JP3188402U - 精製機およびブレード素子 - Google Patents

精製機およびブレード素子 Download PDF

Info

Publication number
JP3188402U
JP3188402U JP2013600099U JP2013600099U JP3188402U JP 3188402 U JP3188402 U JP 3188402U JP 2013600099 U JP2013600099 U JP 2013600099U JP 2013600099 U JP2013600099 U JP 2013600099U JP 3188402 U JP3188402 U JP 3188402U
Authority
JP
Japan
Prior art keywords
blade
purification
purified
groove
refined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2013600099U
Other languages
English (en)
Inventor
スヨストロム,ハッカン
リンドルース,カティ
カーリニーヴァ,マッティ
イイサッキラ,トミ
Original Assignee
メッツォ ペーパー インコーポレイテッド
メッツォ ペーパー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メッツォ ペーパー インコーポレイテッド, メッツォ ペーパー インコーポレイテッド filed Critical メッツォ ペーパー インコーポレイテッド
Application granted granted Critical
Publication of JP3188402U publication Critical patent/JP3188402U/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills
    • D21D1/306Discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/11Details
    • B02C7/12Shape or construction of discs
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/22Jordans
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills
    • D21D1/303Double disc mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Paper (AREA)
  • Crushing And Grinding (AREA)

Abstract

【課題】繊維材料の精製を助長する精製機及びブレード素子を提供する。【解決手段】ディスク精製機10では、被繊維離解用または被精製用の繊維状リグノセルロース含有材料は、第2の精製素子2の中央の開口7を介して、精製表面1’と2’の間のブレードギャップ6に供給され、ここで、材料中に含まれる水分が揮発する間に離解され精製される。また、被離解用材料は、第1の精製表面1’および/または第2の精製表面2’の開口を介して、ブレードギャップ6に供給されても良い。離解さえた材料は、ブレードギャップ6の外端から、精製機10の精製チャンバ8に排出され、さらに排出チャンネル9を介して精製チャンバ8から排出される。【解決手段】図1

Description

本願は、繊維材料を精製する精製機およびそれに使用されるブレード素子に関する。
繊維状リグノセルロース含有材料を精製するための精製機は、例えば、紙またはボール紙に使用されるパルプの製造に使用される。従来、これらの精製機は、相互に対向する2つの精製表面を有し、この精製表面の少なくとも一方は、両精製表面が相互に対して移動するように、移動可能にまたは回転可能に配置される。しかしながら、ある精製機は、対向する精製表面のいくつかの組を有する。対向する精製表面の間には、ブレードギャップが存在し、被精製材料は、この中に供給される。
国際公開第WO2005/032720号には、突起状精製表面部を有する精製表面が示されており、この表面部は、被精製材料を研磨し、被精製材料をブレードギャップに供給する溝状精製表面部同士の間に配置され、ブレードギャップから精製された材料が排出される。被精製材料を供給し精製された材料を排出する前記精製表面部は、精製機のブレードギャップ内の精製材料の通路として機能する。被精製材料の繊維を離解する精製表面部の上表面は、実際の精製を実施するバーと、これらのバーの間の溝とを有し、これは、被精製材料を供給し精製された材料を排出する前記溝状精製表面部を接続する。前記公報に示された対応策は、大きな精製表面積の精製表面を提供する。
国際公開第2005/032720号
本考案の目的は、繊維材料の精製をいっそう助長する、新しい精製機およびブレード素子を提供することである。
本考案の繊維材料を精製する精製機は、
少なくとも一つの第1の精製表面および少なくとも一つの第2の精製表面を有し、両精製表面は、相互に対向して配置され、相互に対して可動であり、
当該精製機は、少なくとも前記第1もしくは第2の精製表面に、被精製材料を供給する精製表面部、および/または精製された材料を排出する精製表面部、さらには前記被精製材料を研磨する精製表面部を有し、
該精製表面部の上表面は、ブレードバーと、該ブレードバー同士の間のブレード溝とを有し、
少なくとも、当該精製機の一つの精製表面の上において、少なくともいくつかのブレード溝の断面積は、前記精製表面の供給端の方向から排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置されることを特徴とする。
繊維材料を精製するための精製機のブレード素子は、被精製材料を研磨する精製表面部を有する精製表面を有し、
前記精製表面部の上表面は、ブレードバーと、該ブレードバー同士の間のブレード溝とを有し、
当該ブレード素子において、少なくともいくつかのブレード溝の断面積は、精製表面の供給端の方向から前記排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置される。
従って、繊維材料を精製する精製機のブレード素子は、少なくとも一つの第1の精製表面と、少なくとも一つの第2の精製表面とを有し、これらの精製表面は、相互に対向し、相互に対して移動可能に配置される。少なくとも、前記精製機の第1または第2の精製表面は、被精製材料を供給する精製表面部および/または精製された材料を排出する精製表面部、ならびに被精製材料を研磨する精製表面部を有し、前記表面部の上表面は、ブレードバーと、該ブレードバーの間のブレード溝とを有する。また、少なくとも、精製機の一つの精製表面において、少なくともいくつかのブレード溝の断面積は、精製表面の供給端の方向から排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置される。
精製機の精製表面では、少なくともいくつかのブレード溝の断面積は、精製表面の供給端から放出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置され、精製機は、精製表面の供給端側では、ブレード形状が広い空間を有し、排出端側では、ブレード形状が狭い空間を有するブレード形状を有する。精製表面の供給端に広い空間を有するブレード形状により、精製表面の供給側において、材料の精製品質が極めて低くなるような、ブレードシステムのブロッキングが抑制される。精製表面の排出端側では、ブレード形状は、狭小の空間を有し、これにより、被精製材料が精製機から出る前に、有効な精製効果が得られる。
ある実施例では、第1の精製表面および第2の精製表面の両方において、少なくともいくつかのブレード溝の断面積は、ブレード溝の長手方向に変化するように配置される。
本精製機では、対向する精製表面において、前記研磨する精製表面部の上表面には、ブレード溝があり、この断面積は、ブレード溝の運動方向または長手方向で変化するように配置される。これにより、被精製材料が対向する精製表面の間を移動する方法、すなわち対向する精製表面の間のブレードギャップに、被精製材料が移動する方法および/または対向する精製表面の間のブレードギャップに、被精製材料の大部分が移動する方法に、影響を及ぼすことが容易となり、これにより繊維長さ、精製品質および/または精製された材料の均一性が効果的に影響を受ける。ブレード溝の断面積の変化は、ブレード溝の深さおよび/または幅を変化させることにより、実施されても良い。
第2の実施例では、精製表面内のブレードバーの幅は、0.5から5mmであり、ブレード溝の幅は、0.5から5mmである。
第3の実施例では、精製機の少なくとも第1の精製表面は、回転可能に配置され、前記第1の精製表面におけるブレード溝の深さは、前記第1の精製表面の回転の方向で増加するように配置され、第2の精製表面におけるブレード溝の深さは、前記第1の精製表面の回転の方向で減少するように配置される。
第4の実施例では、精製機の少なくとも第1の精製表面は、回転可能に配置され、前記第1の精製表面および第2の精製表面の両方において、ブレード溝の深さは、第1の精製表面の回転方向で増加するように配置される。
ディスク精製機の一般的な構造の側面を概略的に示した断面図である。 コーン精製機の一般的な構造の側面を概略的に示した断面図である。 ブレード素子の精製表面の方向から見た従来のブレード素子を概略的に示した図である。 図3のブレード素子の一部の端面図を概略的に示した図である。 ディスク精製機と、精製機の精製素子が相互に対して回転する動作とを概略的に示した断面図である。 ディスク精製機と、精製機の精製素子が相互に対して回転する動作とを概略的に示した断面図である。 ディスク精製機と、精製機の精製素子が相互に対して回転する動作とを概略的に示した断面図である。 第2のディスク精製機を概略的に示した断面図である。 第3のディスク精製機を概略的に示した断面図である。 精製表面の方向から見たブレード素子を概略的に示した図である。 上部斜め方向から見た図8のブレード素子の一部を概略的に示した図である。 精製表面の方向から見た第2のブレード素子を概略的に示した図である。 上部斜め方向から見た図10のブレード素子の一部を概略的に示した図である。 精製表面の方向から見た第3のブレード素子を概略的に示した図である。 上部斜め方向から見た図12のブレード素子の一部を概略的に示した図である。 コーン精製機の側面を概略的に示した断面図である。 ブレード溝を概略的に示した図である。 ブレード溝を概略的に示した図である。 ブレード溝を概略的に示した図である。 ブレード溝を概略的に示した図である。 第4のディスク精製機を概略的に示した断面図である。 第4のブレード素子を概略的に示した上面図である。 第5のブレード素子を概略的に示した上面図である。 第6のブレード素子を概略的に示した上面図である。 第7のブレード素子を概略的に示した上面図である。
添付図面を参照して、本考案のいくつかの実施例についてより詳しく説明する。
明確化のため、図面には、本考案のいくつかの実施例が単純化して示されている。図において、同様の参照符号は、同様の素子を表している。
図1には、ディスク精製機10の側断面図を概略的に示す。図1のディスク精製機10は、ディスク状の第1の精製素子1と、ディスク状の第2の精製素子2とを有する。第1の精製素子1は、第1の精製表面1’を有し、第2の精製素子2は、第2の精製表面2‘を有する。第1の精製素子1および第2の精製素子2は、相互に同軸に配置され、第1の精製表面1’および第2の精製表面2’は、実質的に相互に対向する。図1のディスク精製機10において、第1の精製素子1は、シャフト3により、例えば図1に概略的に示された矢印Rの方向に、回転可能に配置される。第1の精製素子1は、従って、ディスク精製機10のロータ1を構成する。明確化のため、図1には、第1の精製素子1を回転させるために使用されるモータは示されていないが、このモータは、当業者には明らかな方法で実施されても良い。また、図1のディスク精製機では、第2の精製素子2は、ディスク精製機10のフレーム構造4に固定支持され、このため第2の精製素子2は、精製機10のステータ2を構成する。従って、第1の精製素子1が回転して精製機10が作動すると、第1の精製表面1’および第2の精製表面2’は、相互に対して移動するように配置される。図1には、さらに、負荷装置5が示されており、この負荷装置は、シャフト3を介して第1の精製素子1に作用するように結合され、第1の精製素子1は、矢印Sで概略的に示すように、第2の精製素子2に向かって、またはそこから遠ざかるように移動し、第1の精製素子1と第2の精製素子2の間のギャップ6、すなわちブレードギャップ6が調節される。
図1のディスク精製機10では、被繊維離解用または被精製用の繊維状リグノセルロース含有材料は、第2の精製素子2の中央の開口7を介して、精製表面1’と2’の間のブレードギャップ6に供給され、ここで、材料中に含まれる水分が揮発する間に離解され精製される。また、被離解用材料は、第1の精製表面1’および/または第2の精製表面2’の開口を介して、ブレードギャップ6に供給されても良い。この開口は、明確化のため、図1には示されていない。離解された材料は、ブレードギャップ6の外端から、精製機10の精製チャンバ8に排出され、さらに排出チャネル9を介して精製チャンバ8から排出される。
図2には、コーン精製機11の側断面図を概略的に示す。図2のコーン精製機11は、円錐状の第1の精製素子1と、円錐状の第2の精製素子2とを有する。第1の精製素子1は、第1の精製表面1’を有し、第2の精製素子2は、第2の精製表面2’を有する。第1の精製素子1および第2の精製素子2は、相互に同軸に配置され、第1の精製表面1’と第2の精製表面2’は、実質的に相互に対向する。図1のコーン精製機11では、シャフト3により、第1の精製素子1は、例えば図1に概略的に示されている矢印Rの方向に、回転可能に配置され、このため第1の精製素子1は、コーン精製機11のロータを構成する。明確化のため、図1には、第1の精製素子1を回転させるために使用されるモータは示されていないが、このモータは、当業者に明らかな方法で実施されても良い。また、図1のコーン精製機11では、第2の精製素子2は、コーン精製機11のフレーム構造4に固定支持され、このため第2の精製素子2は、精製機11のステータ2を構成する。従って、第1の精製素子1が回転し、精製機11が作動すると、第1の精製表面1’および第2の精製表面2’は、相互に対して移動するように配置される。さらに、図1には、負荷装置5を示すが、この負荷装置は、シャフト3を介して第1の精製素子1に作用するように結合され、第1の精製素子1は、矢印Sで概略的に示すように、第2の精製素子2に向かって、またはそこから遠ざかるように移動し、第1の精製素子1と第2の精製素子2の間のギャップ6、すなわちブレードギャップ6が調節される。
図2のコーン精製機11では、被繊維離解用または被精製用の繊維状リグノセルロース含有材料は、第2の精製素子2の中央の開口7を介して、精製表面1’と2’の間のブレードギャップ6に供給され、ここで、材料中に含まれる水分が揮発する間に離解され精製される。また、被離解用材料は、第1の精製表面1’および/または第2の精製表面2’の開口を介して、ブレードギャップ6に供給されても良い。この開口は、明確化のため、図1には示されていない。離解された材料は、ブレードギャップ6の外端から、精製機11の精製チャンバ8に排出され、さらに排出チャネル9を介して精製チャンバ8から排出される。
図1のディスク精製機10および図2のコーン精製機11に加えて、繊維材料の精製に円筒状精製機を使用することも可能である。円筒状精製機は、円筒状の第1の精製表面1’および円筒状の第2の精製表面2’を有する。図1のディスク精製機10および図2のコーン精製機11は、ただ一つの可動式精製表面と、一つの固定精製表面とを有するように示されているが、2組以上の固定精製表面および移動可能な精製表面を有する、ディスク、コーン、および円筒状の精製機のそのような実施例も可能である。また、ディスク、コーン、および円筒状の精製機の実施例は、可動式または回転式の精製表面のみを有することも可能である。各種精製機、構造および作動原理は、当業者には良く知られており、従って、ここでは詳しく説明しない。
精製表面は、各種方法で精製素子に提供されても良い。精製表面は、該精製表面が一つのピースとなり、または精製素子と材料が均一になるように、精製素子に直接提供されても良い。従って、精製素子は、同時に精製機のブレード素子を構成しても良い。ただし、通常、精製素子の精製表面は、1または2以上の取り外し可能なブレード素子を、精製素子に取り付けることにより提供される。この場合、一つの単一ブレード素子が精製素子の精製表面全体を構成し、すなわち精製素子の精製表面全体が、一つの単一ブレード素子によって構成されても良い。あるいは、複数の調整可能に配置されたブレード素子を、精製素子の表面に取り付け、これにより精製素子の精製表面全体を、複数の隣接して配置されたブレード素子で構成しても良く、その結果、前記ブレード素子は、しばしば、ブレードセグメントと称される。
図3には、精製表面の方向から見た従来のブレード素子12を概略的に示す。また、図4には、図3のブレード素子12の一部の端部図を概略的に示す。図3のブレード素子12は、コーン精製機ロータの精製表面の一部を提供するために使用され、従って、図3の精製表面は、参照符号1’で表される。
図3および図4のブレード素子12は、被精製材料の供給側に向かって配向された供給端13を有し、この供給端を介して、被精製材料は、精製機のブレードギャップに搬送される。ブレード素子12は、精製された材料の排出側に向かって配向された排出端14を有し、この排出端を介して、精製された材料は、精製機のブレードギャップから排出される。ブレード素子12は、さらに、凹部または溝の形態の第1の精製表面部15を有し、これらの部分は、精製表面1’の繊維材料を、精製表面1’の供給端13の方向から、精製表面1’の排出端14の方向に搬送するように配置される。すなわち第1の精製表面部15は、被精製材料を精製表面1’に供給し、精製された材料を精製表面1’から排出するように配置される。第1の精製表面部15同士の間には、突起状の第2の精製表面部16があり、これらは、被精製材料を研磨し、この上表面には、ブレードバー17と、これらのバーの間のブレード溝18とがあり、これらは、ブレード素子12の精製素子を構成する。ブレード溝18は、繊維材料を搬送する供給および/または排出用の第1の精製表面部15を接続するように配置される。ブレード溝18の目的は、精製機の対向する精製表面のブレードバー17の間に、第1の精製表面部15を通過する繊維材料を移動させ、繊維材料を離解し精製することである。
図5a、5b、5cには、ディスク精製機10のロータ1およびステータ2の概略的な断面図を示す。図には、ロータ1が矢印Rで示す方向に回転した際の、ロータ1の精製表面1’およびステータ2の精製表面2’の相互に異なる段階が示されている。ロータ1は、溝状の第1の精製表面部15と、これらの間の突起状の第2の精製表面部16とを有し、これらの上表面には、ブレードバー17、およびこれらの間のブレード溝18があり、これらは、ロータ1の精製表面1’を構成する。また、ステータ2は、溝状の第1の精製表面部15と、これらの間の突起状の第2の精製表面部16とを有し、これらの上表面には、ブレードバー17、およびこれらの間のブレード溝18がある。これらは、ステータ2の精製表面2’を構成する。図5a、5b、5cの精製機において、ロータ1のブレード溝18とステータ2のブレード溝18の両方の深さは、長手方向、すなわちブレード溝18の延伸方向で変化するように配置され、ロータ1において、ブレード溝18の深さは、ロータ1の回転方向Rと同じ方向に増加するように、すなわちロータ1の回転方向Rと反対の方向において減少するように配置される。一方、ステータ2では、ブレード溝18の深さは、ロータ1の回転方向Rと同じ方向において減少するように、すなわちロータ1の回転方向Rとは反対の方向において増加するように配置される。ブレード溝18において、被精製材料の移動方向は、ロータ1の回転方向と実質的に等しい。
図5aにおいて、ロータ1およびステータ2は、実質的に作動状態で示されており、この状態では、ロータ1のブレード溝18とステータ2のブレード溝18の相互に遭遇する部分は、最大の体積を有する。従って、精製表面同士の間には、大きな体積を有する領域が形成され、これは、図5aにおいて、概略的に参照符号19で示されている。前記状態では、精製表面1’と2’の間の溝体積は、最大であり、被精製材料は、ロータ14の精製表面1’と、ステータ2の精製表面2’の両方において、第1の精製表面部15からブレード溝18に移動される。
図5bにおいて、ロータ1およびステータ2は、実質的に作動状態で示されており、この状態では、ロータ1のブレード溝18およびステータ2のブレード溝18の相互に遭遇する部分の体積は、減少する。従って、精製表面同士の間には、減少した体積を有する領域が形成され、これは、図5bにおいて、概略的に参照符号20で示されている。前記状態では、精製表面1’と2’の間の溝体積は、減少し、被精製材料は、ロータ1のブレード溝18およびステータ2のブレード溝18の双方から、精製表面1’、2’の間のブレードギャップ6に移動される。
図5cにおいて、ロータ1およびステータ2は、実質的に作動状態で示されており、この状態では、ロータ1のブレード溝18およびステータ2のブレード溝18の相互に遭遇する部分は、最小の体積を有する。従って、精製表面同士の間には、最小の体積を有する領域が形成され、これは、図5cにおいて、参照符号21で示されている。前記状態では、精製表面1’と2’の間の溝体積は、最小であり、被精製材料は、精製のため、ロータ1のブレード溝18およびステータ2のブレード溝18から、精製表面1’および2’の間のブレードギャップ6に、極めて効率的に移動される。
ロータ1の精製表面1’およびステータ2の精製表面2’の両方に対して同時に、被精製材料の移動方向、すなわち実質的にロータ1の回転方向において、精製機の精製表面のブレード溝18内の溝体積が減少すると、そのような溝体積の減少により、ロータ1の回転の間、被精製材料は、研磨のため、ブレードギャップ6に効率的に搬送される。その結果、以前に比べて繊維のより多くの部分に対して、精製の効果が生じる。同時に、被精製材料は、精製表面1’と2’の間に材料層を形成し、これにより、精製表面の損傷につながる、対向する精製表面の相互のブレードの接触が有効に回避される。
図6には、第2のディスク精製機10のロータ1およびステータ2の概略的な断面図を示す。図6の精製機において、ロータ1のブレード溝18とステータ2のブレード溝18の両方の深さは、長手方向、すなわちブレード溝18の延伸方向で変化するように配置され、ロータ1およびステータ2の双方において、ブレード溝18の深さは、ロータ1の回転方向Rと同じ方向、すなわちブレード溝18内の被精製材料の移動方向に増加するように配置される。ロータ1およびステータ2の両精製表面において同時に、被精製材料の移動方向で精製機の溝体積が増加すると、この溝体積の増加により、ブレード溝内の圧力は、ロータ1の回転により、ブレードギャップ6の圧力よりも低くなる。これにより、軸方向の精製の負荷が減少し、その結果、精製機1のブレードギャップは、小さくなる。これにより、被精製材料に対する精製の効果と、ブレードギャップからブレード溝に向かう被精製材料の移動の両方が助長され、これにより繊維の一部のみが、より強力な精製効果に晒される。
図7には、第3のディスク精製機10のロータ1およびステータ2の概略的な断面を示す。図7の精製機において、ロータ1のブレード溝18と、ステータ2のブレード溝18の両方の深さは、長手方向、すなわちブレード溝18の延伸方向で変化するように配置される。ロータ1およびステータ2の双方において、ロータ1の回転方向Rで見たブレード溝18の深さは、第2の精製表面部16の一つおきに減少し、第2の精製表面部16の一つおきに増加するように配置され、すなわち図7の精製機10において、ロータ1のブレード溝18の深さが増加すると、換言すれば、ロータ1のブレード溝18の体積が増加すると、ステータ2のブレード溝18の深さが減少し、換言すれば、ステータ2のブレード溝18の体積が減少し、あるいはその逆となる。精製表面に関して、一つの精製表面上の被精製材料の移動方向において、ブレード溝の体積すなわち溝体積が減少すると同時に、反対の精製表面においてこれが増加すると、ロータ1が回転した際に、この溝体積の変化により、ブレードギャップ6を介した、減少する溝体積の精製表面から増加する溝体積の精製表面への、またはそれに向かう材料の流れが生じる。対向する精製表面において、溝体積の増加と減少が交互に配置されることにより、ある精製表面から別の精製表面へのブレードギャップ6を介した被精製材料の連続的な移動が提供され、結果的に、材料は、効果的な精製処理に晒される。
図16には、第4のディスク精製機10の側断面図を概略的に示す。図16の精製機において、ロータ1のブレード溝18の深さは、長手方向、すなわちブレード溝18の延伸方向で変化するように配置され、ロータ1を円周方向から視認し、ブレード溝18の深さをロータ1の回転方向で見たとき、2つの連続する精製表面部16ではブレード溝18の深さが増加し、後続の精製表面部16では減少するように配置される。従って、ロータ1の円周方向で見たとき、2つの連続する精製表面部16ではブレード溝18の深さが増加し、後続の精製表面部16では減少するように配置され、この交互性がロータ1の円周方向に繰り返される。従って、ロータ1の回転により、被精製材料がロータ1の回転方向Rに誘導されると、これにより、被精製材料に対して、ロータ1の速度よりも遅く静止ステータ2の速度よりも速い、ロータ1の回転方向Rと平行な速度成分が提供される。換言すれば、被精製材料は、ロータ1と被精製材料の間の相対速度差のため、ロータ1よりも遅れる。この場合、精製機1の精製表面1’の溝体積が減少すると、被精製材料は、ブレードギャップ6の方向において、2つの連続する精製表面部16に誘導され、すなわちロータ1のブレード溝18から、ステータ2のブレード溝18に向かって誘導される。同様に、ロータ1の対象精製表面部において、ロータ1の精製表面1’の溝体積が増加すると、被精製材料は、前記精製表面部16に続く一つの精製表面部16では、反対方向、換言すればステータ2の溝18からロータ1のブレード溝18に向かって誘導される。
図16の対応策では、ステータ2は、ロータ1と同じ種類の精製素子を使用し、これにより、ステータ2の精製表面2’の2つの連続する表面部16では、ブレード溝18の深さは、ロータ1の回転方向Rから見て減少し、これに後続する一つの精製表面部16では増加するように配置される。この場合、ステータ2の精製表面2’における2つの最初に説明した精製表面部16のブレード溝において、ロータ1の回転方向Rに移動する被精製材料は、ブレード溝18の深さが減少するため、ブレードギャップ6に誘導され、すなわちステータ2のブレード溝18から、ロータ1のブレード溝に向かって誘導され、これに続くある精製表面部16では、ロータ1のブレード溝18の方向から、ステータ2のブレード溝18に向かって誘導される。この実施例では、2つの連続する精製表面部16の領域内には、ステータ2の精製表面2’とロータ1の精製表面1’との間に、圧縮効果、すなわち、精製表面同士の間の圧力が高まる精製効果が生じ、一つの精製表面領域16内に、吸引効果、すなわち精製表面同士の間の圧力が低下する精製効果が生じる。
想定される精製機の実施例は、ステータ2の精製表面2’においてのみ、ロータ1の回転方向Rで深さが減少するブレード溝18を有し、ロータ1の精製表面1’では、大部分のブレード溝18は、ロータ1の回転方向Rと同じ方向で、深さが増加する。ただし、ある範囲までは、ブレード溝18は、ロータ1の回転方向Rと同じ方向で、深さが減少する。従って、精製表面同士の間には、主に圧縮の精製効果が生じ、規則的なインターバルで、ステータの精製表面の方向からロータの精製表面の方向に、材料の流速を高める有効な制御効果が提供される。これは、精製表面に対するクリーニング効果を有し、その結果、精製の効果が高められる。
図5a、5b、5c、6、7、および16には、精製機ブレード素子および精製機が示されており、精製表面におけるブレード溝18の深さ、換言すれば、ブレード溝18の体積は、ブレード溝18の長手方向、あるいはブレード溝18の延伸方向に変化するように配置され、換言すれば、ブレード溝18が第2の精製表面部16に延在するとき、ブレード溝18は、2つの隣接する第1の精製表面部15を同時に接続する。ブレード溝18の深さまたは体積は、各ブレード溝18において変化し、あるいはいくつかのブレード溝においてのみ変化するように配置され、これによりブレード溝18は、ロータ1の精製表面およびステータ2の精製表面の両方において変化するように配置され、精製機が作動状態のとき、深さがブレード溝18の長手方向に変化するように配置された、ロータ1の精製表面およびステータ2の精製表面の双方において、これらのブレード溝18は、ロータ1がステータ2に対して回転すると、相互に遭遇する。また、ブレード溝18の深さの変化の仕方として図5a、5b、5c、6、7、16に示した異なる変形例は、例えば、精製表面の異なる精製領域において、すなわち精製表面の供給端13から精製表面の排出端14まで、異なる距離で、同一の精製表面に採用することも可能である。また、図5a、5b、5c、6、7、16に示したステータ2は、図5a、5b、5c、6、7、16に示したロータの回転方向Rとは反転された回転方向の第2のロータと置換することも可能である。
精製機が作動した際に、対向する精製表面で相互に遭遇するブレード溝を、深さが変化するように配置することにより、ブレードギャップ6を介して、一つの精製表面から制御された別の精製表面に、繊維材料を移動させるという対応策を提供することが可能となる。この対応策は、被精製繊維材料の多くの部分をブレードギャップでの精製に供する方法に影響し、しばしば、繊維材料の所与の部分をブレードギャップでの精製に供する方法に影響する。従って、精製は、繊維材料の精製の品質と精製の均一性の両方に影響する。
研磨精製表面部16の上部表面のブレードバー17およびブレード溝18の長手方向、または延伸方向は、これらが2つの隣接する第1の精製表面部15の間に延在する方向である。2つの隣接する第1の精製表面部15の間の距離、換言すれば、2つの隣接する第1の精製表面部15の間に配置されたブレードバー17およびブレード溝18の長さは、延伸方向において、例えば20乃至120mmであっても良い。後述する実施例では、ブレードバー17およびブレード溝18は、必ずしも、2つの隣接する第1の精製表面部の間に配置される必要はなく、ブレードバー17およびブレード溝18の長さは、より長くても良い。第1の精製表面部は、精製表面に極めて高密度に配置され、精製表面領域にわたって、被精製材料の均一供給が提供される。第1の精製表面部の配置用の適切な密度は、被精製材料に基づいて選択される。研磨精製表面部16の上表面におけるブレードバー17の幅、すなわちブレードバー17およびブレード溝18の長手方向に対して垂直な寸法は、0.5乃至5mmであっても良く、ブレード溝18の幅は、0.5乃至5mmであっても良い。ブレードバー17およびブレード溝18の幅は、前記範囲より小さくても大きくても良い。
ブレード溝18の深さが、ブレード溝18に延伸方向において、減少または狭小になるように配置された際、これは、被精製材料が精製表面からブレードギャップ6、さらには第2の精製表面、すなわち対向する精製表面に移動するように被精製材料を制御する。被精製材料の得られる移動は、ブレード溝18の幅が減少すると、すなわちブレード溝18が狭小になると、同様に助長される。延伸方向では、ブレード溝18は、ブレード溝18の開始点、第1の精製表面部15で、例えば6mmの深さであり、ブレード溝の端部で浅くなる。次の第1の精製表面部15では、ブレード溝18の深さは、例えば3mmである。深さの変化に加えて、溝の幅は、例えば3mmから2mmの幅に狭小になっても良く、これによりブレード溝18の体積は、ブレード溝18の深さおよびブレード溝18の幅の両方の変化の結果、変化する。
ブレード溝深さの変化の範囲は、ブレード溝18の深さが、溝の延伸方向において、精製表面部15から第2の精製表面部15まで、1乃至4mm浅くまたは深くなることで変化することが有意である。
ブレード溝18の深さの1乃至4mmの変化は、例えば、第1の精製表面部15では、4乃至6mmまたは7乃至10mmの深さを有し、後続の第1の精製表面部15では、2乃至5mmまたは6乃至9mmの深さを有するブレード溝18によって行われる。ブレード溝18の深さにおける1乃至4mmの変化により、精製表面同士の間に、適切な圧力効果または低圧効果が提供され、被精製材料は、精製表面同士の間を適正に移動し、精製の品質が上昇し、均一な品質の精製が提供される。ある場合には、大きな変化により、被精製材料は、ブレード溝18からブレードギャップ6まで、より効果的に移動するが、この場合、精製表面の寿命が短くなり、あるいはブロック化ブレード溝18が容易に生じるようになる。
ある場合には、ブレード溝18の長さに対するブレード溝18の深さの変化は、わずか1から2mmである。ブレード溝18の深さに1乃至2mmの変化を有する精製表面は、ブレードバー17の最小高さが大きいため、より長く使用され、その結果、摩耗のマージンが大きくなる。従って、例えば、第1の精製表面部15におけるブレード溝18の深さが、例えば4.5mmの場合、およびこれがブレード溝18の延伸方向において、ブレード溝18の深さが後続の第1の精製表面部15で6mmになるように、より深くなる場合、精製表面のブレードバー17の摩耗マージンは、4.5mmとなる。ブレードバー17の摩耗マージンがなくなると、精製表面の摩擦表面が減少し、パワー入力が減り、精製機によって得られる精製効果が低下する。ブレード溝18の深さの変化が1乃至2mmの場合の精製表面は、ブレード溝18の深さのより大きな変化を有する精製表面のように、被精製材料を効率的にブレードギャップ6に誘導しないが、依然として十分な制御効果が得られる。特に、精製表面を激しく摩耗する精製法においては、この種の精製表面の長い寿命は、全体的な経済的評価において最良の解決策であり得る。
ブレード溝18の深さの変化に加えて、ブレード溝18の長手方向におけるブレード溝18の幅を変更することにより、ブレード溝18の体積も変化する。これにより、ブレード溝18の幅および深さの両方の変化により、精製表面から精製機のブレードギャップ6、および/または精製機のブレードギャップ6から精製表面への、被精製材料の移動に影響を及ぼすことが可能となる。ブレード溝18の長手方向におけるブレード溝18の幅の変化は、例えば0.5乃至2mmである。従って、ある第1の精製表面部15におけるブレード溝18の幅が、ブレード溝18の第1の端部で例えば5mmの場合、後続の第1の精製表面部15における第2の端部での前記ブレード溝18の幅は、3乃至4.5mmとなる。ブレード溝18の幅および深さの両方を変化させることにより、ブレード溝18の延伸方向でブレード溝18の体積が変化すると、被精製材料に作用する精製効果を提供したまま、精製表面の製造コストを容易に最適化することができる。
図15aから15dには、さらに別のブレード溝18を概略的に示す。ブレード溝18の長手方向におけるブレード溝18の深さDおよび幅Wの変化が示されている。図15aは、ブレード溝18の側面図であり、図15bは上面図である。図15cは、切断線B-Bに沿ったブレード溝18の断面図であり、図15dは、断面C-Cに沿ったブレード溝18の断面図である。図15aにおいて、ロータの回転方向は、参照符号Rで示されている。図15aおよび15bから、ブレード溝18の深さDおよびブレード溝18の幅Wは、ロータの回転方向Rと同じ方向で増加することは明らかである。その結果、図15dにおいて参照符号Aで示されたブレード溝18の断面積Aは、図15cのブレード溝18の断面積Aよりも小さくなる。従って、図15aから15dのブレード溝18において、ブレード溝18の断面積Aは、ロータの回転方向Rと同じ方向において増加し、その結果、ロータRが回転すると、ブレード溝18の体積は、ブレード溝18の終了部分に比べて、ブレード溝18の開始部分において大きくなる。従って、ブレード溝18の深さDは、ブレード溝18に隣接するブレードバー17の上表面からの、ブレード溝18の底部の距離を表し、ブレード溝18の幅Wは、ブレード溝18のいずれかの側におけるブレードバー17の相互の距離を表す。
従って、図15aから15dに示したブレード溝18の断面積Aは、ブレード溝18の深さDおよび幅Wの両変化の結果、ブレード溝18の長手方向または延伸方向で変化するように配置される。しかしながら、ブレード溝18の断面積Aは、ブレード溝18の深さDまたは幅Wの何れか一方の変化の結果として、変化しても良い。ブレード溝18の断面積Aが変化すると、ブレード溝18の体積は変化し、ブレード溝18の所与の断面位置に対応するブレード溝18の断面積Aは、前記ブレード溝18における前記点でのブレード溝18の断面体積を表す。
短繊維の精製において、ブレード溝18の最大深さは、しばしば、最大6mmであり、その結果、ブレードバー17およびブレード溝18の幅は、しばしば、5乃至3mmとなる。長繊維の精製では、ブレード溝18の最大深さは、最大10mmであり、この場合、ブレードバー17およびブレード溝18の幅は、しばしば、3乃至5mmである。短繊維の長さは、通常、1.2mm未満であり、特に、1.0mm未満である。長繊維は、通常、全長が1.5mmを超え、特に全長が2mmを超える。
短繊維の精製では、長繊維の精製に比べて大きな水圧浮力が形成される。一方、長繊維は、短繊維よりもブレード溝18からブレードギャップ6に入り易くなり、短繊維よりもブレードギャップ6により長く留まる。これらのことから、短繊維の精製では、精製に必要な軸方向の力は、長繊維の精製よりも小さくなり、そのため、ブレード溝18の断面積の変化を短繊維の精製に適用することは、長繊維の精製に適用することとはある程度異なる。
短繊維の精製では、ロータ1の精製表面1’におけるブレード溝18の60から90%は、ブレード溝18の断面積、すなわち深さまたは幅が、ロータ1の回転方向Rと同じ方向において、増加するように配置され、これにより、これらは、ロータ1の精製表面の方向からステータ1の精製表面の方向に、被精製材料の流れを誘導する。残り、すなわちロータ1の精製表面におけるブレード溝18の約10から40%は、ロータ1の回転方向Rと同じ方向において、断面積が減少するように配置されても良く、これによりこれらは、ステータ2の精製表面の方向からロータ1の精製表面の方向に、被精製材料の流れを誘導する。この場合、ステータ2の精製表面におけるブレード溝18の80から100%が、ロータ1の回転方向Rと同じ方向において、断面積が減少するように配置され、これによりこれらは、ステータ2の精製表面の方向からロータ1の精製表面の方向に、被精製材料の流れを誘導する。残り、すなわちステータ2の精製表面におけるブレード溝18の約0から20%は、断面積が、ロータ1の回転方向Rと同じ方向において増加するように配置され、これによりこれらは、ロータ1の精製表面の方向からステータ2の精製表面の方向に、被精製材料を誘導する。
長繊維の精製では、ロータ1の精製表面1’におけるブレード溝18の40から80%が、ブレード溝18の断面積、すなわち深さおよび幅がロータ1の回転方向Rと同じ方向に増加するように配置され、これによりこれらは、ロータ1の精製表面の方向からステータ2の精製表面の方向に、被精製材料の流れを誘導する。残り、すなわちロータ1の精製表面におけるブレード溝18の約20から60%は、ロータ1の回転方向Rと同じ方向に、断面積が減少するように配置され、これによりこれらは、ステータ2の精製表面の方向からロータ1の精製表面の方向に、被精製材料の流れを誘導する。この場合、ステータ2の精製表面におけるブレード溝18の40から80%は、ロータ1の回転方向Rと同じ方向において断面積が減少するように配置され、これによりこれらは、ステータ2の精製表面の方向からロータ1の精製表面の方向に、被精製材料の流れを誘導する。残り、すなわちステータ2の精製表面におけるブレード溝18の約20から60%は、ロータ1の回転方向Rと同じ方向において、断面積が増加するように配置され、これによりこれらは、ロータ1の精製表面の方向からステータ2の精製表面の方向に、被精製材料の流れを誘導する。
図8には、精製表面の方向で見たブレード素子12を概略的に示す。また、図9には、斜め上から見た図8のブレード素子12の左上部コーナーの部分を概略的に示す。図8のブレード素子12は、いわゆるブレードセグメントであり、これは、精製機のステータまたはロータの精製表面の一部を構成し、精製表面の全体は、図8のいくつかのブレード素子12を、並べて配置することにより提供される。図8には、ブレード素子12内の固定開口22を概略的に示す。この中には、ボルトのような固定素子が装入され、ブレード素子12は、これにより精製機のロータ1またはステータ2と固定される。図8および図9の例では、ブレード素子12は、精製機ロータ1の精製表面1’の一部であると仮定しているが、図8および図9のブレード素子12は、精製機ステータ2の精製表面2’の一部であっても良い。図8および図9のブレード素子12は、ブレード素子12のフレーム構造12’を有し、ブレード素子12の精製表面1’は、その上表面に提供される。
図8および図9のブレード素子12は、第1の精製表面部15を有し、これは、図8および図9の例では、溝の形態であり、矢印Tで示すように、精製表面1’の供給端13から精製表面1’の排出端14まで、精製表面1’の径に対して実質的に平行に延在する。この目的は、精製表面1’上の被精製繊維材料および既に精製された材料を搬送することである。第1の精製表面部15同士の間には、第2の精製表面部16が存在し、その上表面には、精製表面1’のブレードバー17と、それらの間のブレード溝18とが存在する。ロータ1の回転方向Rからみたとき、ブレード溝18の深さは、ロータ1の回転方向Rと反対の方向において小さくなるように、長手方向で変化するように配置されることは、図9から明らかである。従って、ブレード溝18の構造は、図5a、5b、5c、6、または16に示したロータ1のブレード溝18の構造に実質的に対応する。
図8に認められるように、さらに、ブレードバー17およびブレード溝18は、ポンプ(pump)ブレード角で配向されることは明らかである。ポンプブレード角は、被精製繊維材料において、精製表面の円周方向における速度成分と、精製表面の半径方向における速度成分の両方を提供する角度を意味する。この精製表面の半径方向における速度成分は、精製表面の供給端の方向から精製表面の排出端の方向に誘導され、従って、これにより、被精製繊維材料の供給方向から被精製材料の排出方向まで、被精製繊維材料の流通が促進される。ブレード角は、精製表面軸から精製表面に伸ばした仮想線と、ブレードバーとの間の角度である。図8において、右下コーナーの前記仮想線は、矢印Bで描かれ、ブレード角は、αで示されている。ポンプブレード角で配置されたブレードバー17およびブレード溝18のブレード角は、5乃至85℃であっても良い。これを超えるブレード角の値では、顕著なポンプ効果が得られない。ブレード角の値は、例えば精製表面の各種領域で変化しても良い。精製表面の供給領域、すなわち供給端に近い精製表面領域では、例えば40から80゜の大きなポンプブレード角が使用され、より好ましくは50から80゜、または45から80゜が使用される。これにより、ブレード溝の体積変化は、より効果的にブレードギャップに被精製材料を誘導する。精製表面の実際の精製領域または排出領域では、換言すれば、精製表面の供給端から離れて配置される精製表面領域では、小さなポンプブレード角、例えば20から40゜が使用される。前述の所与のブレード角の値は、ポンプ方式に配置されたブレードバーおよびブレード溝を想定しているが、前記ブレード角の値には、ブレード溝体積の変化の影響により、ブレード溝からブレードギャップに被精製材料の移動が観察された際に、保持方式で配置されたブレードバーおよびブレード溝を考慮しても良い。供給領域では、精製表面のより広いブレード角により、供給領域から精製領域への、被精製材料の移動が促進され、一方精製表面のより小さなブレード角では、被精製材料の精製領域での滞留時間が延び、被精製材料の精製品質が向上する。
ポンプ角で精製表面のブレードバーを配置することにより、精製機の容量を高めることができる。精製機のブレードギャップにおける被精製材料の滞留時間が短くなるからである。同時に、被精製材料の精製品質の変化が小さくなる。同様に、保持角度で精製表面のブレードバーを配置することにより、精製機の容量が低下する。精製機のブレードギャップにおける被精製材料の滞留時間が長くなるためである。同時に、被精製材料の精製品質の変化が大きくなる。
対応対として作用するブレードバー17同士の間の切断角が少なくとも90゜に増加すると、変化する断面積を有するブレード溝18は、相互に遭遇するブレードバー17の効果により、反対側の精製表面に向かって、被精製材料をブレードギャップ6内に有効に誘導する。これにより精製機による精製が促進される。同時に、対向する精製表面の間で、ブレードギャップに圧力効果が生じ、これにより、精製表面の損傷につながり得る、対向する精製表面の相互の接触、すなわち、いわゆるブレード接触が有効に抑制される。従来の前述の精製機では、ブレード溝の深さは一定であり、対応するブレード角を使用した場合、被精製材料は、精製されずに、単にブレード溝18内を通過する傾向にある。
供給領域では、40から80゜のブレード角が特に好ましいが、これは、例えば、特に材料を完全にブレードギャップに移動し、精製を高容量で行うことが望ましいときは、精製領域においても有意である。同様に、特に精製領域では、20から40゜のブレード角が好ましいが、これは、例えば、長い精製処理が必要で、精製容量が妥協できるときには、供給領域においても有意である。
ブレード角が大きくなると、特に50から85゜の間では、ブレード素子12の円周方向に近づき、ブレードバー17およびそれらの間のブレード溝18が配向される。この場合、観測精製表面に対向する精製表面は、精製の間、観測される精製表面に力を及ぼし、これにより、被精製材料は、次第に、ブレード溝18の方向に搬送される。この状況では、長手方向または延伸方向に変化するブレード溝18の深さまたは体積は、被精製材料をブレード溝18と平行に移動させ、観測精製表面から、対向する精製表面に向かって移動させ、被精製材料は、ブレードギャップ6に入り精製される。従って、大きなブレード角αを採用したロータ1の精製表面1’およびステータ2の精製表面2’により、繊維材料は、精製のため、精製機のブレードギャップ6に有効に搬送される。
ブレード角が大きく、これらがロータ1の精製表面1’およびステータ2の精製表面2’の双方において、ポンプ方向に配向されている場合、ブレードバーは、対向する精製表面に対するブレードバー17の間の切断方向の効果により、繊維パルプを、精製表面の供給端13から精製表面の排出端14に向かって、ブレードギャップ6まで誘導する。ブレードバー17は、精製のため、ブレードギャップ6に繊維材料を有効に誘導し、これを供給領域から精製領域および排出領域に移動する。例えば精製表面の実施例では、対応組として機能する、ブレードバー同士の間の切断角は、100から120゜であり、従って、両精製表面に同じブレード角αが使用された場合、ブレード角αは、精製表面当たり50から60゜である。対向する精製表面のブレードバー17がポンプ方向に配向され、ブレード角αが少なくとも50゜であり、さらに精製表面の少なくとも一方において、ブレード溝18の溝体積が、パルプの移動方向に減少しまたは増加する場合、精製のための材料のブレードギャップ6への移動は、さらに助長され、材料は、精製表面の供給端13から精製表面の排出端14に搬送される。溝体積の減少による、ブレード溝18の圧力の上昇効果により、繊維材料は、ブレードギャップ6に移動する。同様に、溝体積の増加により、ブレード溝内の圧力減少により生じる吸引効果より、繊維材料は、観察精製表面に対向する精製表面から、ブレードギャップ6に移動する。
精製表面のブレードバー17およびその間のブレード溝18は、直線であっても良い。しかしながら、精製表面のブレードバー17およびその間のブレード溝18は、図8、9に概略的に示すように、湾曲していても良く、図8から明らかなように、ブレードバー17は、精製表面に垂直な方向から見て、精製表面にウェーブパターンを形成する形態であっても良い。ブレードバー17によって、精製表面に提供されるウェーブパターンは、ブレードバー17の配向が規則的に繰り返された小さな曲率半径を有する際に形成される。湾曲し、小さな曲率半径を有するブレードバー17の構造は、ブレードバー17の負荷容量を高め、これらは、精製の前に加わる負荷に比べて、抵抗が高くなる。従来のブレード対策に比べて改善されたブレードバー17の強度は、ブレード角αが小さい場合、例えば、ブレード角の値が20から30゜の際に強調される。ブレードバー17に損傷を与える堅い粒子がブレードバー17の間に挟まる状況では、ブレードバー17の湾曲したウェーブ形態の構造により、損傷は、短い長さでしか、ブレードバー17に影響しない。従来のブレードバーの構造では、この状況では、完全にまたは少なくとも相当の長さにわたって損傷を受ける。
図8のブレード素子では、ブレードバー17およびブレード溝18の延伸方向において、ブレードバー17またはブレード溝18の開始位置、あるいはウェーブパターンの開始位置でのブレード角αは大きいが、ブレードバー17またはブレード溝18の開始点が、ロータ1の回転方向Rと同じ方向に配向されたブレードバー17またはブレード溝18の端部に定められると、ブレードバー17またはブレード溝18の端部に向かって、あるいはウェーブパターンの端部に向かって、小さくなる。その結果、ブレードバー17の開始部分によって精製された材料は、ブレード溝18の延在方向に通過する傾向が強くなり、溝深さの変化によって生じる圧力または負圧の効果により、ブレード溝18からブレードギャップ6に移動する。ブレードバー17の端部は、精製を促進するブレードバーとして機能する。
精製機内に配置された、ブレード素子におけるブレードバーのブレード角が大きくなると、ブレード素子のブレードバーは、対向するブレード表面によって生じる力で、ブレード素子のブレードバーおよびブレード溝の方向に、繊維材料を大きく誘導する。その結果、被精製繊維材料は、ブレードギャップ内で有効に上昇する。従って、ブレードバーのブレード角が大きい場合、ブレードギャップ内で上昇する繊維は、ブレードバーに沿って移動する傾向にあり、ある程度ブレードバーに密着し、繊維材料が特に精製される。ブレード素子のブレード角が小さい場合、対向するブレード表面によって生じる力により、ブレード素子内のブレードバーは、ブレード溝の方向には、あまり繊維を誘導せず、これにより繊維材料は、ブレードギャップ内であまり上昇しなくなる。繊維材料がブレードギャップ内で上昇する範囲まで、ブレードバーは、ブレードギャップに上昇し、ほとんど溝に逆らって移動するブレードバーは、繊維を有効に取り込み、その結果、繊維のエネルギー移動が容易に生じ、繊維材料は、激しい精製に晒される。ブレードバーが湾曲すると、ブレードバーの開始部は、ブレードギャップに繊維材料を有効に動かし、端部により、繊維材料は、激しい精製に晒される。
ブレード素子の精製表面がブレード溝18の全長において変化する溝体積を有し、すなわち溝深さおよび/または溝幅が変化し、ブレードバー17が50゜を超えるブレード角αを使用して、ポンプするように配置され、および/またはブレードバー17がウェーブ状のブレードバーとブレード溝パターンを形成するように配置される場合、ブレード素子は、効果的に、被精製材料の高品質の精製を提供し、高い生産能力が得られる。
図8、図9のブレード素子12の精製表面における溝形状の材料供給溝は、ベンド23を有する第1の精製表面部15を構成する。第1の精製表面部15の長手方向において、2つのベンド23の間の湾曲部では、被精製材料の速度が加速される。ベンド23では、加速された速度を有する材料は、溝形状の第1の精製表面部の壁に衝突し、これにより、被精製材料の、実際の精製に寄与するブレードギャップ6およびブレード溝18への移動が助長される。
また、第1の精製表面部15を構成する、図8および図9のブレード素子12の精製表面における溝形状の材料供給溝は、実質的に精製表面の半径方向Tに延伸するように誘導される。供給溝15を実質的に精製表面の半径方向に延伸するように配向することにより、供給溝15内の繊維材料の流れが、精製表面の供給端から排出端までの短路を取るようになり、高い水圧容量を提供することが可能になる。また、前記配置により、材料は、精製表面領域全体に効率的に分布し、精製表面の表面積の供給溝15の割合は、小さく維持される。ある場合には、供給溝15は、保持するように配置されても良く、これにより、これらは、ブレードギャップ内の被精製材料の通過を遅くする。従って、繊維材料の精製効果が高まる。同様に、時には、ポンプ方向に供給溝15を配置することにより、供給溝15のポンプ能力をさらに強めることが必要である。
また、図8、図9のブレード素子12の精製表面において、ブレードバー17およびブレード溝18は、少なくともある程度、精製表面の円周方向、すなわち精製表面の接線方向、または第1の精製表面部15に対して横断方向に配置される。また、第1の精製表面部15、すなわち供給溝15の幅は、溝15の全長に対して変化するように配置され、溝15は、精製表面の供給端13の方向から、精製表面の排出端14の方向に移動する際に、溝15のベンド23の間の部分で細くなるように配置される。溝15の広い部分は、精製表面上の被精製材料および既に精製された材料を搬送することに寄与するが、溝15のテーパ化または狭小化部分は、材料を保持し、被精製材料をブレード溝18、さらには精製機のブレードギャップ6に向かわせることに寄与する。
図10には、精製表面の方向から見た第2のブレード素子12を概略的に示す。また、図11には、上部斜め方向から見た図10のブレード素子12の一部を概略的に示す。図10および図11のブレード素子12は、ロータ1の精製表面1’の一部を形成するが、対応するブレード素子12は、精製機ステータ2のブレード素子として使用されても良い。
図10と図11のブレード素子12は、ブレードバー17およびブレード溝18を有し、この構造は、長手方向、または参照符号Rで表されたロータの回転方向と反対の方向に、僅かに湾曲した延伸方向に配置される。また、ブレード素子12は、該ブレード素子12の精製表面1’を貫通して設けられた開口27を有する。図10および図11のブレード素子12は、例えば、図14に概略的に示されている、図2のコーン精製機11から派生したコーン精製機11に使用されても良い。図14のコーン精製機11において、開口7を介して供給される被精製繊維材料は、ロータ1の精製表面の開口27を介してブレードギャップ6に移動され、精製された繊維材料は、概略的に矢印Fで示されているように、ブレードギャップ6から、ステータ2の精製表面2’の開口27を介して排出される。精製された繊維材料は、ブレードギャップ6から精製機11の隙間28に排出され、排出チャネル9を通り精製機11から排出される。従って、前記開口27は、被精製材料を供給する第1の精製表面部27、および/または精製された材料を排出する第1の精製表面部27を構成し、前記ブレードバー17およびブレード溝18は、材料を精製する精製表面部16の上表面に配置される。図10および図11のブレード素子12では、精製表面のブレード溝18の一部のみが、前記第1の精製表面部27を接続するように配置されている。さらに、ブレード溝18の深さは、図11に概略的に示すように、ブレード溝18の長手方向に、直線的に変化するように配置される。
また、図10および図11のブレード素子12は、図14に示した精製機に使用されても良く、被精製繊維材料は、ステータ2の精製表面2’の開口27を介してブレードギャップ6に供給され、精製された材料は、ブレードギャップ6から、ロータ1の精製表面1’の開口27を介して排出される。また、図14と同様の精製機11を使用して、ロータ1の精製表面1’またはステータ2の精製表面2’の一方のみが、開口27を有しても良く、この開口を介して、被精製繊維材料は、ブレードギャップ6に供給され、あるいはこの開口を介して、精製された繊維材料は、ブレードギャップ6から排出される。
図12には、精製表面の方向から見た第3のブレード素子12を概略的に示す。また、図13には、上部斜め方向から見た図12のブレード素子12の一部を概略的に示す。図12および図13のブレード素子12は、精製機のステータ2に使用されても良く、その場合、ブレード素子12の精製表面は、参照符号2’で表される。ロータの回転方向は、参照符号Rで示されている。図12および図13のブレード素子12は、被精製材料を供給し、あるいは既に精製された材料を排出する第1の精製表面部を有さず、ブレード素子12の精製表面2’は、実際の精製に寄与するブレードバー17およびブレード溝18のみを有する。図12および図13の精製表面2’の実施例では、ブレードバー17のポンプ効果により、被精製材料が確実に精製表面2’に移動するようにブレードバー17が配向されることが好ましく、その結果、精製が行われ、製造容量が十分になる。ブレードバー17のブレード角を増加させることにより、ポンプ効果を高めることができ、製造容量が高められる。
図12および図13のブレード素子12では、ブレード溝18の深さは、ブレード溝18の長手方向で、ウェーブ状に変化するように配置され、すなわちブレード溝18の底部は、ウェーブ状の、交互に形成された凸部24および凹部25を有する。ブレード溝18の底部の前記構成は、図13から明らかである。ブレード溝18の底部から、ブレードバー17の上表面までの距離、換言すれば、ブレード溝18の深さは、ブレード溝18の底部の凸部24内のウェーブ頂点24’で最大となり、ブレード溝18の底部から、ブレードバー17の上表面までの距離は、ブレード溝18の底部における凹部25内のウェーブ谷25’で最大となる。ブレード溝18に隣接するブレード溝底部のウェーブ頂点24’は、輸送線を形成し、この一つは、図12および図13において参照符号26で示されている。輸送線26は、精製表面の少なくとも一部分を超えて延びる線であり、ここでは、ブレードバー17同士の間のブレード溝118の深さは、最小となり、すなわち輸送線26では、隣接するブレード溝18は、ブレード溝18の底部のウェーブ頂点24’を有する。前記輸送線26では、被精製材料は、観察精製表面と反対の側の精製表面のブレードバー17によって生じる被精製材料の移動の効果により、精製機ブレードギャップ6に向かう力を受ける。輸送線26は、観察精製表面に認められる。従って、輸送線26により、被精製材料のブレードギャップ6における滞留時間、さらには精製された材料の品質に影響を及ぼすことが可能となる。輸送線26は、輸送線26がブレードバー17のブレード角に対して、ブレードバー17に対して垂直な方向から、最大30゜、好ましくは最大20゜ずれるように配向される。この場合、例えばブレードバー17が50゜を超えるブレード角αを使用して、ポンプ式に配置された際に、輸送線26は、ブレードバー17およびブレード溝18の延伸方向に対して、これらが精製表面における被精製材料の通過に対して保持効果を示すある角度になり、このため、精製表面間の被精製材料の滞留時間が長くなり、精製された材料の精製度合いが高くなる。
図12および図13のブレード素子12の精製表面2’において、ブレード溝18の深さは、凸部と凹部を有するウェーブ状に変化するが、ブレード溝18の深さは、直線的に変化しても良い。また、図12および図13のブレード素子12の精製表面2’では、ブレードバー17およびブレード溝18は、湾曲して配置されているが、これらは、実質的に直線であっても良い。図12および図13のブレード溝18の底部のウェーブ状構造は、被精製材料を精製表面に供給し、および/または精製表面から精製された材料を排出する、第1の精製表面部を有する精製表面に適用しても良い。溝15または供給開口または排出開口27の形態が、精製表面に提供されても良い。
図8において、ブレードバー17の曲率半径は、約250mmであり、ブレードバー17は、被処理材料と凹部表面で遭遇する。図10では、ブレードバー17の曲率半径は大きく、ほぼ真っ直ぐであり、ブレードバー17は、僅かに凸状の表面として被処理材料と遭遇する。図12では、ブレードバー17の曲率半径は、約90mmであり、ブレードバー17は、凹状の表面として被処理材料と遭遇する。ブレードバー17の輸送線26での曲率半径は、約10mmである。
ブレードバー17が短いとき、すなわち2つの隣接する供給溝15、または材料を供給しあるいは排出する開口27の間の距離が短いとき、小さな曲率半径のブレードバー17を使用することが有意である。この場合、ブレードバー17が短くても、ブレードバー17のブレード角αには、大きな変化が提供され、ブレードバー17は、強固な構造を有する。また、ブレードバー17のブレード角αの全体の変化は過剰ではないため、短いブレードバー17の曲率半径は、小さくしても良い。その結果、精製表面のブレード溝18における被精製材料の処理量は、高いまま維持される。ブレードバー17のブレード角αの全体の過度の変化は、精製表面のブロッキングに対する感度を高める可能性がある。
ブレードバー17が長いとき、すなわち2つの隣接する供給溝15、または材料を供給しもしくは排出する開口27の間の距離が長いとき、大きな曲率半径のブレイドバー17を使用することが有意である。ブレードバー17の曲率半径が長い場合でも、ブレードバー17のブレード角αには、大きな変化が提供され、ブレードバー17は、強固な構造を有する。この場合、ブレードバー17のブレード角αの全体の変化は、過度にはならず、その結果、ブレード溝18内の被精製材料の処理量は、高いまま維持される。ブレードバー17のブレード角αの全体の変化が比較的小さく維持されるため、ブレード溝18は、使用の際に開いた状態が維持され、被精製材料は、効果的に通過する。
ブレードバー17の強度は、ブレードバー17の曲率を小さくすることで改善される。強度の改善は、移動方向、すなわち精製表面の円周方向または接線方向において、湾曲ブレードバー17が凹状または凸状のいずれかで配向されているかに無関係に行われる。
ブレードバー17の曲率半径は、50から300mmであることが好ましく、50から150mmであることがより好ましい。曲率半径が小さくなると、ブレードバー17の強度が高まる。供給溝15、または材料を供給しもしくは排出する開口27が精製表面に比較的密に配置される場合、精製表面におけるブレード溝18の曲率半径は、比較的小さい。この場合、精製表面のブレードバー17の曲率半径によらず、精製表面の容量は高くなる。
図17には、ディスク精製機のブレード素子12の概略的な上面図を示す。ブレード素子12は、供給端13および排出端14を有する。ブレード素子12は、精製表面1’を有し、換言すれば、図17のブレード素子12は、精製機ロータの精製表面の一部を提供する。ただし、対応するブレード素子は、精製機ステータの精製表面の一部を提供するために使用されても良い。
図17のブレード素子12は、さらに、溝として実施される第1の精製表面部15と、それらの間の第2の精製表面部16とを有し、その上表面には、ブレードバー17およびブレード溝18がある。図17のブレード素子12では、ブレードバー17およびブレード溝18は、ブレード素子12に配置され、ブレード素子12の供給端13側では、ブレードバー17およびブレード溝18は、ブレード素子12の排出端14の側よりも、相互に長い距離で、すなわち相互に長い間隔で配置される。ここでは、ブレードバー17およびブレード溝18は、より密に見える。従って、ブレード素子12内のブレードバー17およびブレード溝18の位置は、ブレード素子12の供給端13の方向から排出端14の方向まで、実質的に連続的にまたは規則的に、密になるように配置される。密度の増加は、ブレードバー17およびブレード溝18の幅Wを、ブレード素子12の供給端13の方向から排出端14の方向まで、連続的にまたは規則的に、狭めることにより行われる。従って、図17のブレード素子では、ブレード溝18の断面積は、連続したブレード溝18の間で供給端13の方向から排出端14の方向に、減少するように配置される。
図17のブレード素子12では、精製表面1’は、精製表面1’の供給端13に配置された供給領域29または圧搾領域29と、精製表面1’の排出端14の側に配置された精製領域30との、2つの領域に分割される。供給領域29は、突起31およびこれらの間の凹部32を有する。図17の実施例では、突起31はブレードバーとして実施され、凹部32は溝として実施されるが、突起31および凹部32の実施は、実施例に応じて変化しても良い。突起31は、被精製材料を粗精製し、凹部32を介して精製表面1’の前方に材料を搬送する。精製領域30は、溝として実施された第1の精製表面部15と、これらの間の第2の精製表面部16とを有し、前述のように、この上表面には、ブレードバー17およびブレード溝18が存在する。精製領域の突起31および凹部32のいくつかは、精製領域30に延在し、ブレードバー17またはブレード溝18の一部を形成する。
図18には、ディスク精製機ブレード素子12の上面図を示す。図において、ブレード素子12内のブレードバー17およびブレード溝18の位置は、供給端13から排出端14までの全精製表面領域にわたって、ブレード素子12の供給端13の方向から排出端14の方向に、実質的に連続的に密になるように配置される。
図19には、コーン精製機ブレード素子12を概略的に示す。ブレード素子12は、供給端13および排出端14を有する。さらに、図19のブレード素子12は、溝として実施された第1の精製表面部15と、これらの間の第2の精製表面部16とを有し、この上表面には、ブレードバー17およびブレード溝18が存在する。また、図19のブレード素子12では、ブレードバー17およびブレード溝18は、ブレード素子12の供給端13において、ブレードバー17およびブレード溝18が、ブレード溝12の排出端13に比べて相互に長い距離に、すなわち相互の間隔が広くなるように配置されるように、ブレード素子12内に配置される。ここでは、ブレードバー17およびブレード溝18は、より密に見える。従って、ブレード素子12内のブレードバー17およびブレード溝18の位置は、前述のように、ブレードバー17およびブレード溝18の幅を、ブレード素子12の供給端13の方向から排出端14の方向に、連続的に小さくすることにより、ブレード素子12の供給端13の方向から排出端14の方向に、実質的に連続的に密になるように配置される。図19のブレード素子12は、精製機ロータの精製表面の一部を提供するように提供されるが、対応するブレード素子は、精製機ステータの精製表面の一部を提供するために使用されても良い。
図20には、第2のコーン精製機ブレード素子12を概略的に示す。図において、ブレード素子12のブレードバー17およびブレード溝18の位置は、ブレード素子12の供給端13の方向から排出端14の方向に、実質的に連続的に密になるように配置される。図20のブレード素子12は、コーン精製機ロータの精製表面全体を提供するように配置されるが、対応する解決策では、コーン精製機ステータの精製表面に使用しても良い。
図17乃至図20のブレード素子において、ブレード溝18の断面積は、一つのブレード溝18から次の溝までの遷移において、精製表面の供給端13の方向から排出端14の方向に、減少するように配置される。精製表面の供給端13の方向から排出端14までの方向の遷移が生じる場合、一つのブレード溝18から次のものまでの、連続的なブレード溝18の断面積は、連続的なブレード溝18の幅が減少するような態様で減少する。これにより、精製表面の供給端13に最近接のブレードバー17およびブレード溝118の幅は、最大となり、精製表面の排出端14に最近接のブレードバー17およびブレード溝118の幅は、最小となる。これにより、精製表面の供給端側に、広い間隔を有するブレード形状を有する精製表面が提供される。これは、精製表面の供給側で、ブレードシステムのブロッキングが生じることを抑制する。これが生じると、材料の精製品質は、極めて低くなる。精製表面の排出側では、ブレード形状は、狭い間隔を有し、これにより、被精製材料が精製機から排出される前に、有効な精製効果が得られる。ブレードバー17およびブレード溝18の連続的な高密度化により、精製表面に、溝−ブロッキングによる不連続性が形成されることが抑制される。これは、標準的なブレード形状の精製表面領域のみを有する従来の精製表面で、特に、精製効果が変化するようにブレード形状にブレードバーを加えることを試みた際に、生じ得る。また、精製表面のブレード形状の体積変化は、ブレードバー17およびブレード溝18の連続的な高密度化によって容易に影響される。
ブレードバー17およびブレード溝18の幅は、精製表面の供給端13から排出端14まで、約20から40%減少し、あるいは換言すれば、ブレードバー17およびブレード溝18の密度は、精製表面の供給端13から排出端14まで、約20から40%上昇する。精製表面の供給端13から排出端14までの、精製表面のブレードバー17およびブレード溝18の幅の変化は、被精製材料の種類に影響されても良い。例えば、針葉樹パルプが精製される場合、精製表面の供給端でのブレードバー17の幅は、例えば4mmであり、排出端では、3mmであり、精製表面の供給端でのブレード溝18の幅は、例えば6mmであり、排出端では、4mmである。混合パルプを精製する場合、精製表面の供給端でのブレードバー17の幅は、例えば3.5mmであり、排出端では、2.5mmであり、精製表面の供給端でのブレード溝18の幅は、4mmであり、排出端では、3mmである。短繊維パルプを精製する場合、精製表面の供給端でのブレードバー17の幅は、例えば3mmであり、排出端では2mmであり、精製表面の供給端でのブレード溝18の幅は、3.5mmであり、排出端では2.5mmである。ユーカリ系パルプを精製する場合、精製表面の供給端でのブレードバー17の幅は、例えば2.5mmであり、排出端では、1.5mmであり、精製表面の供給端でのブレード溝18の幅は、例えば3mmであり、排出端では2mmである。
図18乃至20のブレード素子では、ブレード溝18の断面積は、連続的なブレード溝18同士の間の、供給端13の方向から排出端14の方向まで、実質的に全精製表面領域にわたって減少するように配置される。しかしながら、供給端13から排出端14で見たとき、図17に示すように、連続的なブレード溝18の断面積Aが、供給端13と排出端14の間の限られた部分内のみで減少する実施例も可能である。ブレード溝18の幅が減少すると、図17乃至20に概略的に示すように、ブレードバー17の幅も減少する。しかしながら、ブレード溝18の幅が減少しても、ブレードバー17の幅が一定のままである実施例、あるいはブレード溝17の幅が精製表面の一部においてのみ減少するような実施例も可能である。
従って、図17の実施例では、ブレードバー17およびブレード溝18の連続的な高密度化は、精製表面1’の特定の供給領域29に続く精製領域30において実施される。本質的な事項は、激しい精製を得ることである。激しい精製の効果は、ブレード溝の体積減少により、被精製材料が、精製表面の排出端に向かって移動したまま、より効果的にブレードギャップに移動したときに得られる。精製表面の排出端の近傍では、ブレード溝の連続高密度化は、精製効果を高めるためにもはや必要ではなく、その結果、排出端の近傍では、精製表面は、一定のブレードバーおよびブレード溝の密度を有する。
特別な供給領域のない精製表面では、ブレードバー17および/またはブレード溝18の連続的な高密度化は、精製表面の供給端側部分に配置され、これにより、精製表面の供給端側部分に、より少ない溝が形成される。これは、精製表面の供給端側部分に、有効な材料供給効果を提供し、供給効果は、供給の必要性の低下とともに、徐々に減少する。また、精製表面の供給端側部分に形成されたより少ない溝により、精製表面部分に十分な水圧容量が提供される。これは、従来の解決策を使用した際に、しばしば妨げられる。ブレード溝の連続的な高密度化のため、ブレード溝の水圧容量は、さらに減少し、被精製材料が排出端に向かって進む間に、被精製材料はブレードギャップにより効果的に移動し、これにより精製表面の精製効果が助長される。
ただし、被精製材料に応じて、精製表面の供給端から排出端まで、精製表面の領域または長さ全体にわたって、ブレードバーおよび/またはブレード溝の連続的な高密度化が延伸しても良い。
従って、ブレードバー17および/またはブレード溝18の連続的な高密度化は、供給端または排出端の間の精製表面の一部においてのみ実施され、あるいは供給端と排出端の間の精製表面全体に実施されても良い。前記高密度化は、供給端と排出端の間の精製表面の少なくとも30%の部分で実施されることが好ましく、精製表面の少なくとも50%の部分で実施されることがより好ましい。
精製表面のブレードバーおよび/またはブレード溝の高密度化は、対向する両精製表面で、または対向する精製表面の一方のみで、実施されても良い。ブレードバーおよび/またはブレード溝の高密度化は、ロータ精製表面で実施されることが好ましく、この場合、材料供給、および精製表面での水圧容量の形成に、大きな効果が得られる。
図17から図20のブレード素子において、少なくともいくつかのブレード溝18の断面積、または全てのブレード溝の断面積は、図5a、5b、5c、6、7、16に示すような対応する態様で、長手方向であるいは延伸方向で変化しても良い。ブレード溝18の長手方向における断面積の変化は、例えば、図19および図20に示されており、ここでは、ブレードバー17の高さは、長手方向で変化し、これにより、ブレードバー17同士の間のブレード溝18の深さが変化する。
ある場合には、本願に示した特徴が、他の特徴とは無関係に使用されても良い。一方、必要な場合、本願で示した特徴が組み合わされ、異なる組み合わせが提供されても良い。
図面および関連の記載は、本考案の思想を説明することのみを意図するものである。本考案の細部は、請求項の範囲内で変更しても良い。図面および/または記載に含まれる全ての特徴は、ディスク精製機、コーン精製機、円筒状精製機、およびこれらに適用されるブレード素子に使用することができる。ブレード溝の深さは、ブレード溝の延伸方向で変化することが記載されているが、精製表面のブレード溝のいくつかの深さおよび/または幅だけが、ブレード溝の延伸方向で変化することも可能である。この場合、深さおよび/または幅が変化するように配置されたブレード溝は、精製機の両対向する精製表面に配置され、前記ブレード溝は、精製表面が相互に回転した際に遭遇する。
図5a、5b、5c、6、7、8、9、10、11、12、13,14、15a、15b、15c、15d、および16に示した、精製機またはその精製表面、ブレード素子またはその精製表面の各種実施例および特徴は、精製機、ブレード素子、または精製表面において、独立に利用されても良く、ブレード溝の断面積は、一つのブレード溝から隣のブレード溝まで、図17から図20に示すように、精製表面の供給端の方向から排出端の方向まで変化しないように配置されても良い。

Claims (36)

  1. 繊維材料を精製する精製機であって、
    少なくとも一つの第1の精製表面および少なくとも一つの第2の精製表面を有し、両精製表面は、相互に対向して配置され、相互に対して可動であり、
    当該精製機は、少なくとも前記第1もしくは第2の精製表面に、被精製材料を供給する精製表面部、および/または精製された材料を排出する精製表面部、さらには前記被精製材料を研磨する精製表面部を有し、
    該精製表面部の上表面は、ブレードバーと、該ブレードバー同士の間のブレード溝とを有し、
    少なくとも、当該精製機の一つの精製表面の上において、少なくともいくつかのブレード溝の断面積は、前記精製表面の供給端の方向から排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置されることを特徴とする精製機。
  2. 前記ブレード溝の断面積は、前記精製表面の前記供給端の方向から前記排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置され、前記ブレード溝の幅は、前記精製表面の前記供給端の方向から前記排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置されることを特徴とする請求項1に記載の精製機。
  3. 前記ブレード溝の断面積は、前記供給端と前記排出端の間の前記精製表面の少なくとも30%の部分において、前記精製表面の前記供給端の方向から前記排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置されることを特徴とする請求項1または2に記載の精製機。
  4. 前記精製表面は、前記精製表面の前記供給端に少なくとも供給領域を有し、
    前記ブレード溝の断面積は、前記供給領域に後続する前記精製表面の一部において、一つのブレード溝から次のブレード溝まで減少するように配置されることを特徴とする請求項1乃至3のいずれか一つに記載の精製機。
  5. 前記第1の精製表面および前記第2の精製表面の両方において、少なくともいくつかのブレード溝の断面積は、前記ブレード溝の長手方向に変化するように配置されることを特徴とする請求項1乃至4のいずれか一つに記載の精製機。
  6. 前記ブレードバーの幅は、0.5から5mmであり、前記ブレード溝の幅は、0.5から5mmであることを特徴とする請求項1乃至5のいずれか一つに記載の精製機。
  7. 少なくとも前記第1の精製表面は、回転可能に配置され、
    前記第1の精製表面において、前記ブレード溝の深さは、長手方向において増加するように配置され、
    前記第2の精製表面において、前記ブレード溝の深さは、前記第1の精製表面の回転方向において、長手方向において減少するように配置されることを特徴とする請求項1乃至6のいずれか一つに記載の精製機。
  8. 少なくとも前記第1の精製表面は、回転可能に配置され、
    前記第1の精製表面および前記第2の精製表面の両方において、前記ブレード溝の深さは、前記第1の精製表面の回転方向において、長手方向で増加するように配置されることを特徴とする請求項1乃至6のいずれか一つに記載の精製機。
  9. 少なくとも前記第1の精製表面は、回転可能に配置され、
    前記第1の精製表面および前記第2の精製表面の両方は、被精製材料を研磨する前記精製表面部の上表面に、ブレードバーを有し、
    該ブレードバーの少なくともいくつかは、前記被精製材料を供給しおよび/または前記精製された材料を排出する前記精製表面部を、接続するように配置されることを特徴とする請求項1乃至8のいずれか一つに記載の精製機。
  10. 前記第1の精製表面および前記第2の精製表面の両方の、前記被精製材料を供給する前記精製表面部および/または前記精製された材料を排出する前記精製表面部の間に配置された、前記第1の精製表面の回転方向に連続する、前記材料研磨精製表面部において、
    長手方向における前記ブレード溝の深さは、一つおきの研磨精製表面部で増加し、一つおきの研磨精製表面部で減少するように配置されることを特徴とする請求項9に記載の精製機。
  11. 前記被精製材料を供給しおよび/または前記精製された材料を排出する前記精製表面部は、実質的に、前記精製表面の回転方向に配置され、
    前記ブレードバーおよび前記ブレード溝は、少なくともある程度、前記被精製材料を供給しおよび/または前記精製された材料を排出する前記精製表面部に対して横断する方向に配置されることを特徴とする請求項1乃至10のいずれか一つに記載の精製機。
  12. 前記被精製材料を供給しおよび/または前記精製された材料を排出する前記精製表面部は、溝として実施された精製表面部であることを特徴とする請求項1乃至11のいずれか一つに記載の精製機。
  13. 少なくとも、前記回転可能な精製表面において、前記ブレードバーおよび前記ブレード溝は、前記精製表面上の前記被精製材料の通過に対して助長された効果を有するような前記精製表面の直径に対するブレード角で、配置されることを特徴とする請求項1乃至12のいずれか一つに記載の精製機。
  14. 前記ブレードバーおよび前記ブレード溝は、湾曲するように配置されることを特徴とする請求項1乃至13のいずれか一つに記載の精製機。
  15. 前記ブレードバーの曲率半径は、50から300mmであることを特徴とする請求項14に記載の精製機。
  16. 前記ブレード溝の深さは、長手方向において、凹部と凸部を有するウェーブ状に変化するように配置されることを特徴とする請求項1乃至15のいずれか一つに記載の精製機。
  17. 少なくとも前記第1の精製表面は、回転可能に配置され、
    前記第1の精製表面において、前記ブレード溝の60から90%は、長手方向において、前記第1の精製表面の回転方向と同じ方向に増加する断面積を有し、前記ブレード溝の10から40%は、長手方向において、前記第1の精製表面の回転方向と同じ方向に減少する断面積を有し、
    前記第2の精製表面において、前記ブレード溝の80から100%は、長手方向において、前記第1の精製表面の回転方向と同じ方向に減少する断面積を有し、前記ブレード溝の0から20%は、長手方向において、前記第1の精製表面の回転方向と同じ方向に増加する断面積を有することを特徴とする請求項1乃至16のいずれか一つに記載の精製機。
  18. 少なくとも前記第1の精製表面は、回転可能に配置され、
    前記第1の精製表面において、前記ブレード溝の40から80%は、長手方向において、前記第1の精製表面の回転方向と同じ方向に増加する断面積を有し、前記ブレード溝の20から60%は、長手方向において、前記第1の精製表面の回転方向と同じ方向に減少する断面積を有し、
    前記第2の精製表面において、前記ブレード溝の40から80%は、長手方向において、前記第1の精製表面の回転方向と同じ方向に減少する断面積を有し、前記ブレード溝の20から60%は、長手方向において、前記第1の精製表面の回転方向と同じ方向に増加する断面積を有することを特徴とする請求項1乃至16のいずれか一つに記載の精製機。
  19. 繊維材料を精製するための精製機のブレード素子であって、
    被精製材料を研磨する少なくとも一つの精製表面部を有する精製表面を有し、
    前記精製表面部の上表面には、ブレードバーと、該ブレードバー同士の間のブレード溝とが存在し、
    当該ブレード素子において、少なくともいくつかのブレード溝の断面積は、前記精製表面の供給端の方向から排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置されることを特徴とするブレード素子。
  20. 前記ブレード溝の断面積は、前記精製表面の前記供給端の方向から前記排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置され、前記ブレード溝の幅は、前記精製表面の前記供給端の方向から前記排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置されることを特徴とする請求項19に記載のブレード素子。
  21. 前記供給端と前記排出端の間の当該ブレード素子の前記精製表面の少なくとも30%の部分において、前記ブレード溝の断面積は、前記精製表面の前記供給端から前記排出端の方向に、一つのブレード溝から次のブレード溝まで減少するように配置されることを特徴とする請求項19または20に記載のブレード素子。
  22. 前記精製表面は、該精製表面の前記供給端側に、少なくとも供給領域を有し、
    前記ブレード溝の断面積は、前記供給領域に後続する前記精製表面の一部において、一つのブレード溝から次のブレード溝まで減少するように配置されることを特徴とする請求項19乃至21のいずれか一つに記載のブレード素子。
  23. 少なくともいくつかのブレード溝の断面積は、前記ブレード溝の長手方向に変化するように配置されることを特徴とする請求項19乃至22のいずれか一つに記載のブレード素子。
  24. 前記ブレードバーの幅は、0.5から5mmであり、前記ブレード溝の幅は、0.5から5mmであることを特徴とする請求項19乃至23のいずれか一つに記載のブレード素子。
  25. 当該ブレード素子は、前記被精製材料を供給する精製表面部および/または前記精製された材料を排出する精製表面部を有し、
    前記精製表面部の間には、前記被精製材料を研磨する精製表面部があり、
    前記被精製材料を研磨する前記精製表面の上表面の少なくともいくつかのブレード溝は、前記被精製材料を供給しおよび/または前記精製された材料を排出する前記精製表面部同士を接続するように配置されることを特徴とする請求項19乃至24のいずれか一つに記載のブレード素子。
  26. 前記被精製材料を供給する前記精製表面部および/または前記精製された材料を排出する前記精製表面部同士の間に配置される、前記材料研磨精製表面部において、前記ブレード溝の深さは、長手方向において、一つおきの研磨精製表面部で増加し、一つおきの研磨精製表面部で減少するように配置されることを特徴とする請求項25に記載のブレード素子。
  27. 前記被精製材料を供給しおよび/または前記精製された材料を排出する前記精製表面部は、実質的に前記精製表面の回転方向に配置され、
    前記ブレードバーおよび前記ブレード溝は、少なくともある程度、前記被精製材料を供給しおよび/または前記精製された材料を排出する前記精製表面部に対して横断する方向に配置されることを特徴とする請求項19乃至26のいずれか一つに記載のブレード素子。
  28. 前記被精製材料を供給しおよび/または前記精製された材料を排出する前記精製表面部は、溝として実施された精製表面部であることを特徴とする請求項19乃至27のいずれか一つに記載のブレード素子。
  29. 当該ブレード素子が前記精製機に配置された際に、前記ブレードバーおよび前記ブレード溝は、前記精製表面上の前記被精製材料の通過に対して助長された効果を有するような前記精製表面の直径に対するブレード角で、配置されることを特徴とする請求項19乃至28のいずれか一つに記載のブレード素子。
  30. 前記ブレードバーおよび前記ブレード溝は、湾曲するように配置されることを特徴とする請求項19乃至29のいずれか一つに記載のブレード素子。
  31. 前記ブレードバーの曲率半径は、50から300mmであることを特徴とする請求項30に記載のブレード素子。
  32. 前記ブレード溝の深さは、長手方向において、直線的に、または凸部と凹部を有するウェーブ状に変化するように配置されることを特徴とする請求項19乃至31のいずれか一つに記載のブレード素子。
  33. 当該ブレード素子は、前記精製機の前記回転可能な精製表面の少なくとも一部を形成するように配置され、
    当該ブレード素子の前記ブレード溝の60から90%は、長手方向において、前記精製表面の回転方向と同じ方向で増加する断面積を有し、前記ブレード溝の10から40%は、長手方向において、前記精製表面の前記回転方向と同じ方向で減少する断面積を有することを特徴とする請求項19乃至32のいずれか一つに記載のブレード素子。
  34. 当該ブレード素子は、前記精製機の静止精製表面の少なくとも一部を形成するように配置され、
    当該ブレード素子内の前記ブレード溝の80から100%は、長手方向において、前記回転可能な精製表面の回転方向と同じ方向で減少する断面積を有し、前記ブレード溝の0から20%は、長手方向において、前記回転可能な精製表面の回転方向と同じ方向で増加する断面積を有することを特徴とする請求項19乃至32のいずれか一つに記載のブレード素子。
  35. 当該ブレード素子は、前記精製機の前記回転可能な精製表面の少なくとも一部を形成するように配置され、
    当該ブレード素子の前記ブレード溝の40から80%は、長手方向において、前記精製表面の回転方向と同じ方向で増加する断面積を有し、前記ブレード溝の20から60%は、長手方向において、前記精製表面の回転方向と同じ方向で減少する断面積を有することを特徴とする請求項19乃至32のいずれか一つに記載のブレード素子。
  36. 当該ブレード素子は、前記精製機の静止精製表面の少なくとも一部を形成するように配置され、
    当該ブレード素子の前記ブレード溝の40から80%は、長手方向において、前記回転可能な精製表面の回転方向と同じ方向で減少する断面積を有し、前記ブレード溝の20から60%は、長手方向において、前記回転可能な精製表面の回転方向と同じ方向で増加する断面積を有することを特徴とする請求項19乃至32のいずれか一つに記載のブレード素子。
JP2013600099U 2011-01-27 2012-01-26 精製機およびブレード素子 Expired - Lifetime JP3188402U (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20115082 2011-01-27
FI20115082A FI125031B (fi) 2011-01-27 2011-01-27 Jauhin ja teräelementti
PCT/FI2012/050073 WO2012101330A1 (en) 2011-01-27 2012-01-26 Refiner and blade element

Publications (1)

Publication Number Publication Date
JP3188402U true JP3188402U (ja) 2014-01-23

Family

ID=43528567

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013550922A Active JP5926289B2 (ja) 2011-01-27 2012-01-26 精製機およびブレード素子
JP2013600099U Expired - Lifetime JP3188402U (ja) 2011-01-27 2012-01-26 精製機およびブレード素子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013550922A Active JP5926289B2 (ja) 2011-01-27 2012-01-26 精製機およびブレード素子

Country Status (6)

Country Link
US (2) US9222220B2 (ja)
EP (2) EP2668330A4 (ja)
JP (2) JP5926289B2 (ja)
CN (2) CN103339319B (ja)
FI (1) FI125031B (ja)
WO (2) WO2012101330A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507572A (ja) * 2011-01-27 2014-03-27 メッツォ ペーパー インコーポレイテッド 精製機およびブレード素子
JP2022539664A (ja) * 2019-06-28 2022-09-13 インターナショナル・ペーパー・カンパニー 木材繊維を処理するための装置および方法
JP2023522816A (ja) * 2021-04-16 2023-06-01 アンドリッツ インコーポレーテッド 流れ変更リファイナセグメント

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1250623A1 (sv) * 2012-06-13 2013-11-05 Metso Paper Sweden Ab Metod och utrustning för mätning av filtersektorer i skivfilter
US9879361B2 (en) 2012-08-24 2018-01-30 Domtar Paper Company, Llc Surface enhanced pulp fibers, methods of making surface enhanced pulp fibers, products incorporating surface enhanced pulp fibers, and methods of making products incorporating surface enhanced pulp fibers
US9968938B2 (en) 2012-09-17 2018-05-15 Andritz Inc. Refiner plate with gradually changing geometry
US20140110511A1 (en) * 2012-10-18 2014-04-24 Andritz Inc. Refiner plates with short groove segments for refining lignocellulosic material, and methods related thereto
US9605379B2 (en) * 2013-02-01 2017-03-28 Andritz Inc. Cast refiner plate segment with blunt edges and corners for safe handling
CA2920130C (en) * 2013-08-05 2018-07-03 Sharp Kabushiki Kaisha Mill and beverage preparation apparatus including the same
SE538142C2 (sv) 2014-03-05 2016-03-15 Valmet Oy Raffinörsegment och raffinöranordning för utjämning av fiberflöde i en raffinör
CA2948329C (en) 2014-05-07 2022-08-30 University Of Maine System Board Of Trustees High efficiency production of nanofibrillated cellulose
CA2890381C (en) 2014-05-26 2017-07-11 Valmet Technologies, Inc. Blade segment of disc refiner
FI10978U1 (fi) * 2014-05-26 2015-08-26 Valmet Technologies Inc Levyjauhimen teräsegmentti
FI126708B (en) * 2014-06-13 2017-04-13 Valmet Technologies Inc Refiner and leaf element for refiner
FI126625B (en) 2014-06-30 2017-03-15 Valmet Technologies Inc Blade element for refiner, refiner and method of making blade element
FI126263B (en) 2014-10-29 2016-09-15 Valmet Technologies Inc Blade element for refiner and refiner for grinding fibrous material
JP6553956B2 (ja) 2015-06-10 2019-07-31 相川鉄工株式会社 リファイナーの叩解方法及びリファイナー
SE540016E (en) 2015-08-27 2020-11-13 Stora Enso Oyj Method and apparatus for producing microfibrillated cellulose fiber
US11473245B2 (en) 2016-08-01 2022-10-18 Domtar Paper Company Llc Surface enhanced pulp fibers at a substrate surface
JP6839511B2 (ja) * 2016-09-20 2021-03-10 大王製紙株式会社 セルロースナノファイバーの製造装置及びセルロースナノファイバーの製造方法
US11499269B2 (en) 2016-10-18 2022-11-15 Domtar Paper Company Llc Method for production of filler loaded surface enhanced pulp fibers
FI20175426A (fi) 2017-05-11 2018-11-12 Valmet Technologies Oy Teräsegmentti jauhimeen
SE541985C2 (en) * 2017-11-14 2020-01-14 Valmet Oy Refiner segment in a fiber refiner
SE541499C2 (en) * 2017-12-01 2019-10-22 Valmet Oy Refining plate provided with refining bars having edge creating bar cavities
CA3088962A1 (en) 2018-02-05 2019-08-08 Harshad PANDE Paper products and pulps with surface enhanced pulp fibers and increased absorbency, and methods of making same
US11162220B2 (en) * 2018-06-08 2021-11-02 Andritz Inc. Refiner plate segments with anti-lipping feature
AT520181B1 (de) * 2018-07-18 2019-02-15 Ing Michael Jarolim Dipl Vorrichtung und Verfahren zur Behandlung von Fasern
PL3942107T3 (pl) * 2019-03-20 2023-11-06 Billerud Aktiebolag (Publ) Sposób wytwarzania
CA3134990A1 (en) 2019-03-26 2020-10-01 Domtar Paper Company, Llc Paper products subjected to a surface treatment comprising enzyme-treated surface enhanced pulp fibers and methods of making the same
US11745390B2 (en) * 2019-05-01 2023-09-05 Infinical Technologies Llc System for recovery of mixed multi-plastic and natural fiber
EP3786357A1 (en) * 2019-08-28 2021-03-03 Valmet Technologies Oy Blade element pair for a refiner
FI20205288A1 (en) * 2020-03-24 2021-09-25 Valmet Technologies Oy Method and arrangement for producing nanofibrous cellulose
FI129745B (en) * 2021-04-29 2022-08-15 Valmet Technologies Oy BLADE ELEMENT
SE2150585A1 (en) * 2021-05-07 2022-10-18 Valmet Oy Refiner disc
AT524317B1 (de) * 2021-06-08 2022-05-15 Bartelmuss Ing Klaus Abstreifleiste und Bausatz zur Verwendung in einer Anlage zur Erzeugung einer Papierbahn
CN113751128B (zh) * 2021-08-28 2023-05-26 丹东鸭绿江磨片有限公司 一种基体表面凸凹起伏结构、磨片或磨盘及磨浆机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1556925A (en) * 1977-06-16 1979-12-05 Vyzk Ustav Papieru Celulozy Apparatus for the treatment of fibrous suspension by knifeaction
US5476228A (en) 1994-03-07 1995-12-19 Beloit Technologies, Inc. Refiner disk with alternating depth grooves
BR9612150A (pt) * 1995-12-21 1999-07-13 Sunds Defibrator Ind Ab Elemento de refinação
SE511419C2 (sv) * 1997-09-18 1999-09-27 Sunds Defibrator Ind Ab Malskiva för en skivraffinör
FI108052B (fi) * 1998-04-16 2001-11-15 M Real Oyj Jauhinsegmentti
WO2003090931A1 (en) * 2002-04-25 2003-11-06 Durametal Corporation Refiner plates with logarithmic spiral bars
FI119181B (fi) * 2003-06-18 2008-08-29 Metso Paper Inc Jauhin
SE525980C2 (sv) * 2003-10-06 2005-06-07 Metso Paper Inc Malelement
FI121604B (fi) * 2005-12-05 2011-01-31 Metso Paper Inc Jauhinterä
FI122364B (fi) * 2006-01-30 2011-12-30 Metso Paper Inc Jauhin
FI124393B (fi) * 2008-06-19 2014-08-15 Valmet Technologies Inc Jauhin ja menetelmä kuitumaisen materiaalin jauhamiseksi ja teräsegmentti kuitumaisen materiaalin jauhamiseksi tarkoitettuun jauhimeen
DE102008039003A1 (de) * 2008-08-21 2010-02-25 Voith Patent Gmbh Verfahren zur Mahlung von wässrig suspendierten Zellstofffasern sowie Mahlgarnitur zu seiner Durchführung
FI121929B (fi) * 2009-04-03 2011-06-15 Metso Paper Inc Jauhimen jauhinpinta
FI121963B (fi) 2009-07-03 2011-06-30 Metso Paper Inc Jauhin
FI125031B (fi) * 2011-01-27 2015-04-30 Valmet Technologies Inc Jauhin ja teräelementti

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507572A (ja) * 2011-01-27 2014-03-27 メッツォ ペーパー インコーポレイテッド 精製機およびブレード素子
JP2022539664A (ja) * 2019-06-28 2022-09-13 インターナショナル・ペーパー・カンパニー 木材繊維を処理するための装置および方法
JP7482154B2 (ja) 2019-06-28 2024-05-13 インターナショナル・ペーパー・カンパニー 木材繊維を処理するための装置および方法
JP2023522816A (ja) * 2021-04-16 2023-06-01 アンドリッツ インコーポレーテッド 流れ変更リファイナセグメント
JP7385051B2 (ja) 2021-04-16 2023-11-21 アンドリッツ インコーポレーテッド 流れ変更リファイナセグメント

Also Published As

Publication number Publication date
CN103339319A (zh) 2013-10-02
JP2014507572A (ja) 2014-03-27
FI125031B (fi) 2015-04-30
EP2668330A4 (en) 2014-01-01
US9133579B2 (en) 2015-09-15
JP5926289B2 (ja) 2016-05-25
CN103339319B (zh) 2016-08-17
EP2668331A4 (en) 2013-12-04
CN203668750U (zh) 2014-06-25
FI20115082A0 (fi) 2011-01-27
US20130306770A1 (en) 2013-11-21
EP2668330A1 (en) 2013-12-04
US20130306769A1 (en) 2013-11-21
EP2668331B1 (en) 2016-01-20
WO2012101330A1 (en) 2012-08-02
FI20115082L (fi) 2012-07-28
FI20115082A (fi) 2012-07-28
WO2012101331A1 (en) 2012-08-02
US9222220B2 (en) 2015-12-29
EP2668331A1 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP3188402U (ja) 精製機およびブレード素子
US10337145B2 (en) Stator refiner plate element having curved bars and serrated leading edges
JP5202104B2 (ja) 蒸気流路を有するリファイナープレートおよびディスクリファイナーからの逆流蒸気を抜き出す方法
US7913942B2 (en) Refiner
CN101605938B (zh) 弯曲的磨条上具有凸凹不平的前侧壁的机械磨浆机磨片和设计磨片的方法
JP4685020B2 (ja) 精製装置の精製面とブレード扇形部分
US8573522B2 (en) Refiner and method for refining fibrous material
RU2594521C2 (ru) Пластинчатый элемент конического роторного рафинера, имеющий криволинейные ножи и зазубренные ведущие края
US9222219B2 (en) Blade element
CN102378840A (zh) 精磨机的精磨表面
FI126263B (en) Blade element for refiner and refiner for grinding fibrous material
NZ617265B (en) Stator Refiner Plate Element Having Curved Bars and Serrated Leading Edges

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3188402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term