JP3161311B2 - RTD circuit - Google Patents

RTD circuit

Info

Publication number
JP3161311B2
JP3161311B2 JP33160195A JP33160195A JP3161311B2 JP 3161311 B2 JP3161311 B2 JP 3161311B2 JP 33160195 A JP33160195 A JP 33160195A JP 33160195 A JP33160195 A JP 33160195A JP 3161311 B2 JP3161311 B2 JP 3161311B2
Authority
JP
Japan
Prior art keywords
terminal
switch
resistance
terminals
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33160195A
Other languages
Japanese (ja)
Other versions
JPH09170953A (en
Inventor
幸二 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP33160195A priority Critical patent/JP3161311B2/en
Publication of JPH09170953A publication Critical patent/JPH09170953A/en
Application granted granted Critical
Publication of JP3161311B2 publication Critical patent/JP3161311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、測温抵抗体回路に関す
るものであり、更に詳しくはターミナルを増設若しくは
減少した場合に発生する基板上の配線抵抗による誤差の
影響を軽減した測温抵抗体回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance thermometer circuit and, more particularly, to a resistance thermometer circuit in which the influence of an error caused by wiring resistance on a substrate when a terminal is added or reduced is reduced. It is related to the circuit.

【0002】[0002]

【従来の技術】図3は従来の測温抵抗体回路において、
配線抵抗体Rtのリード線の影響を除去した要部を示す
回路図である。図において、Rtは3端子A,B,bを
有する測温抵抗体であり、端子Aには基準電流Iを加え
る定電流源CSが接続され、端子bは基準抵抗Rcを介
して共通電位点に接続されている。
FIG. 3 shows a conventional resistance thermometer circuit.
FIG. 9 is a circuit diagram showing a main part of the wiring resistor Rt from which the influence of the lead wire has been removed. In the figure, Rt is a resistance thermometer having three terminals A, B, and b. A constant current source CS for applying a reference current I is connected to the terminal A, and a terminal b is connected to a common potential point via a reference resistor Rc. It is connected to the.

【0003】OP1〜OP3はそれぞれ演算増幅器であ
る。これらの増幅器のうちOP1の非反転入力端子には
測温抵抗体Rtの端子Aが接続され、反転入力端子には
抵抗R 1を介して測温抵抗体Rtの端子bが接続される
とともに抵抗R3を介して演算増幅器OP1の出力端子が
接続されている。演算増幅器OP2の非反転入力端子に
は測温抵抗体Rtの端子bが接続され、反転入力端子に
は抵抗R2を介して測温抵抗体Rtの端子bが接続され
るとともに抵抗R4を介して演算増幅器OP2の出力端子
が接続されている。
[0003] OP1~ OPThreeAre operational amplifiers
You. OP of these amplifiers1The non-inverting input terminal of
The terminal A of the resistance bulb Rt is connected, and the inverting input terminal is
Resistance R 1Is connected to the terminal b of the resistance bulb Rt
With resistance RThreeOperational amplifier OP1Output terminal
It is connected. Operational amplifier OPTwoTo the non-inverting input terminal of
Is connected to the terminal b of the resistance thermometer Rt, and is connected to the inverting input terminal.
Is the resistance RTwoIs connected to the terminal b of the resistance bulb Rt
And resistance RFourOperational amplifier OPTwoOutput terminal
Is connected.

【0004】演算増幅器OP3の非反転入力端子には測
温抵抗体Rtの端子Bが接続され、反転入力端子には抵
抗R5を介して演算増幅器OP1の出力端子が接続される
とともに抵抗R6を介して演算増幅器OP2の出力端子が
接続されている。更にこの演算増幅器OP3の反転入力
端子には抵抗R7を介して演算増幅器OP3の出力端子が
接続されるとともに、このOP3の出力端子には出力端
子Eoutが接続されている。
[0004] calculation to the non-inverting input terminal of the amplifier OP 3 is connected the terminal B of the RTD Rt, inverted input terminal resistor together with the output terminal of the operational amplifier OP 1 via the resistor R 5 is connected output terminal of the operational amplifier OP 2 through R 6 are connected. Furthermore with the output terminal of the operational amplifier OP 3 is connected through a resistor R 7 to the inverting input terminal of the operational amplifier OP 3, the output terminal E out is connected to the output terminal of the OP 3.

【0005】このような構成において、R1=R2=Ra
とし、R3=R4=Rbとして抵抗値rの影響を除去出来
る条件を求めることにより、 Rb=Ra+2Rc になり、例えばRc=100とすると、一例としてR1
2=9.8kΩ、R3=R4=R5=R6=10kΩが求
められる。なお、R7=5kΩとする。その場合の出力
電圧Eoutは、 Eout=I(Rt−Rc) となり、測温抵抗体Rtのリード線の抵抗値rの影響を
除去することが出来る。
In such a configuration, R 1 = R 2 = R a
By obtaining a condition that can eliminate the influence of the resistance value r as R 3 = R 4 = R b , R b = R a + 2R c . For example, if R c = 100, as an example, R 1 =
R 2 = 9.8 kΩ and R 3 = R 4 = R 5 = R 6 = 10 kΩ are required. Note that R 7 = 5 kΩ. In this case, the output voltage E out becomes E out = I (R t −R c ), and the influence of the resistance value r of the lead wire of the resistance bulb Rt can be eliminated.

【0006】[0006]

【発明が解決しようとする課題】ところで、記録装置等
で測温抵抗体回路を用いて複数点の測定を行うような場
合、ターミナルは10チャンネル程度が1つのターミナ
ルに組み込まれており、測定対象の数によって例えば一
台の測定装置に1〜3個のターミナルが取付可能とされ
ている。このような記録装置が工場から出荷される場
合、はじめの測定チャンネル仕様が10チャンネル以下
の場合は1つのターミナルが取付られ、11〜20チャ
ンネルの測定を行う場合は2つのターミナルが、21〜
30チャンネルの測定を行う場合は3つのターミナルが
取付られる。
When a plurality of points are measured using a resistance temperature detector circuit in a recording device or the like, about ten channels are incorporated in one terminal. Depending on the number, for example, one to three terminals can be attached to one measuring device. When such a recording apparatus is shipped from a factory, one terminal is attached if the initial measurement channel specification is 10 channels or less, and two terminals are 21 to 21 to perform measurement of 11 to 20 channels.
When measuring 30 channels, three terminals are attached.

【0007】図4は1〜20チャンネルの測定仕様の場
合の従来の要部結線例を示すものであり、矢印で示す部
分を境にして主及び従の2つのターミナルが取付られて
いるものとする。なお、図3で示す従来例と同一要素に
は同一符号を付している。また、演算回路11はターミ
ナルの増減を認識する機能を有しており、取付けられた
ターミナルに応じて入力スキャナ12のスキャニングを
行うようなプログラムが格納されているものとする。
FIG. 4 shows an example of conventional connection of main parts in the case of measurement specifications of 1 to 20 channels, in which two terminals, main and sub, are attached at the part indicated by the arrow. I do. Note that the same elements as those of the conventional example shown in FIG. The arithmetic circuit 11 has a function of recognizing an increase or decrease in the number of terminals, and stores a program for scanning the input scanner 12 in accordance with the attached terminal.

【0008】13は各測温抵抗体のb端子に接続された
配線であり、その配線抵抗値は無視出来るものとする。
SW1は第1スイッチで、一端は演算回路に接続され、
他端は測温抵抗体Rtのb端子に接続されている。SW
2は第2スイッチで、一端は演算回路及び共通電位点に
接続され、他端は測温抵抗体Rtのb端子に接続されて
いる。
Reference numeral 13 denotes a wiring connected to the terminal "b" of each of the resistance temperature detectors, and the wiring resistance is assumed to be negligible.
SW 1 is a first switch, one end of which is connected to an arithmetic circuit,
The other end is connected to the terminal b of the resistance bulb Rt. SW
Reference numeral 2 denotes a second switch, one end of which is connected to the arithmetic circuit and the common potential point, and the other end of which is connected to the terminal b of the resistance bulb Rt.

【0009】そして、測定チャンネルが1チャンネル〜
10チャンネルであれば図3で説明したように各測温抵
抗体Rtのリード線の抵抗値rの影響は除去される。そ
して、出荷時の校正ではRtの基準値を入力して、その
校正値を装置に内蔵されたEEPROMに書き込んで出
荷している。
[0009] The measurement channel is one channel
In the case of ten channels, the influence of the resistance value r of the lead wire of each resistance bulb Rt is eliminated as described with reference to FIG. In the calibration at the time of shipment, a reference value of Rt is input, and the calibration value is written in an EEPROM built in the apparatus before shipment.

【0010】次に図示の様に11〜20チャンネル測定
のために従ターミナルを組みつけた場合は、共通電位点
から流入する電流Iは接点eにおいて、増設した従ター
ミナルのb’端子を経て流れる電流I1と主ターミナル
のb端子側に流れる電流I2に分岐して流れることにな
る。図5(a),(b)はb端子のみに着目した場合の
電流Iの流れを示すもので(a)図は(b)の様に展開
することができる。
Next, when a slave terminal is assembled for measurement of channels 11 to 20 as shown in the figure, a current I flowing from a common potential point flows through the b 'terminal of the added slave terminal at the contact e. The current I 1 and the current I 2 flowing to the terminal b of the main terminal are branched and flow. FIGS. 5A and 5B show the flow of the current I when focusing only on the b terminal, and FIG. 5A can be developed as shown in FIG.

【0011】即ち、共通電位点−b端子間の電流経路は
従ターミナルのb’端子からの配線が接続されたe点で
2系路となる。その結果、1〜10チャンネルの場合は
b端子の電位に基づいて測定を行っていたものが、11
〜20チャンネルの従ターミナルを増設したことにより
Vb1点の電位(Vb1=r3-1・I+r2-1・I)により
演算が行われる。従って主ターミナルだけの場合と従タ
ーミナルを増設した場合では校正値が異なったものとな
り、21〜30チャンネルの測定をするために従ターミ
ナルをもう一つ増設し合計3個のターミナルとした場合
も3個めのリード線の抵抗が加わるので異なった校正値
となる。これらの校正値は工場出荷の段階で1〜3ター
ミナルの仕様に合わせた校正値がEEPROMに書き込
んで出荷される。
That is, the current path between the common potential point and the terminal b becomes a two-system path at the point e where the wiring from the terminal b 'of the slave terminal is connected. As a result, in the case of channels 1 to 10, the measurement was performed based on the potential of the terminal b.
Calculating the potential of Vb 1 point (Vb 1 = r 3-1 · I + r 2-1 · I) is carried out by installing additional 20 channels of the slave terminals. Therefore, the calibration values are different between the case where only the main terminal is used and the case where the slave terminal is added. Therefore, even if another slave terminal is added to measure 21 to 30 channels and a total of three terminals are used, the calibration value becomes 3 Since the resistance of the second lead wire is added, different calibration values are obtained. At the stage of shipment from the factory, these calibration values are written to the EEPROM in accordance with the specifications of terminals 1 to 3, and then shipped.

【0012】ところで、記録装置に接続される測定チャ
ンネルの数ははじめの仕様に限定されず、実際の使用時
には測定点の数によってターミナルの数が増減されるこ
とがある。例えば、はじめの仕様が30チャンネルで実
際の使用時には20チャンネルになった場合、従ターミ
ナルを一つ取外すことが行われるが、その様な場合も共
通電位点から流れる電流経路が変わるのでb点の電位や
前述のVb1点の電位が変わって校正値とのずれを生じ
測定誤差となる。本発明はターミナルの増減があっても
測定誤差の生じない測温抵抗体回路を実現することを目
的とする。
Incidentally, the number of measurement channels connected to the recording apparatus is not limited to the initial specification, and the number of terminals may be increased or decreased depending on the number of measurement points in actual use. For example, when the initial specification is 30 channels and the actual use is 20 channels, one slave terminal is removed. In such a case, the current path flowing from the common potential point changes, so that the point b The potential or the potential at the Vb 1 point changes, causing a deviation from the calibration value, resulting in a measurement error. SUMMARY OF THE INVENTION It is an object of the present invention to realize a resistance thermometer circuit in which a measurement error does not occur even if the number of terminals increases or decreases.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に本発明は、3端子A,B,bを有する測温抵抗体Rt
の複数個が並列に接続されたターミナルと、前記測温抵
抗体Rtのそれぞれの端子Aに共通に接続された電流源
と、前記b端子に接続される一方の配線が第1スイッチ
を介して演算回路に接続され、他方の端子が第2スイッ
チを介して演算回路及び抵抗値が既知の基準抵抗Rcを
介して共通電位点に接続された測温抵抗体回路におい
て、前記ターミナルの一つを主ターミナルとして複数個
の従ターミナルを増減させる際は、前記従ターミナルの
b端子と前記第1スイッチと演算回路の間を結ぶ配線間
に第3スイッチを設け、前記第1スイッチと第3スイッ
チをスキャニングのタイミングに合わせて切換えるよう
にしたことを特徴とするものである。
In order to achieve this object, the present invention provides a resistance thermometer Rt having three terminals A, B and b.
Are connected in parallel to each other, a current source commonly connected to the respective terminals A of the resistance thermometer Rt, and one wiring connected to the terminal b is connected via a first switch. In a temperature measuring resistor circuit, the other terminal of which is connected to an arithmetic circuit and the other terminal is connected to a common potential point via a second switch and an arithmetic circuit and a known resistance value Rc, one of the terminals is connected to the other terminal. When increasing or decreasing a plurality of slave terminals as a main terminal, a third switch is provided between a terminal b of the slave terminal, a wiring connecting the first switch and an arithmetic circuit, and the first switch and the third switch are connected. The switching is performed in accordance with the scanning timing.

【0014】[0014]

【作用】ターミナル毎にb端子に設けられた第1スイッ
チはスキャニングのタイミングに合わせて切換えられ
る。従ってターミナルのb端子はそれぞれ独立に機能す
ることになりターミナルの増減によるリード線抵抗の増
減の影響を受けない。以下、実施例に基づき詳細に説明
する。
The first switch provided at the terminal b for each terminal is switched in accordance with the scanning timing. Therefore, the b terminals of the terminals function independently of each other, and are not affected by the increase or decrease of the lead wire resistance due to the increase or decrease of the terminals. Hereinafter, a detailed description will be given based on embodiments.

【0015】[0015]

【発明の実施の形態】図1は本発明の測温抵抗体回路の
概要の構成を示す構成図である。図1において、図4の
従来例と異なる部分は、従来は従ターミナルのb’端子
と第1スイッチSW1とb端子の間を接続していた配線
を、演算回路と第1スイッチ間とb’端子を結ぶ配線と
し、その配線間に第3スイッチSW3を設けたものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing a schematic configuration of a resistance temperature detector circuit according to the present invention. In Figure 1, a conventional example different parts of FIG. 4 is conventionally a wire that was connected between the the sub terminal b 'terminal and the first switch SW 1 and the terminal b, and between the arithmetic circuit and the first switch b and wiring connecting the 'terminal, in which the third switch SW 3 is provided between the wiring.

【0016】上記の構成において、演算回路11は1〜
10チャンネルのスキャニングを行っているときは、S
1,SW2をオンとしSW3はオフとして信号を取り込
み、11〜20チャンネルのスキャニングを行っている
ときは、SW1をオフSW2,SW3をオンとして信号を
取り込む。
In the above configuration, the arithmetic circuit 11
When scanning 10 channels, S
W 1, SW 2 ON and switching SW 3 takes in the signal as an off, when doing scanning 11-20 channels, takes in the signal SW 1 turns on the OFF SW 2, SW 3.

【0017】図2はb端子のみに着目した場合にSW1
をオフSW2,SW3をオンとして11〜20チャンネル
の信号を取り込んでいる状態を示している。即ち共通電
位点からの流入電流はe点で分岐せずにb’端子側のみ
に流れることになる。このことは各ターミナルが独立
し、ターミナル毎に図3で説明した従来例と同様な動作
をすることになり、ターミナルの増減にかかわらず主タ
ーミナルだけで校正した値をそのまま使用できることと
なる。なお、実施例では主,従2つのターミナルを用い
た場合について説明したがターミナルの数は装置の処理
能力に応じて更に増減することができる。
FIG. 2 shows SW 1 when attention is paid only to the terminal b.
Shows a state in which have taken up signal 11 to 20 channels off SW 2, SW 3 turns on the. That is, the inflow current from the common potential point flows only to the b ′ terminal side without branching at the point e. This means that each terminal is independent and performs the same operation as the conventional example described with reference to FIG. 3 for each terminal, so that the value calibrated only by the main terminal can be used as it is regardless of the increase or decrease of the terminals. In the embodiment, the case where two terminals are used is described. However, the number of terminals can be further increased or decreased according to the processing capacity of the apparatus.

【0018】[0018]

【発明の効果】以上説明したように本発明によれば、タ
ーミナルの一つを主ターミナルとして複数個の従ターミ
ナルを増減させるに際し、従ターミナルのb端子と第1
スイッチと演算回路の間を結ぶ配線間に第3スイッチを
設け、第1スイッチと第3スイッチをスキャニングのタ
イミングに合わせて切換えるようにしたので、ターミナ
ルを増設若しくは減少した場合に発生する配線抵抗によ
る誤差の影響を軽減した測温抵抗体回路を実現すること
ができる。
As described above, according to the present invention, when one of the terminals is used as a main terminal and a plurality of sub-terminals are increased or decreased, the terminal b of the sub-terminal is connected to the first terminal.
A third switch is provided between the switches and the wiring connecting the arithmetic circuits, and the first switch and the third switch are switched in accordance with the scanning timing. It is possible to realize a resistance temperature detector circuit in which the influence of errors is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測温抵抗体回路の一実施例の要部構成
説明図である。
FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of a resistance temperature detector circuit of the present invention.

【図2】本発明の測温抵抗体回路のb端子に着目した共
通電位点からの流入電流の状態を示す図である。
FIG. 2 is a diagram showing a state of an inflow current from a common potential point focusing on a terminal b of the resistance temperature detector circuit of the present invention.

【図3】配線抵抗による誤差の影響を軽減した回路の説
明図である。
FIG. 3 is an explanatory diagram of a circuit in which the influence of an error due to wiring resistance is reduced.

【図4】従来の測温抵抗体回路の要部構成説明図であ
る。
FIG. 4 is an explanatory diagram of a main part configuration of a conventional resistance temperature detector circuit.

【図5】従来の測温抵抗体回路のb端子に着目した共通
電位点からの流入電流の状態を示す図である。
FIG. 5 is a diagram showing a state of an inflow current from a common potential point focusing on a terminal b of a conventional resistance temperature detector circuit.

【符号の説明】[Explanation of symbols]

Rt 測温抵抗体 Rc 基準抵抗 CS 定電流源 SW スイッチ 11 演算回路 12 入力スキャナ(リレー) 13 低抵抗配線 Rt RTD Rc Reference resistance CS Constant current source SW switch 11 Operation circuit 12 Input scanner (relay) 13 Low resistance wiring

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01K 7/20 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01K 7/20

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】3端子A,B,bを有する測温抵抗体Rt
の複数個が並列に接続されたターミナルと、 前記測温抵抗体Rtのそれぞれの端子Aに共通に接続さ
れた電流源と、 前記b端子に接続される一方の配線が第1スイッチを介
して演算回路に接続され、他方の端子が第2スイッチを
介して演算回路及び抵抗値が既知の基準抵抗Rcを介し
て共通電位点に接続された測温抵抗体回路において、 前記ターミナルの一つを主ターミナルとして複数個の従
ターミナルを増減させる際は、前記従ターミナルのb端
子と前記第1スイッチと演算回路の間を結ぶ配線間に第
3スイッチを設け、前記第1スイッチと第3スイッチを
スキャニングのタイミングに合わせて切換えるようにし
たことを特徴とする測温抵抗体回路。
1. A resistance thermometer Rt having three terminals A, B and b.
A plurality of terminals connected in parallel, a current source commonly connected to each terminal A of the resistance temperature detector Rt, and one of the wires connected to the terminal b is connected via a first switch. A temperature measuring resistor circuit connected to an arithmetic circuit, the other terminal of which is connected to the arithmetic circuit via a second switch and a common potential point via a known reference resistance Rc, When increasing or decreasing a plurality of slave terminals as a main terminal, a third switch is provided between a terminal b of the slave terminal, a wiring connecting the first switch and an arithmetic circuit, and the first switch and the third switch are connected. A resistance temperature detector circuit characterized in that switching is performed in accordance with scanning timing.
JP33160195A 1995-12-20 1995-12-20 RTD circuit Expired - Fee Related JP3161311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33160195A JP3161311B2 (en) 1995-12-20 1995-12-20 RTD circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33160195A JP3161311B2 (en) 1995-12-20 1995-12-20 RTD circuit

Publications (2)

Publication Number Publication Date
JPH09170953A JPH09170953A (en) 1997-06-30
JP3161311B2 true JP3161311B2 (en) 2001-04-25

Family

ID=18245484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33160195A Expired - Fee Related JP3161311B2 (en) 1995-12-20 1995-12-20 RTD circuit

Country Status (1)

Country Link
JP (1) JP3161311B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080850B2 (en) * 2007-04-24 2012-11-21 パナソニック株式会社 Infrared detector
JP5096783B2 (en) * 2007-04-24 2012-12-12 パナソニック株式会社 Infrared detector
KR101662354B1 (en) * 2012-10-05 2016-10-04 엘에스산전 주식회사 Apparatus for Multi Channel Resistance Measurement using Constant Current Source

Also Published As

Publication number Publication date
JPH09170953A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP5081239B2 (en) Temperature measuring apparatus and measuring method
US6768318B2 (en) Signal conditioning circuit for resistive sensors
JPH11174113A (en) Circuit for measuring current of ic tester based on impressed voltage
JPH10253701A (en) Semiconductor tester
JP3161311B2 (en) RTD circuit
US4309653A (en) Elimination of line impedance error in a three-wire probe interface
JPH09105681A (en) Temperature measuring circuit
JP4735250B2 (en) Measuring device
JP3075072B2 (en) Temperature converter
US10897234B2 (en) Fully differential operational amplifier common mode current sensing feedback
JP2001249150A (en) Resistance value measuring apparatus
JP3589641B2 (en) AC measuring device
JPS626171B2 (en)
JP3937364B2 (en) Voltage / resistance generator
JP2512934B2 (en) Temperature measurement circuit
JPH0752622Y2 (en) Voltage applied current measuring instrument
JPS5825353Y2 (en) Micro resistance change measuring device
JP3158862B2 (en) RTD circuit
JP2002084151A (en) Physical quantity detector
JP2595858B2 (en) Temperature measurement circuit
JPS6221958Y2 (en)
JPS625291B2 (en)
JPS6244350Y2 (en)
JPH063463B2 (en) Electricity detector for signal source
JPS6143650B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees