JP4735250B2 - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
JP4735250B2
JP4735250B2 JP2005377081A JP2005377081A JP4735250B2 JP 4735250 B2 JP4735250 B2 JP 4735250B2 JP 2005377081 A JP2005377081 A JP 2005377081A JP 2005377081 A JP2005377081 A JP 2005377081A JP 4735250 B2 JP4735250 B2 JP 4735250B2
Authority
JP
Japan
Prior art keywords
conductor
current
voltage
current source
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005377081A
Other languages
Japanese (ja)
Other versions
JP2007178257A (en
Inventor
孝 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2005377081A priority Critical patent/JP4735250B2/en
Publication of JP2007178257A publication Critical patent/JP2007178257A/en
Application granted granted Critical
Publication of JP4735250B2 publication Critical patent/JP4735250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被測定物に定電流を流し、この被測定物両端に発生する電圧を測定することによりこの被測定物の物理量を計測する計測装置において、被測定物と計測装置の接続をチェックすることができる計測装置に関するものである。   The present invention checks a connection between a measurement object and a measurement device in a measurement device that measures a physical quantity of the measurement object by passing a constant current through the measurement object and measuring a voltage generated at both ends of the measurement object. It is related with the measuring device which can do.

図3に4端子接続により被測定物の抵抗を計測する計測装置の構成を示す。図3において、抵抗を計測する被測定物10の一端は第1の導線L1により端子HFに、第2の導線L2により端子HSに接続される。また、被測定物10の他端は第3の導線L3により端子LSに、第4の導線L4により端子LFに接続される。R1〜R4は第1〜第4の導線L1〜L4の配線抵抗と接触抵抗の合成抵抗を表している。   FIG. 3 shows a configuration of a measuring apparatus that measures the resistance of the object to be measured by connecting four terminals. In FIG. 3, one end of a device under test 10 for measuring resistance is connected to a terminal HF by a first conducting wire L1 and to a terminal HS by a second conducting wire L2. The other end of the device under test 10 is connected to the terminal LS by the third conductor L3 and to the terminal LF by the fourth conductor L4. R1 to R4 represent the combined resistance of the wiring resistance and contact resistance of the first to fourth conducting wires L1 to L4.

定電流源11の一端はスイッチSW1、SW2を介して端子HF、LSに、他端はスイッチSW1、SW2を介して端子HS、LFに接続される。定電流源12の両端はスイッチSW3を介して端子HF、LFに接続される。   One end of the constant current source 11 is connected to the terminals HF and LS via the switches SW1 and SW2, and the other end is connected to the terminals HS and LF via the switches SW1 and SW2. Both ends of the constant current source 12 are connected to the terminals HF and LF via the switch SW3.

2入力増幅器13の入力端子は端子HS、LSに接続され、その出力はAD変換器14に入力される。このAD変換器14によって変換されたデジタル値はマイクロプロセッサ15に入力される。   The input terminal of the 2-input amplifier 13 is connected to the terminals HS and LS, and the output thereof is input to the AD converter 14. The digital value converted by the AD converter 14 is input to the microprocessor 15.

2入力増幅器16の一方の入力端子には、スイッチSW4を介して端子LSが、スイッチSW5を介して端子HFが接続される。また、他方の入力端子には、スイッチSW4を介して端子LFが、スイッチSW5を介して端子HSが接続される。増幅器16の出力は閾値電圧18が接続されたコンパレータ17に入力され、コンパレータ17の出力はマイクロプロセッサ15に入力される。   One input terminal of the two-input amplifier 16 is connected to the terminal LS via the switch SW4 and to the terminal HF via the switch SW5. The other input terminal is connected to the terminal LF via the switch SW4 and to the terminal HS via the switch SW5. The output of the amplifier 16 is input to the comparator 17 to which the threshold voltage 18 is connected, and the output of the comparator 17 is input to the microprocessor 15.

このような構成において、被測定物10の抵抗を計測するときは、スイッチSW3をオン、SW1、SW2、SW4、SW5をオフにする。定電流源12の出力電流Isは端子HFから被測定物10を流れ、端子LFに流れる。被測定物10両端の電圧は増幅器13で増幅され、AD変換器14でデジタル値に変換されてマイクロプロセッサ15に入力される。マイクロプロセッサ15は、この電圧と電流Isの値から被測定物10の抵抗値を演算する。   In such a configuration, when the resistance of the DUT 10 is measured, the switch SW3 is turned on, and SW1, SW2, SW4, and SW5 are turned off. The output current Is of the constant current source 12 flows from the terminal HF to the device under test 10 and then flows to the terminal LF. The voltage across the DUT 10 is amplified by the amplifier 13, converted to a digital value by the AD converter 14, and input to the microprocessor 15. The microprocessor 15 calculates the resistance value of the device under test 10 from the values of the voltage and current Is.

接続をチェックするときは、H側とL側を順番にチェックする。H側をチェックするときは、スイッチSW1とSW5をオン、SW2〜SW4をオフにする。定電流源11の出力電流Icは、経路L5に示すように端子HL→第1の導線L1→第2の導線L2→端子HSに流れ、増幅器16にはIc×(R1+R2)の電圧が入力される。この電圧は増幅器16で増幅され、コンパレータ17で閾値電圧18と比較される。L側を測定するときは、スイッチSW2、SW4をオン、SW1、SW3、SW5をオフにする。定電流源11の出力電流Icは端子LS→第3の導線L3→第4の導線L4→端子LF間を流れ、Ic×(R3+R4)を増幅した電圧と閾値電圧18がコンパレータ17で比較される。   When checking the connection, check the H side and the L side in turn. When checking the H side, the switches SW1 and SW5 are turned on, and SW2 to SW4 are turned off. The output current Ic of the constant current source 11 flows from the terminal HL → the first conducting wire L1 → the second conducting wire L2 → the terminal HS as indicated by a path L5, and the amplifier 16 receives a voltage of Ic × (R1 + R2). The This voltage is amplified by the amplifier 16 and compared with the threshold voltage 18 by the comparator 17. When measuring the L side, the switches SW2 and SW4 are turned on, and SW1, SW3, and SW5 are turned off. The output current Ic of the constant current source 11 flows between the terminal LS → the third conductor L3 → the fourth conductor L4 → the terminal LF, and a voltage obtained by amplifying Ic × (R3 + R4) and the threshold voltage 18 are compared by the comparator 17. .

抵抗(R1+R2)または(R3+R4)が大きくなると、コンパレータ17に入力される電圧も大きくなり、ある値(=Rc)でコンパレータ17の出力が反転する。マイクロプロセッサ15は、この反転によって接続不良を知ることができる。   When the resistance (R1 + R2) or (R3 + R4) increases, the voltage input to the comparator 17 also increases, and the output of the comparator 17 is inverted at a certain value (= Rc). The microprocessor 15 can know the connection failure by this inversion.

特許文献1には、同様に接続をチェックできる計測装置が記載されている。この計測装置を図4を用いて説明する。なお、図3と同じ要素には同一符号を付し、説明を省略する。   Patent Document 1 describes a measuring device that can similarly check connection. This measuring apparatus will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same element as FIG. 3, and description is abbreviate | omitted.

図4において、20は200mAと0.5mAの電流を切り替えて出力することができる定電流源である。また、定電流源11の出力電流は50mAであるとする。被測定物10の抵抗値を計測するときは、定電流源20の出力電流を200mAに設定し、スイッチSW1とSW2をオフにする。被測定物10には定電流源20の出力電流が流れ、その両端の電圧は増幅器13で増幅され、デジタル値に変換される。   In FIG. 4, reference numeral 20 denotes a constant current source capable of switching and outputting a current of 200 mA and 0.5 mA. Further, the output current of the constant current source 11 is assumed to be 50 mA. When measuring the resistance value of the DUT 10, the output current of the constant current source 20 is set to 200 mA, and the switches SW1 and SW2 are turned off. An output current of the constant current source 20 flows through the device under test 10, and the voltage at both ends thereof is amplified by the amplifier 13 and converted into a digital value.

接続チェックを行うときは、定電流源20の出力電流を0.5mAに設定する。H側の接続をチェックするときは、スイッチSW1をオン、SW2をオフにする。定電流源11の出力電流は第1の導線L1、第2の導線L2を流れ、このときの電圧降下はコンパレータ17で比較されて、接続がチェックされる。このチェック結果はマイクロプロセッサ15に入力され、信号出力21として外部に送信され、またディスプレイ22に表示される。   When performing the connection check, the output current of the constant current source 20 is set to 0.5 mA. When checking the connection on the H side, switch SW1 is turned on and SW2 is turned off. The output current of the constant current source 11 flows through the first conductor L1 and the second conductor L2, and the voltage drop at this time is compared by the comparator 17 to check the connection. The check result is input to the microprocessor 15, transmitted to the outside as a signal output 21, and displayed on the display 22.

L側の接続をチェックするときは、スイッチSW1をオフ、SW2をオンにする。定電流源11の出力電流は第3の導線L3、第4の導線L4を流れ、このときの電圧降下はコンパレータ17で比較されて、接続がチェックされる。なお、R1、R4には定電流源20の出力電流が流れるのでこの分が誤差になるが、接続チェックのためには高精度の測定は必要がないので、定電流源20の出力電流を定電流源11のそれに比べて小さな値にすることにより、実用上問題になることはない。
特開2000−111593号公報
When checking the connection on the L side, the switch SW1 is turned off and the switch SW2 is turned on. The output current of the constant current source 11 flows through the third conductor L3 and the fourth conductor L4, and the voltage drop at this time is compared by the comparator 17 to check the connection. Since the output current of the constant current source 20 flows through R1 and R4, this amount becomes an error. However, since high-precision measurement is not necessary for the connection check, the output current of the constant current source 20 is fixed. By making the value smaller than that of the current source 11, there is no practical problem.
JP 2000-111153 A

しかし、このような計測装置には次のような課題があった。図3の計測装置は接続チェック時に定電流源12を切り離さなければならず、そのためのスイッチが必要になり、構成が複雑になるという課題があった。また、図4の計測装置では、定電流源20として出力電流を切り替えることができる定電流源が必要であり、やはり構成が複雑になるという課題があった。   However, such a measuring device has the following problems. The measuring device of FIG. 3 has a problem that the constant current source 12 must be disconnected at the time of connection check, and a switch for that purpose is required, and the configuration becomes complicated. 4 requires a constant current source capable of switching the output current as the constant current source 20, and there is a problem that the configuration becomes complicated.

また、いずれの計測装置も接続が良か不良かのどちらかの結果しか得られないために、どの程度接触抵抗が増大したかを知ることが出来ないという課題もあった。   In addition, since any of the measurement devices can only obtain a result of either good connection or bad connection, there is a problem that it is impossible to know how much the contact resistance has increased.

従って本発明の目的は、構成が簡単でかつ接触抵抗の値をチェックすることが出来る計測装置を提供することにある。   Accordingly, an object of the present invention is to provide a measuring apparatus that has a simple configuration and can check the value of contact resistance.

このような課題を達成するために、本発明のうち請求項1記載の発明は、
被測定物の一端に第1および第2の導線を接続し、前記被測定物の他端に第3および第4の導線を接続して、前記第1および第4の導線を用いて前記被測定物に所定の電流を供給し、前記第2および第3の導線を用いて前記被測定物両端の電圧を測定して、これら電圧および電流から前記被測定物の物理量を測定する計測装置において、
前記第1および第4の導線を用いて、前記被測定物に電流を供給する第1の電流源と、
前記第2および第3の導線を用いて、前記被測定物両端の電圧を測定する電圧測定部と、
第2の電流源と、
この第2の電流源の出力電流を、前記第1の導線と第2の導線に、または前記第3の導線と第4の導線に選択的に流すスイッチ手段と、
前記第1の電流源を用いて前記第1および第4の導線に電流を流すと共に、前記スイッチ手段を操作し、前記第2の電流源の出力電流を前記第1の導線と第2の導線に流したときと流さないときの前記第1の導線と第2の導線間の電圧差、および/または前記第2の電流源の出力電流を前記第3の導線と第4の導線に流したときと流さないときの前記第3の導線と第4の導線間の電圧差から抵抗値を算出して、前記第1〜第4の導線の接続状態を評価する接続評価手段と、
を具備したものである。第1〜第4の導線の接続状態の程度を評価することができる。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
The first and second conducting wires are connected to one end of the device under test, the third and fourth conducting wires are connected to the other end of the device under test, and the device is measured using the first and fourth conducting wires. In a measuring device for supplying a predetermined current to a measurement object, measuring a voltage across the measurement object using the second and third conductors, and measuring a physical quantity of the measurement object from the voltage and current ,
A first current source for supplying a current to the device under test using the first and fourth conductors;
A voltage measuring unit for measuring a voltage across the object to be measured using the second and third conductors;
A second current source;
Switch means for selectively causing the output current of the second current source to flow through the first conductor and the second conductor, or through the third conductor and the fourth conductor;
The first current source is used to pass a current through the first and fourth conductors, and the switch means is operated so that the output current of the second current source is the first conductor and the second conductor. The voltage difference between the first conductor and the second conductor when not flowing and the output current of the second current source are passed through the third conductor and the fourth conductor. A connection evaluation means for calculating a resistance value from a voltage difference between the third conductor and the fourth conductor when not flowing, and evaluating a connection state of the first to fourth conductors;
Is provided. The degree of connection state of the first to fourth conductive wires can be evaluated.

請求項2記載の発明は、
被測定物の一端に第1および第2の導線を接続し、前記被測定物の他端に第3および第4の導線を接続して、前記第1および第4の導線を用いて前記被測定物に電流を供給し、前記第2および第3の導線を用いて前記被測定物両端の電圧を測定して、これら電圧および電流から前記被測定物の物理量を測定する計測装置において、
前記第2および第3の導線を用いて前記被測定物両端の電圧を測定し、この電圧が所定の値になるように前記第1および第4の導線を用いて前記被測定物に電流を供給する電流供給手段と、
前記電流供給手段の出力電流を検出する電流検出手段と、
第2の電流源と、
この第2の電流源の出力電流を、前記第1の導線と第2の導線に、または前記第3の導線と第4の導線に選択的に流すスイッチ手段と、
前記電流供給手段を用いて前記第1および第4の導線に電流を流すと共に、前記スイッチ手段を操作し、前記第2の電流源の出力電流を前記第1の導線と第2の導線に流したときと流さないときの前記第1の導線と第2の導線間の電圧差、および/または前記第2の電流源の出力電流を前記第3の導線と第4の導線に流したときと流さないときの前記第3の導線と第4の導線間の電圧差から抵抗値を算出して、前記第1〜第4の導線の接続状態を評価する接続評価手段と、
を具備したものである。第1〜第4の導線の接続状態の程度を評価することができる。
The invention according to claim 2
The first and second conducting wires are connected to one end of the device under test, the third and fourth conducting wires are connected to the other end of the device under test, and the device is measured using the first and fourth conducting wires. In a measuring device for supplying a current to a measurement object, measuring a voltage across the measurement object using the second and third conductors, and measuring a physical quantity of the measurement object from the voltage and current,
The voltage across the object to be measured is measured using the second and third conductors, and a current is supplied to the object to be measured using the first and fourth conductors so that the voltage becomes a predetermined value. Current supply means for supplying;
Current detection means for detecting an output current of the current supply means;
A second current source;
Switch means for selectively causing the output current of the second current source to flow through the first conductor and the second conductor, or through the third conductor and the fourth conductor;
A current is supplied to the first and fourth conductors using the current supply means, and the switch means is operated to pass an output current of the second current source to the first and second conductors. A voltage difference between the first conductor and the second conductor when not flowing and / or an output current of the second current source flowing through the third conductor and the fourth conductor; A connection evaluation means for calculating a resistance value from a voltage difference between the third conductor and the fourth conductor when not flowing, and evaluating a connection state of the first to fourth conductors;
Is provided. The degree of connection state of the first to fourth conductive wires can be evaluated.

本発明によれば次のような効果がある。
請求項1および2の発明によれば、被測定物の両端に各2本の導線を接続し、2本の導線で被測定物に電流を供給し、2本の導線で被測定物両端の電圧を測定することにより、この被測定物の物理量を測定する計測装置であって、前記被測定物の同じ側に接続されている導線間にチェック電流を流して、このチェック電流を流したときと流さないときの導線間の電圧差に基づいてこの導線の接続状態を評価するようにした。
The present invention has the following effects.
According to the first and second aspects of the present invention, two conductors are connected to both ends of the object to be measured, current is supplied to the object to be measured with the two conductors, and the two objects are connected to both ends of the object to be measured. A measuring device for measuring a physical quantity of the object to be measured by measuring a voltage, when a check current is passed between conductors connected to the same side of the object to be measured, and this check current is passed The connection state of this conductor was evaluated based on the voltage difference between the conductors when not flowing.

被測定物の物理量を測定する電流を流したままで、導線の接続状態を評価することができるという効果がある。そのため、測定電流源を切り離すスイッチあるいは測定電流源の出力電流値を切り替える手段が不要になり。構成を簡単にすることができる。   There is an effect that the connection state of the conducting wire can be evaluated while the current for measuring the physical quantity of the object to be measured flows. This eliminates the need for a switch for disconnecting the measurement current source or a means for switching the output current value of the measurement current source. The configuration can be simplified.

また、チェック電流を流したときと流さないときの電圧差で評価するので、接触抵抗の値を知ることができる。そのため、接触抵抗のトレンドを測定することによりプローブの劣化の状態を把握することができ、交換の時期を知ることができるので、自動検査ラインで用いる測定器に用いて特に効果が大きい。   Further, since the evaluation is based on the voltage difference between when the check current is passed and when the check current is not passed, the value of the contact resistance can be known. Therefore, by measuring the trend of the contact resistance, it is possible to grasp the state of deterioration of the probe and to know the time of replacement, so that it is particularly effective when used for a measuring instrument used in an automatic inspection line.

以下本発明を図面を用いて詳細に説明する。図1は本発明に係る計測装置の一実施例を示す構成図である。なお、図3と同じ要素には同一符号を付し、説明を省略する。図1において、30はスイッチであり、増幅器13の出力をAD変換器14に入力し、また切り離す。31は増幅器であり、端子HFとHS間、またはLSとLF間の電圧が入力される。これら端子間の電圧は、スイッチSW4、SW5によって切り替えられる。32はスイッチであり、増幅器31の出力をAD変換器14に入力し、また切り離す。スイッチSW1、SW2、SW4、SW5、30、32はマイクロプロセッサ15でそのオンオフが制御される。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a measuring apparatus according to the present invention. In addition, the same code | symbol is attached | subjected to the same element as FIG. 3, and description is abbreviate | omitted. In FIG. 1, reference numeral 30 denotes a switch, which inputs and disconnects the output of the amplifier 13 to the AD converter 14. Reference numeral 31 denotes an amplifier which receives a voltage between the terminals HF and HS or between LS and LF. The voltage between these terminals is switched by switches SW4 and SW5. Reference numeral 32 denotes a switch, which inputs and disconnects the output of the amplifier 31 to the AD converter 14. The switches 15, SW 2, SW 4, SW 5, 30, and 32 are turned on and off by the microprocessor 15.

なお、定電流源12は第1の電流源を、定電流源11は第2の電流源に相当する。また、スイッチSW1、SW2でスイッチ手段を、増幅器13とAD変換器14で電圧測定部を、スイッチSW4、SW5、増幅器31、AD変換器14、マイクロプロセッサ15で接続評価手段を構成している。   The constant current source 12 corresponds to a first current source, and the constant current source 11 corresponds to a second current source. The switches SW1 and SW2 constitute a switch means, the amplifier 13 and the AD converter 14 constitute a voltage measuring unit, and the switches SW4 and SW5, the amplifier 31, the AD converter 14 and the microprocessor 15 constitute a connection evaluation means.

次に、この実施例の動作を説明する。被測定物10の抵抗を計測するときは、スイッチ30をオン、SW1、SW2、SW4、SW5、32をオフに設定する。定電流源12の出力電流は、一点鎖線L6に示すように端子HFから第1の導線L1を経由して被測定物10に流れ、第4の導線L4、端子LFを経由して共通電位点GNDsに流れる。また、被測定物10両端の電圧は増幅器13で増幅され、AD変換器14でデジタル値に変換されてマイクロプロセッサ15に入力される。マイクロプロセッサ15は、このデジタル値および定電流源12の出力電流Isの値から被測定物10の抵抗を算出する。   Next, the operation of this embodiment will be described. When measuring the resistance of the DUT 10, the switch 30 is turned on and the SW1, SW2, SW4, SW5, and 32 are turned off. The output current of the constant current source 12 flows from the terminal HF to the device under test 10 via the first conductor L1 as indicated by the alternate long and short dash line L6 and passes through the fourth conductor L4 and the terminal LF to the common potential point. Flows to GNDs. The voltage across the DUT 10 is amplified by the amplifier 13, converted to a digital value by the AD converter 14, and input to the microprocessor 15. The microprocessor 15 calculates the resistance of the DUT 10 from this digital value and the value of the output current Is of the constant current source 12.

H側の接続をチェックするときは、スイッチSW1、SW5、32をオンに、SW2、SW4、30をオフに設定する。定電流源11の出力電流Icは、2点鎖線L7に示すように端子HF→第1の導線L1→第2の導線L2→端子HS→共通電位点GNDcの経路を流れる。また、第1の導線L1には定電流源12の出力電流Isも流れている。スイッチSW5はオンなので、増幅器31にはIc×(R1+R2)+Is×R1の電圧が入力される。この電圧は増幅器31で増幅され、AD変換器14でデジタル値に変換されてマイクロプロセッサ15に入力される。   When checking the connection on the H side, the switches SW1, SW5, 32 are turned on, and the SW2, SW4, 30 are turned off. As shown by a two-dot chain line L7, the output current Ic of the constant current source 11 flows through a path of terminal HF → first conductor L1 → second conductor L2 → terminal HS → common potential point GNDc. Further, the output current Is of the constant current source 12 also flows through the first conductor L1. Since the switch SW5 is on, a voltage of Ic × (R1 + R2) + Is × R1 is input to the amplifier 31. This voltage is amplified by the amplifier 31, converted to a digital value by the AD converter 14, and input to the microprocessor 15.

次に、スイッチSW1をオフにする。定電流源11の出力電流Icは第1、第2の導線L1、L2に流れないので、増幅器31にはIs×R1の電圧が入力される。この電圧も増幅器31で増幅され、AD変換器14でデジタル値に変換されてマイクロプロセッサ15に入力される。マイクロプロセッサ15は、これら2つのデジタル値から(R1+R2)を算出して、接触抵抗の大きさ、すなわち接続の程度を評価する。   Next, the switch SW1 is turned off. Since the output current Ic of the constant current source 11 does not flow through the first and second conducting wires L1 and L2, the voltage of Is × R1 is input to the amplifier 31. This voltage is also amplified by the amplifier 31, converted into a digital value by the AD converter 14, and input to the microprocessor 15. The microprocessor 15 calculates (R1 + R2) from these two digital values, and evaluates the magnitude of the contact resistance, that is, the degree of connection.

L側の接続をチェックするときは、スイッチSW2、SW4、32をオンに、SW1、SW5、30をオフに設定する。定電流源11の出力電流は端子LS→第3の導線→第4の導線L4→端子LF→共通電位点GNDcの経路を流れる。また、第4の導線L4には定電流源12の出力電流Isも流れている。スイッチSW4はオンなので、増幅器31にはIc×(R3+R4)+Is×R4の電圧が入力される。この電圧は増幅器31で増幅され、AD変換器14でデジタル値に変換されてマイクロプロセッサ15に入力される。   When checking the connection on the L side, the switches SW2, SW4, and 32 are set to ON, and SW1, SW5, and 30 are set to OFF. The output current of the constant current source 11 flows through the path of the terminal LS → the third conductor → the fourth conductor L4 → the terminal LF → the common potential point GNDc. Further, the output current Is of the constant current source 12 also flows through the fourth conductor L4. Since the switch SW4 is on, a voltage of Ic × (R3 + R4) + Is × R4 is input to the amplifier 31. This voltage is amplified by the amplifier 31, converted to a digital value by the AD converter 14, and input to the microprocessor 15.

次に、スイッチSW2をオフにする。定電流源11の出力電流Icは第3、第4の導線L3、L4に流れないので、増幅器31にはIs×R4の電圧が入力される。この電圧も増幅器31で増幅され、AD変換器14でデジタル値に変換されてマイクロプロセッサ15に入力される。マイクロプロセッサ15は、これら2つのデジタル値から(R3+R4)を算出して、接触抵抗の大きさ、すなわち接続の程度を評価する。   Next, the switch SW2 is turned off. Since the output current Ic of the constant current source 11 does not flow through the third and fourth conductors L3 and L4, the voltage of Is × R4 is input to the amplifier 31. This voltage is also amplified by the amplifier 31, converted into a digital value by the AD converter 14, and input to the microprocessor 15. The microprocessor 15 calculates (R3 + R4) from these two digital values, and evaluates the magnitude of the contact resistance, that is, the degree of connection.

なお、定電流源12の出力電流Isが定電流源11の出力電流Icよりもかなり大きいと、Ic×(R1+R2)(またはIc×(R3+R4))の大きさがIs×R1(またはIs×R4)に比べて小さくなりすぎ、接触抵抗計測精度が低下する。しかし、もともと接触抵抗の計測精度はそれほど高くなくてもよいので、問題なることは少ない。Is<100×Icの範囲では、実用上問題になることはない。   When the output current Is of the constant current source 12 is considerably larger than the output current Ic of the constant current source 11, the size of Ic × (R1 + R2) (or Ic × (R3 + R4)) is Is × R1 (or Is × R4). ) And the contact resistance measurement accuracy decreases. However, since the measurement accuracy of contact resistance does not necessarily have to be so high, there is little problem. In the range of Is <100 × Ic, there is no practical problem.

図2に本発明の他の実施例を示す。なお、図1と同じ要素には同一符号を付し、説明を省略する。図2において、46は基準電源であり、基準電圧Esを出力する。45は増幅器であり、端子HSとLS間の電圧が入力され、この電圧を増幅して出力する。44は減算器であり、基準電圧Esと増幅器45の差電圧を出力する。43は増幅器であり、減算器44の出力が入力される。40は抵抗値Rsを有する抵抗であり、増幅器43の出力端子と端子HF間に挿入される。41は増幅器であり、抵抗40両端の電圧が入力される。42はスイッチであり、増幅器41の出力をAD変換器14に入力し、また切り離す。スイッチSW1、SW2、SW4、SW5、32、42はマイクロプロセッサ15でそのオンオフが制御される。   FIG. 2 shows another embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same element as FIG. 1, and description is abbreviate | omitted. In FIG. 2, reference numeral 46 denotes a reference power supply that outputs a reference voltage Es. Reference numeral 45 denotes an amplifier which receives a voltage between the terminals HS and LS and amplifies and outputs this voltage. A subtractor 44 outputs a difference voltage between the reference voltage Es and the amplifier 45. 43 is an amplifier to which the output of the subtractor 44 is input. A resistor 40 having a resistance value Rs is inserted between the output terminal of the amplifier 43 and the terminal HF. Reference numeral 41 denotes an amplifier to which a voltage across the resistor 40 is input. A switch 42 inputs the output of the amplifier 41 to the AD converter 14 and disconnects it. The switches 15, SW 2, SW 4, SW 5, 32, and 42 are turned on and off by the microprocessor 15.

なお、増幅器43、45、減算器44、基準電源46で電流供給手段を、抵抗40と増幅器41で電流検出手段を、スイッチSW1、SW2でスイッチ手段を、スイッチSW4、SW5、増幅器31、AD変換器14、マイクロプロセッサ15で接続評価手段を構成している。また、定電流源11は第2の電流源に相当する。   It should be noted that the amplifiers 43 and 45, the subtractor 44, and the reference power supply 46 serve as current supply means, the resistor 40 and the amplifier 41 as current detection means, the switches SW1 and SW2 as switch means, the switches SW4 and SW5, the amplifier 31, and AD conversion. The device 14 and the microprocessor 15 constitute connection evaluation means. The constant current source 11 corresponds to a second current source.

次に、この実施例の動作を説明する。被測定物10の抵抗を計測するときは、スイッチSW1、SW2、SW4、SW5、32をオフに、スイッチ42をオンに設定する。増幅器43はその入力がゼロになるように、その出力を制御する。増幅器43の入力は減算器44の出力なので、被測定物10両端の電圧は基準電圧Esになる。被測定物10に流れる電流(=Io)は抵抗40間に電位差を発生させ、この電位差は増幅器41で増幅され、AD変換器14でデジタル値に変換されてマイクロプロセッサ15に入力される。マイクロプロセッサ15はこのデジタル値から被測定物10に流れる電流Ioを演算し、この電流値と被測定物10両端の電圧(=Es)から、被測定物10の抵抗を算出する。   Next, the operation of this embodiment will be described. When measuring the resistance of the DUT 10, the switches SW1, SW2, SW4, SW5, 32 are set to OFF and the switch 42 is set to ON. The amplifier 43 controls its output so that its input is zero. Since the input of the amplifier 43 is the output of the subtractor 44, the voltage across the DUT 10 becomes the reference voltage Es. The current (= Io) flowing through the device under test 10 generates a potential difference between the resistors 40, this potential difference is amplified by the amplifier 41, converted into a digital value by the AD converter 14, and input to the microprocessor 15. The microprocessor 15 calculates the current Io flowing through the device under test 10 from this digital value, and calculates the resistance of the device under test 10 from this current value and the voltage across the device under test 10 (= Es).

H側の接続をチェックするときは、スイッチSW1、SW5、32をオンに、スイッチSW2、SW4、42をオフに設定する。定電流源11の出力電流Icは端子HF→第1の導線L1→第2の導線L2→端子HSに流れる。第1の導線L1には電流Ioも流れているので、これらの端子間の電圧はIc×(R1+R2)+Io×R1になる。この電圧は増幅器31で増幅され、AD変換器14でデジタル値に変換されてマイクロプロセッサ15に入力される。次に、スイッチSW1をオフにする。増幅器31の入力電圧はIo×R1になり、この電圧は同様の手順でマイクロプロセッサ15に入力される。マイクロプロセッサ15はこれらの値から(R1+R2)を算出し、接触抵抗すなわち接続の程度を評価する。   When checking the connection on the H side, the switches SW1, SW5, 32 are turned on, and the switches SW2, SW4, 42 are turned off. The output current Ic of the constant current source 11 flows from the terminal HF → the first conductor L1 → the second conductor L2 → the terminal HS. Since the current Io also flows through the first conductor L1, the voltage between these terminals is Ic × (R1 + R2) + Io × R1. This voltage is amplified by the amplifier 31, converted to a digital value by the AD converter 14, and input to the microprocessor 15. Next, the switch SW1 is turned off. The input voltage of the amplifier 31 becomes Io × R1, and this voltage is input to the microprocessor 15 in the same procedure. The microprocessor 15 calculates (R1 + R2) from these values, and evaluates the contact resistance, that is, the degree of connection.

L側の接続をチェックするときは、スイッチSW2、SW4、32をオンに、スイッチSW1、SW5、42をオフに設定する。定電流源11の出力電流Icは端子LS→第3
の導線L3→第4の導線L4→端子LFに流れる。第4の導線L4には電流Ioも流れているので、これらの端子間の電圧はIc×(R3+R4)+Io×R4になる。次に、スイッチSW2をオフにする。増幅器31の入力電圧はIo×R4になる。マイクロプロセッサ15はこれらの電圧から(R3+R4)を算出し、接触抵抗すなわち接続の程度を評価する。
When checking the connection on the L side, the switches SW2, SW4 and 32 are turned on, and the switches SW1, SW5 and 42 are turned off. The output current Ic of the constant current source 11 is the terminal LS → third
From the lead wire L3 → the fourth lead wire L4 → the terminal LF. Since the current Io also flows through the fourth conductor L4, the voltage between these terminals is Ic × (R3 + R4) + Io × R4. Next, the switch SW2 is turned off. The input voltage of the amplifier 31 is Io × R4. The microprocessor 15 calculates (R3 + R4) from these voltages and evaluates the contact resistance, that is, the degree of connection.

なお、この実施例ではスイッチSW1またはSW2をオンにして定電流源11の出力電流Icを流したときに端子HSまたはLSにこの電流が流れるので、接続のチェック時にスイッチSW1またはSW2をオンにしたときとオフにしたときとでは、Ioの値が若干異なる。しかし、前述したように、接続のチェックは高精度な計測は必要ないので、大きな問題にはならない。この実施例は、端子HSやLSと被測定物10の接続が断線したときに、被測定物10に異常な電圧が連続して印可されることがなくなるという利点がある。   In this embodiment, when the switch SW1 or SW2 is turned on and the output current Ic of the constant current source 11 is supplied, this current flows to the terminal HS or LS. Therefore, the switch SW1 or SW2 is turned on when checking the connection. The value of Io is slightly different between when it is off and when it is off. However, as described above, the connection check is not a big problem because high-precision measurement is not necessary. This embodiment has an advantage that when the connection between the terminals HS and LS and the device under test 10 is disconnected, an abnormal voltage is not continuously applied to the device under test 10.

なお、増幅器43を差動入力の増幅器にし、この差動増幅器に増幅器45の出力と基準電圧Esを入力することにより、減算器44を省くことができる。また、図1実施例および図2実施例共に、接触抵抗の計測では精度や分解能はそれほど高くなくてもよいので、AD変換器14として積分型のアナログデジタル変換器を用い、被測定物10の抵抗値計測のときは積分時間を長くして高精度計測を行い、接続チェックのときは積分時間を短くすることにより、計測時間を短縮することができる。さらに、これらの実施例では被測定物10の物理量測定と接続チェックでAD変換器を共用したが、別々のAD変換器を用いてもよい。   The subtractor 44 can be omitted by making the amplifier 43 a differential input amplifier and inputting the output of the amplifier 45 and the reference voltage Es to the differential amplifier. Further, in both the embodiment shown in FIG. 1 and the embodiment shown in FIG. 2, the accuracy and resolution do not have to be so high in the measurement of the contact resistance. Therefore, an integral type analog-digital converter is used as the AD converter 14 and the device under test 10 is measured. The measurement time can be shortened by increasing the integration time for resistance value measurement and performing high-precision measurement, and by shortening the integration time for connection check. Furthermore, in these embodiments, the AD converter is shared for the physical quantity measurement and connection check of the device under test 10, but separate AD converters may be used.

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. 本発明の他の実施例を示す構成図である。It is a block diagram which shows the other Example of this invention. 従来の計測装置の構成図である。It is a block diagram of the conventional measuring device. 従来の計測装置の構成図である。It is a block diagram of the conventional measuring device.

符号の説明Explanation of symbols

10 被測定物
11、12 定電流源
13、31、41、43、45 増幅器
14 AD変換器
15 マイクロプロセッサ
30、32、42 SW1、SW2、SW4、SW5 スイッチ
40 抵抗
44 減算器
46 基準電源
HF、HS、LS、LF 端子
L1〜L4 第1〜第4の導線
R1〜R4 接触抵抗+配線抵抗
10 Device under test 11, 12 Constant current source 13, 31, 41, 43, 45 Amplifier 14 AD converter 15 Microprocessor 30, 32, 42 SW1, SW2, SW4, SW5 Switch 40 Resistor 44 Subtractor 46 Reference power supply HF, HS, LS, LF terminals L1 to L4 1st to 4th conducting wires R1 to R4 Contact resistance + wiring resistance

Claims (2)

被測定物の一端に第1および第2の導線を接続し、前記被測定物の他端に第3および第4の導線を接続して、前記第1および第4の導線を用いて前記被測定物に所定の電流を供給し、前記第2および第3の導線を用いて前記被測定物両端の電圧を測定して、これら電圧および電流から前記被測定物の物理量を測定する計測装置において、
前記第1および第4の導線を用いて、前記被測定物に電流を供給する第1の電流源と、
前記第2および第3の導線を用いて、前記被測定物両端の電圧を測定する電圧測定部と、
第2の電流源と、
この第2の電流源の出力電流を、前記第1の導線と第2の導線に、または前記第3の導線と第4の導線に選択的に流すスイッチ手段と、
前記第1の電流源を用いて前記第1および第4の導線に電流を流すと共に、前記スイッチ手段を操作し、前記第2の電流源の出力電流を前記第1の導線と第2の導線に流したときと流さないときの前記第1の導線と第2の導線間の電圧差、および/または前記第2の電流源の出力電流を前記第3の導線と第4の導線に流したときと流さないときの前記第3の導線と第4の導線間の電圧差から抵抗値を算出して、前記第1〜第4の導線の接続状態を評価する接続評価手段と、
を具備したことを特徴とする計測装置。
The first and second conducting wires are connected to one end of the device under test, the third and fourth conducting wires are connected to the other end of the device under test, and the device is measured using the first and fourth conducting wires. In a measuring device for supplying a predetermined current to a measurement object, measuring a voltage across the measurement object using the second and third conductors, and measuring a physical quantity of the measurement object from the voltage and current ,
A first current source for supplying a current to the device under test using the first and fourth conductors;
A voltage measuring unit for measuring a voltage across the object to be measured using the second and third conductors;
A second current source;
Switch means for selectively causing the output current of the second current source to flow through the first conductor and the second conductor, or through the third conductor and the fourth conductor;
The first current source is used to pass a current through the first and fourth conductors, and the switch means is operated so that the output current of the second current source is the first conductor and the second conductor. The voltage difference between the first conductor and the second conductor when not flowing and the output current of the second current source are passed through the third conductor and the fourth conductor. A connection evaluation means for calculating a resistance value from a voltage difference between the third conductor and the fourth conductor when not flowing, and evaluating a connection state of the first to fourth conductors;
A measuring apparatus comprising:
被測定物の一端に第1および第2の導線を接続し、前記被測定物の他端に第3および第4の導線を接続して、前記第1および第4の導線を用いて前記被測定物に電流を供給し、前記第2および第3の導線を用いて前記被測定物両端の電圧を測定して、これら電圧および電流から前記被測定物の物理量を測定する計測装置において、
前記第2および第3の導線を用いて前記被測定物両端の電圧を測定し、この電圧が所定の値になるように前記第1および第4の導線を用いて前記被測定物に電流を供給する電流供給手段と、
前記電流供給手段の出力電流を検出する電流検出手段と、
第2の電流源と、
この第2の電流源の出力電流を、前記第1の導線と第2の導線に、または前記第3の導線と第4の導線に選択的に流すスイッチ手段と、
前記電流供給手段を用いて前記第1および第4の導線に電流を流すと共に、前記スイッチ手段を操作し、前記第2の電流源の出力電流を前記第1の導線と第2の導線に流したときと流さないときの前記第1の導線と第2の導線間の電圧差、および/または前記第2の電流源の出力電流を前記第3の導線と第4の導線に流したときと流さないときの前記第3の導線と第4の導線間の電圧差から抵抗値を算出して、前記第1〜第4の導線の接続状態を評価する接続評価手段と、
を具備したことを特徴とする計測装置。
The first and second conducting wires are connected to one end of the device under test, the third and fourth conducting wires are connected to the other end of the device under test, and the device is measured using the first and fourth conducting wires. In a measuring device for supplying a current to a measurement object, measuring a voltage across the measurement object using the second and third conductors, and measuring a physical quantity of the measurement object from the voltage and current,
The voltage across the object to be measured is measured using the second and third conductors, and a current is supplied to the object to be measured using the first and fourth conductors so that the voltage becomes a predetermined value. Current supply means for supplying;
Current detection means for detecting an output current of the current supply means;
A second current source;
Switch means for selectively causing the output current of the second current source to flow through the first conductor and the second conductor, or through the third conductor and the fourth conductor;
A current is supplied to the first and fourth conductors using the current supply means, and the switch means is operated to pass an output current of the second current source to the first and second conductors. A voltage difference between the first conductor and the second conductor when not flowing and / or an output current of the second current source flowing through the third conductor and the fourth conductor; A connection evaluation means for calculating a resistance value from a voltage difference between the third conductor and the fourth conductor when not flowing, and evaluating a connection state of the first to fourth conductors;
A measuring apparatus comprising:
JP2005377081A 2005-12-28 2005-12-28 Measuring device Active JP4735250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377081A JP4735250B2 (en) 2005-12-28 2005-12-28 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377081A JP4735250B2 (en) 2005-12-28 2005-12-28 Measuring device

Publications (2)

Publication Number Publication Date
JP2007178257A JP2007178257A (en) 2007-07-12
JP4735250B2 true JP4735250B2 (en) 2011-07-27

Family

ID=38303594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377081A Active JP4735250B2 (en) 2005-12-28 2005-12-28 Measuring device

Country Status (1)

Country Link
JP (1) JP4735250B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8854066B2 (en) * 2012-04-05 2014-10-07 Eaton Corporation Method and apparatus for detecting a glowing contact in a power circuit
CN102854386B (en) * 2012-08-02 2015-08-05 深圳市明微电子股份有限公司 A kind of method for testing resistance
JP7154958B2 (en) * 2018-11-06 2022-10-18 日置電機株式会社 Impedance measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195371A (en) * 1988-01-29 1989-08-07 Yokogawa Hewlett Packard Ltd Measurer
JPH02259582A (en) * 1989-03-31 1990-10-22 Ando Electric Co Ltd Detecting circuit for terminal connection state of circuit element measuring instrument
JPH04301776A (en) * 1991-03-29 1992-10-26 Hioki Ee Corp Lcr measuring device
JPH05507556A (en) * 1990-05-29 1993-10-28 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and apparatus for simultaneous electronic element testing and lead verification
JP2000111593A (en) * 1998-10-07 2000-04-21 Yokogawa Electric Corp Measuring device
JP2005069786A (en) * 2003-08-21 2005-03-17 Hioki Ee Corp Four-terminal resistance measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195371A (en) * 1988-01-29 1989-08-07 Yokogawa Hewlett Packard Ltd Measurer
JPH02259582A (en) * 1989-03-31 1990-10-22 Ando Electric Co Ltd Detecting circuit for terminal connection state of circuit element measuring instrument
JPH05507556A (en) * 1990-05-29 1993-10-28 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and apparatus for simultaneous electronic element testing and lead verification
JPH04301776A (en) * 1991-03-29 1992-10-26 Hioki Ee Corp Lcr measuring device
JP2000111593A (en) * 1998-10-07 2000-04-21 Yokogawa Electric Corp Measuring device
JP2005069786A (en) * 2003-08-21 2005-03-17 Hioki Ee Corp Four-terminal resistance measuring apparatus

Also Published As

Publication number Publication date
JP2007178257A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
WO2010119532A1 (en) Abnormality detection device for detection circuits and electric circuits, and detection system and electronic system using the abnormality detection device
JP5183447B2 (en) Test apparatus and diagnostic method
JP2006322821A (en) Impedance measuring instrument
JP4735250B2 (en) Measuring device
JP5638293B2 (en) Four-terminal impedance measuring device
JP5018373B2 (en) Resistance measuring device and resistance measuring method
JP4720696B2 (en) Signal measuring device
JP2010145373A (en) Resistance measuring apparatus
US6285206B1 (en) Comparator circuit
JP2013205345A (en) Temperature detector
KR100915931B1 (en) Semiconductor device and semiconductor measuring device
JP2010096606A (en) Voltage applying current measurement circuit and semiconductor tester using the same
JP2009156580A (en) Input capacitance measuring circuit
JP3161311B2 (en) RTD circuit
WO2009081522A1 (en) Test apparatus and measurement device
KR102297426B1 (en) Controller internal resistance measuring apparatus and controller internal resistance measuring method
RU178894U1 (en) SMALL RESISTANCE METER
RU2307367C1 (en) Auxiliary block for indicating contact of measuring device with the object being checked
JP4408726B2 (en) Semiconductor device and semiconductor device inspection method
JP6134226B2 (en) Four-terminal resistance measuring device
JP2000147071A (en) Characteristics inspection device for analogue circuit
JP4893962B2 (en) Semiconductor test equipment
US7141984B2 (en) Switching circuit for current measurement range resistor and current measurement apparatus including switching circuit
JP2005091316A (en) Method and device for detecting abnormality for electric circuit
JP2010054314A (en) Semiconductor tester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4735250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3