissipator | |
CN108454185A (en) | Graphite material cooling fin | |
CN109747232A (en) | A kind of graphite heat radiation fin | |
JP3220706U (en) | Electronic device heat dissipation structure | |
TWM541700U (en) | Radiation heat dissipation structure of printed circuit | |
TWM560761U (en) | Heat dissipation structure for electronic device | |
TWM541701U (en) | Directional heat dissipation structure of electronic device | |
CN207733157U (en) | A kind of use for electronic products graphite heat radiation fin | |
TWI610613B (en) | Far-infrared heat dissipating tape | |
KR101128294B1 (en) | Heat radiation composition using mineral and coating material | |
KR20140075255A (en) | Thermal diffusion sheet and the manufacturing method thereof | |
CN205674588U (en) | A kind of Graphene heat dissipation film | |
CN109328005A (en) | A kind of missile-borne great-power electronic cabin Multifunctional heat-dissipating structure and method |