JP3206338B2 - 炭酸ジメチルの連続的製造法 - Google Patents

炭酸ジメチルの連続的製造法

Info

Publication number
JP3206338B2
JP3206338B2 JP29515194A JP29515194A JP3206338B2 JP 3206338 B2 JP3206338 B2 JP 3206338B2 JP 29515194 A JP29515194 A JP 29515194A JP 29515194 A JP29515194 A JP 29515194A JP 3206338 B2 JP3206338 B2 JP 3206338B2
Authority
JP
Japan
Prior art keywords
gas
methyl nitrite
dimethyl carbonate
tower
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29515194A
Other languages
English (en)
Other versions
JPH07206778A (ja
Inventor
圭吾 西平
信一 吉田
秀二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP29515194A priority Critical patent/JP3206338B2/ja
Publication of JPH07206778A publication Critical patent/JPH07206778A/ja
Application granted granted Critical
Publication of JP3206338B2 publication Critical patent/JP3206338B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、一酸化炭素と亜硝酸メ
チルを固体触媒の存在下で気相接触反応させて炭酸ジメ
チルを工業的に製造する方法、特に炭酸ジメチルを大規
模に製造する方法において、亜硝酸メチルを再生するた
めに必要とされる窒素酸化物を効果的に補給して炭酸ジ
メチルを連続的に製造する方法に関する。炭酸ジメチル
は、芳香族ポリカーボネートや医農薬等の合成原料とし
て、また溶剤として有用な化合物である。
【0002】
【従来の技術】一酸化炭素と亜硝酸メチルを固体触媒の
存在下で気相接触反応させて炭酸ジメチルを連続的に製
造する方法は、例えば、特願平3−269950号に示
されるように、一酸化炭素と亜硝酸メチルを反応器で固
体触媒の存在下に気相接触反応させて炭酸ジメチルを生
成させる第1工程、第1工程において生成した炭酸ジメ
チルを炭酸ジメチル吸収塔(吸収塔)で吸収溶媒のシュ
ウ酸ジメチルに吸収させる第2工程、第2工程における
非凝縮ガス中の一酸化窒素を亜硝酸メチル再生塔(再生
塔)で分子状酸素及びメタノールと接触させて亜硝酸メ
チルを生成させる第3工程、及び第2工程においてシュ
ウ酸ジメチルに吸収分離された炭酸ジメチルを抽出蒸留
塔及び炭酸ジメチル蒸留塔で蒸留分離する第4の工程か
ら成っている。
【0003】このプロセスにおいて、亜硝酸メチル及び
一酸化窒素は下記の反応式に示されるように反応全体で
は実質的に消費されず触媒的な存在であるが、実際は吸
収塔の吸収液や再生塔の缶液への溶解や、第1工程、第
2工程、及び第3工程の間を循環するガス(循環ガス)
のパージによるロスが避けられず、亜硝酸メチル又は窒
素酸化物(NOX )の補給が行われている。
【0004】
【化1】
【0005】亜硝酸メチル又はNOX を補給するには、
亜硝酸ソーダと硝酸や硫酸などの無機酸との反応によっ
て発生するNOX が、第2工程における非凝縮ガス及び
分子状酸素含有ガスと混合されて第3工程の再生塔に導
入される。しかしながら、この方法はNOX を発生させ
る上では簡便で優れた方法であるが、原料の亜硝酸ソー
ダが特殊であり、更に硝酸ソーダが副生するなどの問題
があり、特に芳香族ポリカーボネート等の製造に使用す
るために炭酸ジメチルを大規模に製造するプロセスにお
いては好適な方法ではない。
【0006】また、NOX の製造方法としてアンモニア
を空気酸化する方法も知られているが、この方法では空
気中の大量の窒素ガスがNOX に同伴するため、上記の
炭酸ジメチルの製造プロセスに適用した(即ち、アンモ
ニアの酸化ガスを第3工程の再生塔に導入した)場合に
は大量のガス(循環ガス)をパージする必要がある。こ
の場合、パージガス中の亜硝酸メチル及び一酸化窒素
は、例えば、特開平1−121250号公報記載の方法
により回収できるものの、一酸化炭素を回収することは
困難でそのロスが非常に大きくなるという問題がある。
【0007】
【発明が解決しようとする課題】本発明は、炭酸ジメチ
ルを大規模に製造するプロセスにおいて、亜硝酸メチル
を再生するために必要とされる窒素酸化物(NOX )の
好適な補給方法、特に一酸化炭素のロスを増大させるこ
とのない好適なNOX の補給方法によって亜硝酸メチル
を再生して炭酸ジメチルを製造することができる工業的
に好適な炭酸ジメチルの連続的製造法を提供することを
目的とするものである。
【0008】
【課題を解決するための手段】本発明の目的は、一酸化
炭素と亜硝酸メチルを反応器で固体触媒の存在下に気相
接触反応させて炭酸ジメチルを生成させる第1工程、第
1工程において生成した炭酸ジメチルを炭酸ジメチル吸
収塔で吸収溶媒のシュウ酸ジメチルに吸収させる第2工
程、第2工程における非凝縮ガス中の一酸化窒素を亜硝
酸メチル再生塔で分子状酸素及びメタノールと接触させ
て亜硝酸メチルを生成させる第3工程、第2工程におけ
る吸収液中の炭酸ジメチルを蒸留分離する第4工程、及
びガス循環系からのパージガスとアンモニアの酸化ガス
を亜硝酸メチル回収塔に供給してガス中の窒素酸化物を
メタノールと接触させて亜硝酸メチルを生成させる第5
工程の各工程から成ることを特徴とする炭酸ジメチルの
連続的製造法によって達成される。
【0009】最初に本発明の各工程の概要を説明する。
第1工程は、白金族金属及び/又はその化合物並びに助
触媒が担持された固体触媒を充填した反応器に、一酸化
炭素及び亜硝酸メチルを含有する原料ガスを導入して気
相で接触反応させることによって炭酸ジメチルを生成さ
せ、炭酸ジメチルを含有する反応ガスを得る炭酸ジメチ
ル合成工程である。第2工程は、第1工程における反応
ガスを炭酸ジメチル吸収塔(以下、吸収塔と称する)に
導き、吸収溶媒として添加されるシュウ酸ジメチルと接
触させて、第1工程の接触反応で生成した一酸化窒素を
含有する非凝縮ガスと、生成した炭酸ジメチルを吸収し
た吸収液とに分離する炭酸ジメチル吸収工程である。
【0010】第3工程は、第2工程における非凝縮ガス
を亜硝酸メチル再生塔(以下、再生塔と称する)に導
き、供給される分子状酸素及びメタノールと接触させ
て、非凝縮ガス中の一酸化窒素を亜硝酸メチルに再生
し、これを第1工程の反応器に循環供給する亜硝酸メチ
ル再生工程である。第4工程は、第2工程でシュウ酸ジ
メチルに吸収分離された炭酸ジメチルから抽出蒸留によ
ってメタノールを除き、次いで炭酸ジメチルを蒸留分離
する炭酸ジメチル精製工程である。
【0011】一酸化炭素と亜硝酸メチルを含有するガス
は、上記の第1工程、第2工程及び第3工程の間を循環
しているが(以下、第1工程、第2工程及び第3工程の
間を循環するガスを循環ガス、そしてこの系をガス循環
系と称する)、前記接触反応で副生する炭酸ガスなどが
蓄積してくるために、このガス循環系から循環ガスがパ
ージされる。循環ガスのパージは第3工程の再生塔から
導出されるガス(再生ガス)の一部をパージすることに
よって行われ、パージ量は少なくとも循環ガス中に蓄積
される副生ガスの量以上である。
【0012】炭酸ジメチルを製造するための有効成分で
ある一酸化炭素、亜硝酸メチル及び一酸化窒素は上記の
循環ガスのパージによって失われ、亜硝酸メチルと一酸
化窒素は更に第2工程の吸収塔の吸収液や第3工程の再
生塔の缶液への溶解によっても失われる。このため、本
発明では、亜硝酸メチル源の窒素酸化物(以下、NO X
と称する)として、下記のように循環ガスのパージ量を
抑えそして一酸化炭素のロスを増大させることなく、ア
ンモニアの酸化ガスが必要量補給される。
【0013】第5工程は、アンモニアの酸化ガスと上記
のガス循環系からのパージガスとを、亜硝酸メチル及び
一酸化窒素を回収する亜硝酸メチル回収塔(以下、回収
塔と称する)に導いて、ガス中のNOX をメタノールと
接触させて亜硝酸メチルに再生すると共に、再生された
亜硝酸メチルをパージガス中の亜硝酸メチルと併せてメ
タノールに吸収させ、これを第3工程の再生塔に循環供
給する亜硝酸メチル回収工程である。
【0014】アンモニアの酸化ガスはアンモニアの空気
酸化によって簡便に低コストで得ることができ、大量の
NOX を必要とする場合に特に好適である。このガスは
アンモニアに対してかなり過剰の空気を用いて製造さ
れ、NOX と共に大量の窒素ガスを含有している。この
ため、ガス循環系へこのガスが直接供給されるとガス循
環系に大量の窒素ガスが持ち込まれることになり、循環
ガスの大量のパージが必要となって有効成分である一酸
化炭素の大きなロスが生じることになる。従って、本発
明では、これを防ぐために、アンモニアの酸化ガスはガ
ス循環系の系外にある回収塔へ供給されて、同伴する窒
素ガスが廃ガスとして排出される。そして、アンモニア
の酸化ガス中のNOX は、パージガス中のNOXと共に
亜硝酸メチルに変換及び再生され、生成した亜硝酸メチ
ルのメタノール溶液のみが再生塔へ供給されることにな
る。
【0015】アンモニアの酸化ガスを製造する方法は、
例えば、硝酸の製造プロセスで工業的に実施されている
方法でよく、アンモニアと空気をO2 /NH3 =0.5
〜5、好ましくは0.8〜3のモル比で混合して、白金
や鉄−ビスマス等の触媒上で気相接触反応させる方法が
よい。反応器としてはこれら固体触媒を充填した単管式
反応器が好適である。
【0016】次に、本発明の第1工程から第3工程、及
び第5工程を更に詳しく説明する。 第1工程 第1工程の炭酸ジメチルの合成は、白金族金属及び/又
はその化合物並びに助触媒が担体に担持された固体触媒
を充填した反応器に、一酸化炭素及び亜硝酸メチルを含
有する原料ガスを導入して気相接触反応を行うことによ
って行われる。
【0017】前記固体触媒としては、例えば、特開平3
−141243号公報などに記載されている白金族金属
及び/又はその化合物並びに助触媒が担体に担持された
ものが有効である。これらの固体触媒で白金族金属及び
/又はその化合物として担体に担持される白金族金属と
しては、パラジウム、白金、イリジウム、ルテニウム及
びロジウムが挙げられるが、中でもパラジウムが最も好
ましい。パラジウム化合物としては、塩化パラジウム、
臭化パラジウム等のパラジウムのハロゲン化物、硝酸パ
ラジウム、硫酸パラジウム等のパラジウムの無機酸塩、
酢酸パラジウム、安息香酸パラジウム等のパラジウムの
有機酸塩、テトラクロロパラジウム酸リチウム等のパラ
ジウムのハロゲン化物含有錯体、テトラアンミンパラジ
ウムクロリド、テトラアンミンパラジウムナイトレート
等のパラジムのアンミン錯体などが挙げられる。これら
のパラジウム化合物の中では、塩化パラジウムが最も好
ましい。
【0018】また、前記固体触媒では、白金族金属以外
に、銅、鉄、ビスマス、セリウムなどの金属の化合物が
助触媒として担体に担持されていても差し支えない。な
お、前記固体触媒では、担体として、活性炭、アルミ
ナ、シリカ、ケイ藻土、ゼオライト、粘土鉱物などを使
用することができる。
【0019】一酸化炭素及び亜硝酸メチルは、通常、窒
素や炭酸ガスなどの反応に不活性なガスで希釈されて、
前記固体触媒との接触時間が通常10秒以下、好ましく
は0.2〜5秒であるように原料ガスとして反応器に供
給される。なお、固体触媒を充填する反応器としては、
単管式又は多管式反応器が好適である。
【0020】原料ガス中の亜硝酸メチルの濃度は反応速
度及び安全性の面から決定される。即ち、満足すべき反
応速度を得るためには亜硝酸メチルの濃度が好適には1
容量%以上であることが必要であるが、亜硝酸メチルが
爆発性の化合物であるために余りに高濃度であることは
好ましくなく、本発明では通常3〜25容量%の濃度が
好適である。また、原料ガス中の一酸化炭素の濃度は広
範囲に変えられるが、連続プロセスでは前記のように循
環ガスの一部をパージするために、高濃度になると系外
へのロスが増えて経済的に好ましくない。従って、好適
な一酸化炭素の濃度は工業的には通常1〜50容量%、
好ましくは5〜30容量%である。
【0021】反応温度は、所望の反応速度が得られる限
り、比較的低温が好ましく、通常50〜200℃、更に
好ましくは80〜150℃が好適である。また、反応圧
力は、通常、常圧から10kg/cm2 (ゲージ圧)、
好ましくは1〜6kg/cm2 (ゲージ圧)が好適であ
る。
【0022】このようにして炭酸ジメチルの合成反応を
行って、炭酸ジメチル、シュウ酸ジメチル、一酸化窒
素、炭酸ガス、未反応の一酸化炭素及び亜硝酸メチル、
不活性ガスなどを含む反応ガスが反応器から導出され
る。目的の炭酸ジメチルは、この反応ガスを第2工程の
吸収塔に導いて、吸収塔上部から供給されるシュウ酸ジ
メチルに吸収させることによって分離される。
【0023】第2工程 第2工程の炭酸ジメチルの吸収は、次のように吸収塔で
上記の反応ガスを吸収溶媒のシュウ酸ジメチルと接触さ
せて行われる。吸収塔におけるシュウ酸ジメチルの供給
量は、吸収塔に導入される上記反応ガス中の炭酸ジメチ
ルの量によるが、通常、炭酸ジメチルに対して3〜10
重量倍、好ましくは4〜6重量倍が好適である。吸収塔
の操作温度としては、炭酸ジメチルの吸収を効率よく行
うために低温である方がよいが、余りに低温であるとシ
ュウ酸ジメチルの固化が起こり、またエネルギー的にも
不利であるので、通常0〜100℃、好ましくは30〜
80℃がよい。
【0024】吸収塔における非凝縮ガスには、少量の炭
酸ジメチル及びシュウ酸ジメチルが同伴するが、これら
は次の第3工程に持ち込まれると全くのロスとなるの
で、吸収塔頂部より少量のメタノールを供給して同伴す
る炭酸ジメチル及びシュウ酸ジメチルを回収することが
好ましい。このとき、メタノールの供給量としては、通
常、上記反応ガス中の炭酸ジメチルに対して5〜30重
量%、好ましくは10〜20重量%が好適である。ま
た、この非凝縮ガス中には、未反応の一酸化炭素及び亜
硝酸メチル以外に第1工程で生成した多量の一酸化窒素
が含まれているが、この一酸化窒素は次の第3工程の再
生塔において亜硝酸メチルに再生される。なお、このよ
うにしてシュウ酸ジメチルに吸収された炭酸ジメチル
は、前記の第4工程で、公知のように、メタノールや反
応で副生した微量のギ酸メチルなどの低沸点化合物がシ
ュウ酸ジメチルによる抽出蒸留によって分離された後、
更に蒸留により分離精製される。
【0025】第3工程 第3工程の亜硝酸メチルの再生は、次のように再生塔で
上記の非凝縮ガスを分子状酸素含有ガス及びメタノール
と接触させて行われる。このとき、再生塔としては、充
填塔、気泡塔、スプレー塔、段塔などの通常の気液接触
装置が用いられる。
【0026】分子状酸素含有ガスとしては、純酸素ガ
ス、窒素等の不活性ガスで希釈された酸素ガス又は空気
が、個別又は前記非凝縮ガスとの混合状態で使用され
る。再生塔では、通常、再生塔に導入されるガス中の一
酸化窒素1モルに対して分子状酸素含有ガスが酸素基準
で0.08〜0.2モル供給される。これらのガスは6
0℃以下の温度のメタノールと接触させるのがよく、そ
の接触時間は0.5〜2秒であることが好ましい。メタ
ノールは、一酸化窒素と分子状酸素から生成する二酸化
窒素及びこれとほぼ等モルの一酸化窒素を完全に吸収反
応させるのに必要とされる量以上使用され、通常、再生
塔に導入されるガス中の一酸化窒素1モルに対して2〜
5モル使用される。
【0027】再生塔で使用されるメタノールには、再生
塔上部に直接供給されるものと、回収塔でパージガスと
接触させて亜硝酸メチルを吸収させた後に再生塔中段に
供給されるものがある。両者の使用割合は循環ガスのパ
ージ量によるが、通常、再生塔で使用される全メタノー
ルのうち、30〜90%、好ましくは50〜80%が再
生塔上部から再生塔に直接供給される。
【0028】再生塔から導出される液は亜硝酸メチルの
再生反応で生成した水を含むメタノール溶液であるの
で、蒸留などの操作によってメタノール中の水分が通常
2容量%以下、好ましくは0.2容量%以下であるよう
に精製した後に、第2工程や第3工程及び回収塔で再利
用することが工業的に有利である。また、再生塔から導
出されるガス(再生ガス)は、ガス循環系に従って第1
工程の反応器に純関されて炭酸ジメチル合成反応に再使
用される。このとき、反応での消費量や循環ガスのパー
ジによる減少量に合わせて、一酸化炭素が必要量ガス循
環系に補給される。
【0029】第5工程 第5工程の亜硝酸メチルの回収は、NOX を補給するた
めに供給されるアンモニアの酸化ガスとガス循環系から
のパージガスとを回収塔に供給して、これらガス中のN
X をメタノールと接触させて亜硝酸メチルに変換及び
再生すると共に、生成した亜硝酸メチルとパージガス中
の亜硝酸メチルとをメタノールに吸収させることによっ
て行われる。なお、アンモニアの酸化ガスは前記のよう
にアンモニアの空気酸化によって、パージガスは再生塔
から導出される再生ガスの一部を抜き出すことによって
得られる。
【0030】回収塔は、充填塔、棚段塔、泡鐘塔など通
常用いられる気液接触型の塔形式の吸収装置が好まし
く、アンモニアの酸化ガスはパージガスと共にこの塔の
ボトムに供給される。このとき、アンモニアの酸化ガス
及びパージガスはそれぞれ回収塔に直接供給してもよい
が、両者を混合した後に回収塔に供給することが更に好
ましい。パージガスの量は、循環ガス中の炭酸ガス等の
副生ガスの蓄積量によるが、通常、反応器、吸収塔及び
再生塔の三つの装置を含む循環系の気相部分の容積の
0.1〜30容量%/hr、好ましくは0.1〜20%
容量/hrである。そして、アンモニアの酸化ガスの供
給量は、通常、上記気相部分に含まれる亜硝酸メチル及
び一酸化窒素の合計モル数の0.1〜30モル%/hr
に相当するNOX が含有される量である。なお、必要で
あれば、パージガス中の一酸化窒素の量に応じて前記再
生塔におけると同様に分子状酸素含有ガスが導入され
る。
【0031】回収塔で使用されるメタノールは、パージ
ガス中の一酸化窒素からの亜硝酸メチルの再生、アンモ
ニアの酸化ガス中のNOX の亜硝酸メチルへの変換、及
び生成した亜硝酸メチルの吸収を行うために、この塔の
上部から供給される。その供給量は、パージガス中の一
酸化窒素及び亜硝酸メチルとアンモニアの酸化ガス中の
NOX との合計モル数に対して、通常5〜200倍モ
ル、特に20〜50倍モルであることが好ましい。な
お、このメタノールは、生成する亜硝酸メチルの吸収効
率を高くするために、冷却されたもの、好ましくは20
℃以下、特には10℃以下のものを使用することが好ま
しい。
【0032】次に、本発明のプロセスを本発明の一実施
態様を示すフローシート図面に従って具体的に説明す
る。白金族金属系固体触媒を反応管に充填した多管式反
応器1の上部に、一酸化炭素、亜硝酸メチル及び一酸化
窒素を含有する原料ガスが、導管20に設置するガス循
環機(図示せず)で加圧されて導管22を通して導入さ
れる。反応器1において気相で接触反応が行われ、触媒
層を通過した反応ガスが反応器の下部から取り出され、
導管11を通して吸収塔2に導入される。
【0033】吸収塔2では、上記反応ガスと導管13、
14からそれぞれ導入されるメタノール、シュウ酸ジメ
チルとの接触により、反応ガス中の炭酸ジメチルがシュ
ウ酸ジメチルに吸収されて分離される。炭酸ジメチル、
シュウ酸ジメチル及びメタノールからなる液は下部から
導管15を通して取り出されて公知の精製工程(図示せ
ず)で分離精製される。一方、未反応の一酸化炭素、亜
硝酸メチル及び上記接触反応で生成した一酸化窒素など
を含む非凝縮ガスは上部から導管12を通して再生塔3
の下部に導入される。
【0034】再生塔3では、非凝縮ガス及び導管16を
通して導入される分子状酸素含有ガスと、導管19を通
して上部から導入されるメタノールとの向流接触が行わ
れ、亜硝酸メチルが再生される。再生塔3から導出され
るガス(再生ガス)は、導管20、22を通して、導管
21より新しく供給される一酸化炭素と共に反応器1に
供給される。一方、再生塔3で副生した水はメタノール
溶液の形で下部から導管18を通して取り出される。こ
のメタノール溶液は、蒸留などの操作によって液中の水
分が除去された後、導管13、19、25を通して吸収
塔2、再生塔3又は回収塔4に供給されるメタノールと
して循環再使用される。
【0035】再生塔3から導出されるガス(再生ガス)
の一部は導管23を通してガス循環系からパージされ
る。このパージガスは、導管17を通して供給されるア
ンモニアを空気酸化して得られたNOX を含有するガス
と共に回収塔4の下部に導入される。このとき、必要な
らば導管27から分子状酸素含有ガスが導入される。回
収塔4では、下部から導入されるこれら混合ガスと導管
25を通して上部から導入されるメタノールとの向流接
触が行われ、NOX が亜硝酸メチルに再生及び変換され
る。
【0036】回収塔4で得られた亜硝酸メチルはメタノ
ール溶液の形で下部から取り出され、導管24を通して
再生塔3の中段に供給される。そして、回収塔4に供給
されたパージガス、NOX 含有ガス及び分子状酸素含有
ガスに含まれる窒素ガスや少量の副生ガスは導管26を
通して系外へ排出される。
【0037】
【実施例】次に、実施例及び比較例を挙げて本発明の方
法を具体的に説明する。なお、実施例及び比較例におけ
る炭酸ジメチルの空時収量(STY)(kg/m3 ・h
r)は、一酸化炭素と亜硝酸メチルとの接触反応時間を
θ(hr)、その間に生成した炭酸ジメチルの量をa
(kg)、そして反応管への触媒の充填量をb(m3
として次式により求めた。
【0038】
【数1】
【0039】実施例1 〔炭酸ジメチルの製造〕内径27mm、高さ3.0mの
チューブ20本よりなるステンレス製多管式反応器のチ
ューブ内に、特開平3−141243号公報に示される
ような活性炭(白鷺:武田製)に塩化パラジウムと塩化
第二銅を担持した固体触媒(4mmφ×6mm)34.
0lを充填した。この触媒層に上部からガス圧縮機で、
4.02kg/cm2 (ゲージ圧)に加圧した原料ガス
(組成:一酸化炭素20.0容量%、亜硝酸メチル1
0.0容量%、一酸化窒素4.0容量%、メタノール
7.0容量%、炭酸ガス1.0容量%、窒素58.0容
量%)を熱交換器で約90℃に予熱した後、136Nm
3 /hrの速度で供給し、反応器のシェル側に熱水を通
すことにより触媒層の中央部の温度を約125℃に保持
して反応を行った。このとき、炭酸ジメチルの空時収量
(STY)は342kg/m3 ・hrであった。
【0040】上記触媒層を通過したガスを、内径300
mm、高さ5.0mのポールリング充填式気液接触吸収
装置(吸収塔)の塔底に導き、塔頂からメタノール3.
6l/hrを、また塔頂から1000mm下の所からシ
ュウ酸ジメチル50.0kg/hrを導入しながら、塔
頂温度35℃、塔底温度55℃で向流接触を行った。そ
の結果、塔底から得られた吸収液65.8kg/hrの
組成は、シュウ酸ジメチル77.6重量%、炭酸ジメチ
ル17.3重量%、メタノール4.2重量%、ギ酸メチ
ル0.1重量%、亜硝酸メチル0.3重量%であった。
【0041】一方、吸収塔の塔頂から得られた非凝縮ガ
ス(再生塔に導入するガス)132.6Nm3 /hr中
の亜硝酸メチルの濃度は原料ガス中におけるよりも低下
しているので、次の再生塔で亜硝酸メチルの再生を行っ
た。即ち、非凝縮ガスに酸素ガス1.54Nm3 /hr
を混入した後、これを内径300mm、高さ6.4mの
気液接触吸収装置(再生塔)に導き、塔頂から導入した
メタノール20l/hrと塔頂温度30℃、塔底温度4
0℃で向流接触させて亜硝酸メチルの再生を行った。ま
た、この再生塔の中段には、亜硝酸メチル回収塔で亜硝
酸メチルを吸収したメタノール溶液14l/hrを同時
に供給した。
【0042】再生塔から導出した再生ガス132.7N
3 /hrの組成は、一酸化炭素17.6容量%、亜硝
酸メチル10.3容量%、一酸化窒素4.1容量%、メ
タノール7.1容量%、炭酸ガス1.1容量%、窒素5
9.0容量%であったので、このうち、400Nl/h
rをパージした。このパージガスを、下記の方法によっ
て製造したアンモニアの酸化ガス1.37Nm3 /hr
(組成:一酸化窒素4.1容量%、二酸化窒素5.7容
量%、酸素1.1容量%、水分1.5容量%、窒素8
7.6容量%)と混合した後、内径70mm、高さ12
00mmの気液接触装置(回収塔)に導いて塔頂から導
入した10℃に冷却したメタノール14.0l/hrと
向流接触させ、NOX を亜硝酸メチルに変換してメタノ
ールに吸収させた。得られた吸収液は4.3重量%の亜
硝酸メチルを含んでおり、塔底から抜き出して再生塔の
中段へ供給した。このとき、回収塔の塔頂から排出した
廃ガス1.5Nm3 /hrには、NOX 530ppm、
亜硝酸メチル1330ppm、一酸化炭素4.7容量%
(7.5Nl/hr)が含有されていた。
【0043】パージを行った後の再生ガス132.3m
3 /hrは前記ガス圧縮機で加圧した後、一酸化炭素
3.3Nm3 /hr及び窒素0.3Nm3 /hrを追加
供給して、一酸化炭素20.0容量%、亜硝酸メチル1
0.0容量%、一酸化窒素4.0容量%、メタノール
7.0容量%、炭酸ガス1.0容量%及び窒素58.0
容量%の組成で反応器に導いた。再生塔から導出した1
2.6重量%の水を含むメタノール24l/hrは蒸留
によって水を除去した後、再生塔などにおけるメタノー
ル源として再使用した。なお、炭酸ジメチルは前記吸収
塔から導出した吸収液65.8kg/hrから蒸留によ
り11.2kg/hrで連続的に得られた。
【0044】〔アンモニア酸化ガスの製造〕白金−ルテ
ニウム網触媒3枚を入れた内径30mmのステンレス製
反応器に、アンモニアガス192Nl/hrと空気14
90Nl/hrの混合ガスを予熱器で100℃に加熱し
て供給した。反応器の反応部の温度が800〜850℃
になるように反応器の外部に備えた電気炉で制御してア
ンモニアの空気酸化を行って、得られたアンモニアの酸
化ガスをクーラーに通してガス中に含まれる水分を部分
凝縮させて分離した後、実施例及び比較例のNOX の補
給に用いた。なお、補給するときのガスの組成は、一酸
化窒素4.1容量%、二酸化窒素5.7容量%、酸素
1.1容量%、水分1.5容量%、窒素87.6容量%
であった。
【0045】比較例1 実施例1と同様に反応器で炭酸ジメチルを生成させ(S
TY:342kg/m 3 ・hr)、吸収塔でシュウ酸ジ
メチルに炭酸ジメチルを吸収させた後、以下のようにア
ンモニアの酸化ガスを再生塔に供給して亜硝酸メチルの
再生操作を行った。吸収塔の塔頂から得られた非凝縮ガ
ス(再生塔へ導入するガス)132.6Nm3 /hr
に、NOX を補給するために上記のアンモニアの酸化ガ
ス1.37Nm3 /hr(組成:一酸化窒素4.1容量
%、二酸化窒素5.7容量%、酸素1.1容量%、水分
1.5容量%、窒素87.6容量%)を混合し、更に酸
素ガス1.54Nm3 /hrを混合した後、この混合ガ
スを再生塔に導いて、亜硝酸メチル回収塔を通して塔頂
から導入したメタノール20l/hrと、塔頂温度30
℃、塔底温度40℃で向流接触させて亜硝酸メチルの再
生を行った。また、この再生塔の中段には回収塔で亜硝
酸メチルを吸収したメタノール溶液14l/hrを同時
に供給した。
【0046】再生塔から導出したガス133.9Nm3
/hrの組成は、一酸化炭素17.5容量%、亜硝酸メ
チル10.2容量%、一酸化窒素4.1容量%、炭酸ガ
ス1.1容量%、メタノール7.1容量%、窒素60.
0容量%であったので、窒素濃度を維持するためにこの
ガスから1.96Nm3 /hrをパージした。このパー
ジガスに空気110Nl/hrを混合した後、実施例1
と同様に回収塔へ供給し、回収塔の塔頂から導入した1
0℃に冷却したメタノール14l/hrとの向流接触を
行ってパージガス中の一酸化窒素を亜硝酸メチルに変換
すると共に、パージガス中に含有されていた亜硝酸メチ
ルと併せてメタノールに吸収させた。得られた吸収液は
6.9重量%の亜硝酸メチルを含んでおり、塔底から抜
き出して再生塔の中段へ供給した。このとき、回収塔の
塔頂から排出した廃ガス1.64Nm3 /hrには、N
X 500ppm、亜硝酸メチル1200ppm、一酸
化炭素20.9容量%(324Nl/hr)が含有され
ていた。
【0047】パージを行った後の再生ガス132.0m
3 /hrは前記ガス圧縮機で加圧した後、一酸化炭素
3.6Nm3 /hr及び窒素0.3Nm3 /hrを追加
供給して、一酸化炭素20.0容量%、亜硝酸メチル1
0.0容量%、一酸化窒素4.0容量%、メタノール
7.0容量%、炭酸ガス1.0容量%及び窒素58.0
容量%の組成で反応器に導いた。なお、その他の操作は
実施例1と同様に行い、その結果は実施例1と同様であ
った。表1に実施例及び比較例におけるパージガス及び
回収塔から排出されるガス(廃ガス)の組成を示す。
【0048】
【表1】
【0049】
【発明の効果】本発明の方法により、一酸化炭素と亜硝
酸メチルを固体触媒の存在下で反応させて工業的に炭酸
ジメチルを製造する方法において、アンモニアの酸化ガ
スを使用して亜硝酸メチルの再生に必要とされるNOX
を補給する際、同伴する大量の不活性ガスを反応器、吸
収塔及び再生塔の間を循環するガス循環系の外でパージ
することができるために、有効成分である一酸化炭素の
ロスを増大させることがなくなり、更に、パージガス中
の亜硝酸メチル及び一酸化窒素も殆ど回収できるように
なって、工業的に好適な炭酸ジメチルの連続的製造法、
特に炭酸ジメチルを大規模に製造するプロセスにおいて
優れた炭酸ジメチルの連続的製造法を提供することがで
きる。
【図面の簡単な説明】
【図1】図1は本発明の一実施例を示すフローシートで
ある。
【符号の説明】
1は反応器、2は吸収塔、3は再生塔、4は回収塔、1
1〜27は導管を示す。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C07C 69/96 C07C 69/96 Z // C07B 61/00 300 C07B 61/00 300 (56)参考文献 特開 平1−121250(JP,A) 特開 平5−25096(JP,A) 特開 平6−25014(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 68/00 C07C 69/96

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 一酸化炭素と亜硝酸メチルを反応器で固
    体触媒の存在下に気相接触反応させて炭酸ジメチルを生
    成させる第1工程、第1工程において生成した炭酸ジメ
    チルを炭酸ジメチル吸収塔で吸収溶媒のシュウ酸ジメチ
    ルに吸収させる第2工程、第2工程における非凝縮ガス
    中の一酸化窒素を亜硝酸メチル再生塔で分子状酸素及び
    メタノールと接触させて亜硝酸メチルを生成させる第3
    工程、第2工程における吸収液中の炭酸ジメチルを蒸留
    分離する第4工程、及びガス循環系からのパージガスと
    アンモニアの酸化ガスを亜硝酸メチル回収塔に供給して
    ガス中の窒素酸化物をメタノールと接触させて亜硝酸メ
    チルを生成させる第5工程の各工程から成ることを特徴
    とする炭酸ジメチルの連続的製造法。
JP29515194A 1993-11-30 1994-11-29 炭酸ジメチルの連続的製造法 Expired - Fee Related JP3206338B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29515194A JP3206338B2 (ja) 1993-11-30 1994-11-29 炭酸ジメチルの連続的製造法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-299337 1993-11-30
JP29933793 1993-11-30
JP29515194A JP3206338B2 (ja) 1993-11-30 1994-11-29 炭酸ジメチルの連続的製造法

Publications (2)

Publication Number Publication Date
JPH07206778A JPH07206778A (ja) 1995-08-08
JP3206338B2 true JP3206338B2 (ja) 2001-09-10

Family

ID=26560145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29515194A Expired - Fee Related JP3206338B2 (ja) 1993-11-30 1994-11-29 炭酸ジメチルの連続的製造法

Country Status (1)

Country Link
JP (1) JP3206338B2 (ja)

Also Published As

Publication number Publication date
JPH07206778A (ja) 1995-08-08

Similar Documents

Publication Publication Date Title
US5214185A (en) Continuous process for preparing dimethyl carbonate
JP3136950B2 (ja) 炭酸ジメチルの連続製造方法
EP0046598B1 (en) Process for continuously preparing a diester of oxalic acid
JP4214858B2 (ja) シュウ酸ジアルキルの製法
JP2937292B2 (ja) 炭酸ジメチルの連続製造方法
US5534648A (en) Process for continuously producing dimethyl carbonate
JPH1017529A (ja) アリールカーボネートの連続製造法
JP2969965B2 (ja) イソブタンの接触酸化によるメタクリル酸の製造方法
JP2003327562A (ja) 亜硝酸アルキルの製法
JP6048135B2 (ja) シュウ酸ジアルキルの製造方法
JP3206338B2 (ja) 炭酸ジメチルの連続的製造法
JP4134777B2 (ja) 亜硝酸エステルの製法
JP2795360B2 (ja) 炭酸ジメチルの連続的製法
JP3206340B2 (ja) 炭酸ジメチルの連続的製造方法
JP3541720B2 (ja) 亜硝酸メチルの回収方法
JPH0543517A (ja) 炭酸ジエステルの製造法
JP2962454B2 (ja) 炭酸ジメチルの連続製造法
JP3780742B2 (ja) 炭酸ジアルキルの製法
JP2004323470A (ja) 炭酸ジアルキルの製造法
JP2870738B2 (ja) 炭酸ジエステルの製造法
US4228301A (en) Process for the preparation of diacetoxybutene
JPH0825961B2 (ja) 炭酸ジエステルの製造法
JPS6147813B2 (ja)
JPH0234335B2 (ja)
WO1992022519A1 (en) Process for the preparation of a phenol

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees