JP3158862B2 - RTD circuit - Google Patents

RTD circuit

Info

Publication number
JP3158862B2
JP3158862B2 JP10273694A JP10273694A JP3158862B2 JP 3158862 B2 JP3158862 B2 JP 3158862B2 JP 10273694 A JP10273694 A JP 10273694A JP 10273694 A JP10273694 A JP 10273694A JP 3158862 B2 JP3158862 B2 JP 3158862B2
Authority
JP
Japan
Prior art keywords
operational amplifier
terminal
switch
output voltage
rtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10273694A
Other languages
Japanese (ja)
Other versions
JPH07311096A (en
Inventor
幸二 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP10273694A priority Critical patent/JP3158862B2/en
Publication of JPH07311096A publication Critical patent/JPH07311096A/en
Application granted granted Critical
Publication of JP3158862B2 publication Critical patent/JP3158862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は測温抵抗体回路に関する
ものであり、詳しくは、種類の異なる測温抵抗体の信号
処理に適した測温抵抗体回路を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance temperature detector circuit, and more particularly to a resistance temperature detector circuit suitable for signal processing of different types of resistance temperature detectors.

【0002】[0002]

【従来の技術】図2は従来の測温抵抗体回路の要部を示
す回路図である。図2において、Rtは3端子A,B,
bを有する測温抵抗体であり、端子Aには基準電流Iを
加える定電流源CSが接続され、端子bは基準抵抗RC
を介して共通電位点に接続されている。OP1〜OP3
それぞれ演算増幅器である。演算増幅器OP1の非反転
入力端子には測温抵抗体Rtの端子Aが接続され、反転
入力端子には抵抗R1を介して測温抵抗体Rtの端子bが
接続されるとともに抵抗R3を介して演算増幅器OP1
出力端子が接続されている。演算増幅器OP2の非反転
入力端子には測温抵抗体Rtの端子bが接続され、反転
入力端子には抵抗R2を介して測温抵抗体Rtの端子bが
接続されるとともに抵抗R4を介して演算増幅器OP2
出力端子が接続されている。演算増幅器OP3の非反転
入力端子には測温抵抗体Rtの端子Bが接続され、反転
入力端子には抵抗R5を介して演算増幅器OP1の出力端
子が接続されるとともに抵抗R6を介して演算増幅器O
2の出力端子が接続され、さらに抵抗R7を介して演算
増幅器OP3の出力端子が接続されている。そして、演
算増幅器OP3の出力端子には出力端子Eoutが接続され
ている。
2. Description of the Related Art FIG. 2 is a circuit diagram showing a main part of a conventional resistance temperature detector circuit. In FIG. 2, R t has three terminals A, B,
b, a terminal A is connected to a constant current source CS for applying a reference current I, and a terminal b is connected to a reference resistor R C.
To the common potential point. OP 1 to OP 3 are operational amplifiers. The non-inverting input terminal of the operational amplifier OP 1 is connected to terminals A RTD R t is, to the inverting input terminal resistance with the terminal b of the RTD R t through the resistor R 1 is connected output terminal of the operational amplifier OP 1 through R 3 are connected. The non-inverting input terminal of the operational amplifier OP 2 is connected the terminal b of the RTD R t is, to the inverting input terminal resistance with the terminal b of the RTD R t through the resistor R 2 is connected output terminal of the operational amplifier OP 2 through R 4 are connected. The non-inverting input terminal of the operational amplifier OP 3 is connected the terminal B of the RTD R t, the resistance together with the output terminal of the operational amplifier OP 1 is connected via a resistor R 5 to the inverting input terminal R 6 Via the operational amplifier O
Output terminals of the P 2 are connected, and further through the resistor R 7 connected to the output terminal of the operational amplifier OP 3. The output terminal E out is connected to the output terminal of the operational amplifier OP 3.

【0003】このような構成において、R1=R2=Ra
とし、R3=R4=Rbとして抵抗値rの影響を除去でき
る条件を求めることにより、 Rb=Ra+2RC になり、例えばRC=100Ωとすると、一例としてR1
=R2=9.8kΩ、R3=R4=R5=R6=10kΩが
求められる。なお、R7=5kΩとする。この場合の出
力電圧Eoutは、 Eout=I(Rt−RC) になり、測温抵抗体Rtのリード線の抵抗値rの影響を
除去できる。
In such a configuration, R 1 = R 2 = R a
By obtaining a condition that can eliminate the influence of the resistance value r as R 3 = R 4 = R b , R b = R a + 2R C. For example, if R C = 100Ω, then R 1 = R 1
= R 2 = 9.8 kΩ and R 3 = R 4 = R 5 = R 6 = 10 kΩ. Note that R 7 = 5 kΩ. In this case, the output voltage E out becomes E out = I (R t −R c ), and the influence of the resistance value r of the lead wire of the resistance bulb R t can be eliminated.

【0004】測温抵抗体Rtとしては温度測定範囲に応
じて白金(Pt)系や銅(Cu)系が用いられる。すな
わち、例えば−200°C〜550°Cの温度測定にあ
たっては白金系のものが用いられ、電流Iとして例えば
1mAが加えられる。この場合、測温抵抗体Rtの抵抗
値は17Ω〜300Ωの変化をし、出力電圧Eoutは−
83mV〜200mVの変化をする。一方、例えば−2
00°C〜300°Cの温度測定にあたっては銅系のも
のが用いられて電流Iとして例えば2mAが加えられ
る。この場合は、測温抵抗体Rtの抵抗値は1Ω〜20
Ωの変化をし、出力電圧Eoutは−198mV〜−16
0mVの変化をする。これらの関係をグラフ化すると図
3のようになる。
[0004] Platinum (Pt) based or copper (Cu) system is used in accordance with the temperature measuring range as RTD R t. That is, for example, when measuring the temperature at -200 ° C. to 550 ° C., a platinum-based material is used, and a current I of, for example, 1 mA is applied. In this case, the resistance value of the resistance temperature detector R t is the change in 17Omu~300omu, the output voltage E out -
It changes between 83 mV and 200 mV. On the other hand, for example, -2
When measuring the temperature from 00 ° C. to 300 ° C., a copper-based material is used and a current I of, for example, 2 mA is applied. Resistance value in this case, the temperature measuring resistor R t is 1Ω~20
Ω, and the output voltage E out is −198 mV to −16.
It changes by 0 mV. FIG. 3 is a graph of these relationships.

【0005】[0005]

【発明が解決しようとする課題】ここで、測定レンジの
スパンを例えば±200mVとすると、白金系の場合の
高温域では550°Cの測定出力電圧は+200mVに
なることから測定レンジの上限値+200mVに対する
ノイズマージンはほぼ零になるが、実用上はこのような
高温測定の頻度は少なく支障はないと考えられる。
Here, assuming that the span of the measurement range is, for example, ± 200 mV, the measurement output voltage at 550 ° C. becomes +200 mV in the high-temperature range in the case of platinum, so the upper limit of the measurement range is +200 mV. Is practically zero, but it is considered that the frequency of such high-temperature measurement is practically small and practically acceptable.

【0006】ところが、図2の回路構成で測温抵抗体R
tとして銅系を用いた場合は、−200°C〜300°
Cの温度測定範囲の中心近辺の0°Cの測定出力電圧で
も−180mV程度になり、測定レンジの下限値−20
0mVに対するノイズマージンはわずか−20mVしか
ない。この結果、測定出力電圧を積分形A/D変換器に
加えてデジタル信号に変換する場合に測定誤差を生じる
ことがある。すなわち、例えば図4のように測定出力電
圧Eoutとともにノイズマージンを越える大きさの正弦
波ノイズが入力されると、正弦波ノイズのマイナス極性
部分(S2)のうちノイズマージンを越えた部分(S3
が測定誤差になってしまう。正弦波ノイズがノイズマー
ジンを越えない場合には、正弦波ノイズのプラス極性部
分(S1)とマイナス極性部分(S2)が打ち消し合って
測定誤差にはならない。
However, in the circuit configuration shown in FIG.
When a copper-based material is used as t , -200 ° C to 300 °
The measured output voltage at 0 ° C. near the center of the temperature measurement range of C is about −180 mV, and the lower limit of the measurement range is −20.
The noise margin for 0 mV is only -20 mV. As a result, a measurement error may occur when the measured output voltage is converted into a digital signal by being applied to the integrating A / D converter. That is, when sine wave noise having a magnitude exceeding the noise margin is input together with the measurement output voltage E out as shown in FIG. 4, for example, the portion (S 2 ) of the sine wave noise exceeding the noise margin in the negative polarity portion (S 2 ) S 3)
Is a measurement error. If the sine wave noise does not exceed the noise margin, the plus polarity portion (S 1 ) and the minus polarity portion (S 2 ) of the sine wave noise cancel each other out and no measurement error occurs.

【0007】本発明はこのような問題点を解決するもの
であって、その目的は、測温抵抗体Rtとして銅系を用
いた場合であっても十分なノイズマージンが確保できる
とともに、測温抵抗体のリード線の抵抗値の影響を受け
ることなく精度の高い温度測定が行える測温抵抗体回路
を実現することにある。
[0007] The present invention has been made to solve the above problems, and an object, with sufficient noise margin even in the case of using a copper-based as RTD R t can be secured, measured It is an object of the present invention to realize a temperature measuring resistor circuit capable of performing highly accurate temperature measurement without being affected by the resistance value of the lead wire of the temperature resistor.

【0008】[0008]

【課題を解決するための手段】本発明は、このような問
題点を解決するために、3端子A,B,bを有する測温
抵抗体Rtと、測温抵抗体Rtの端子Aに接続された電流
源と、測温抵抗体Rtの端子bと共通電位点間に接続さ
れた抵抗値が既知の基準抵抗RCと、測温抵抗体Rtの端
子Aの出力電圧と第4の演算増幅器の出力電圧との差を
演算出力する第1の演算増幅器と、測温抵抗体Rtの端
子bの出力電圧と第4の演算増幅器の出力電圧との差を
演算出力する第2の演算増幅器と、これら第1の演算増
幅器の出力電圧と第2の演算増幅器の出力電圧の和と測
温抵抗体Rtの端子Bの出力電圧との差を演算出力する
第3の演算増幅器と、基準抵抗RCと測温抵抗体Rtの端
子bとの接続点に接続された第1のスイッチと、基準抵
抗RCと共通電位点との接続点に接続された第2のスイ
ッチと、これら第1,第2のスイッチの出力側が非反転
入力端子に接続されボルテージフォロワとして動作する
第4の演算増幅器を設け、測温抵抗体Rtとして白金系
を用いるときは第1のスイッチをオンにして第2のスイ
ッチをオフにし、測温抵抗体Rtとして銅系を用いると
きは第1のスイッチをオフにして第2のスイッチをオン
することを特徴とする。
Means for Solving the Problems The present invention, in order to solve this problem, three terminals A, B, and RTD R t with b, terminal A of the RTD R t , A reference resistor R C having a known resistance value connected between the terminal b of the resistance thermometer R t and the common potential point, and an output voltage of the terminal A of the resistance thermometer R t. a first operational amplifier which calculates and outputs the difference between the output voltage of the fourth operational amplifier, calculates outputs a difference between output voltages of the fourth operational amplifier terminals b of RTD R t a second operational amplifier, the output voltage and a third for calculating outputting a difference between the output voltage of the terminal B of the second sum and the temperature measuring resistor R t of the output voltage of the operational amplifier of the first operational amplifier operational amplifier and a first switch connected to a connection point between the terminal b of the reference resistor R C and the temperature measuring resistor R t, the reference resistor R C and the common potential A second switch connected to the connection point of these first, the fourth operational amplifier output of the second switch is operated as a voltage follower is connected to the non-inverting input terminal is provided with, RTD R when using platinum-based as t turns off the second switch to turn on the first switch, the second switch by turning off the first switch when using copper as a measuring resistor R t It is characterized by turning on.

【0009】[0009]

【作用】用いる測温抵抗体Rtの種類に応じて第1,第
2のスイッチをオン,オフ駆動し、その出力電圧をボル
テージフォロワとして動作する第4の演算増幅器を介し
て第1,第2の演算増幅器の反転入力端子に加える。こ
のように基準抵抗RCと第1,第2の演算増幅器の反転
入力端子との間にボルテージフォロワとして動作する第
4の演算増幅器を接続していることから第1,第2の演
算増幅器の反転入力端子側から基準抵抗RCに流れる電
流を実質的に無視することができて高精度の測定が可能
になる。そして、測温抵抗体Rtとして銅系を用いると
きは第1のスイッチをオフにして第2のスイッチをオン
することから第4の演算増幅器の出力電圧は共通電位点
の電圧になり、第3の演算増幅器の出力電圧のノイズマ
ージンを大きくできる。
First in accordance with the type of RTD R t using [action], on the second switch to turn off the drive, the first through the fourth operational amplifier operating the output voltage as a voltage follower, the 2 to the inverting input terminal of the operational amplifier. Since the fourth operational amplifier operating as a voltage follower is connected between the reference resistor R C and the inverting input terminals of the first and second operational amplifiers in this manner, the first and second operational amplifiers are connected. The current flowing from the inverting input terminal side to the reference resistor R C can be substantially neglected, and highly accurate measurement can be performed. The output voltage of the fourth operational amplifier from turning on the second switch to turn off the first switch when using copper as a measuring resistor R t becomes the voltage of the common potential point, the 3, the noise margin of the output voltage of the operational amplifier can be increased.

【0010】[0010]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。図1は本発明の一実施例を示す回路図であり、図2
と同一部分には同一符号を付けている。図1において、
基準抵抗RCと測温抵抗体Rtの端子bとの接続点には第
1のスイッチSW1が接続され、基準抵抗RCと共通電位
点との接続点には第2のスイッチSW2が接続されてい
る。これら第1,第2のスイッチSW1,SW 2の出力側
はボルテージフォロワとして動作する第4の演算増幅器
OP4の非反転入力端子に接続されている。そして、演
算増幅器OP4の出力端子は抵抗R1を介して演算増幅器
OP1の反転入力端子に接続されるとともに、抵抗R2
介して演算増幅器OP2の反転入力端子に接続されてい
る。その他の構成は図2と同様である。
Embodiments of the present invention will be described below with reference to the drawings.
You. FIG. 1 is a circuit diagram showing one embodiment of the present invention, and FIG.
The same reference numerals are given to the same parts. In FIG.
Reference resistance RCAnd RTD RtThe connection point with terminal b of
1 switch SW1Is connected to the reference resistor RCAnd common potential
A second switch SW is provided at the connection point with the point.TwoIs connected
You. These first and second switches SW1, SW TwoOutput side of
Is a fourth operational amplifier operating as a voltage follower
OPFourIs connected to the non-inverting input terminal. And the performance
Operational amplifier OPFourOutput terminal is a resistor R1Via operational amplifier
OP1And the resistor RTwoTo
Via operational amplifier OPTwoConnected to the inverting input terminal of
You. Other configurations are the same as those in FIG.

【0011】このような構成において、測温抵抗体Rt
として白金系を用いるときは第1のスイッチSW1をオ
ンにして第2のスイッチSW2をオフにし、測温抵抗体
tとして銅系を用いるときは第1のスイッチSW1をオ
フにして第2のスイッチSW2をオンにする。次に、こ
れらそれぞれの場合について動作を説明する。 <白金系を用いる場合>測温抵抗体Rtとして白金系を
用いるときは第1のスイッチSW1をオンにして第2の
スイッチSW2をオフにし、定電流源CSは1mAの電
流Iを吸い込むものとする。
In such a configuration, the resistance temperature detector R t
A first switch SW 1 when using a platinum-based to turn the second off the switch SW 2 and, when using copper-based as RTD R t in the first off the switch SW 1 as to turn on the second of the switch SW 2. Next, the operation of each of these cases will be described. <When using a platinum-based> When using a platinum-based as RTD R t in the second off the switch SW 2 is turned on the first switch SW 1, a constant current source CS is 1mA current I Inhale.

【0012】このとき、端子Aの電位をVA、端子Bの
電位をVB、端子bの電位をVbとすると、 VA=−I(Rt+RC+2r) VB=−I(RC+r) Vb=−IRC になる。
At this time, assuming that the potential of the terminal A is V A , the potential of the terminal B is V B , and the potential of the terminal b is V b , V A = −I (R t + R C + 2r) V B = −I ( R C + r) V b = −IR C

【0013】一方、演算増幅器OP4の出力電圧V4は、 V4=Vb になる。これらから、演算増幅器OP1の出力電圧V
1は、 V1=−(R3/R1)Vb+{1+(R3/R1)}VA
IRC+2VA になり、演算増幅器OP2の出力電圧V2は、 V2=−(R4/R2)Vb+{1+(R4/R2)}Vb
IRC+2Vb になる。
Meanwhile, the output voltage V 4 of the operational amplifier OP 4 will V 4 = V b. From these, the output voltage V of the operational amplifier OP 1
1 is V 1 = − (R 3 / R 1 ) V b + {1+ (R 3 / R 1 )} V A =
IR C + 2V A , and the output voltage V 2 of the operational amplifier OP 2 is V 2 = − (R 4 / R 2 ) V b + {1+ (R 4 / R 2 )} V b =
It becomes IR C + 2V b.

【0014】この結果、演算増幅器OP3の出力電圧E
outは、 Eout=−(R7/R5)V1−(R7/R6)V2+[1+
{R7/(R5・R6/(R5+R6))}]VB=−(V1
/2)−(V2/2)+2VB=−IRC−VA−Vb+2
B=−IRC+I(Rt+RC+2r)+IRC−2I
(RC+r)=I(Rt−RC) になって、測温抵抗体Rtのリード線の抵抗値rの影響
を受けることなく精度の高い測定が行える。
As a result, the output voltage E of the operational amplifier OP 3
out is: E out = − (R 7 / R 5 ) V 1 − (R 7 / R 6 ) V 2 + [1+
{R 7 / (R 5 · R 6 / (R 5 + R 6 ))}] V B = − (V 1
/ 2) - (V 2/ 2) + 2V B = -IR C -V A -V b +2
V B = -IR C + I ( R t + R C + 2r) + IR C -2I
(R C + r) = I (R t −R C ), and highly accurate measurement can be performed without being affected by the resistance value r of the lead wire of the resistance bulb R t .

【0015】<銅系を用いる場合>測温抵抗体Rtとし
て銅系を用いるときは第1のスイッチSW1をオフにし
て第2のスイッチSW2をオンにし、定電流源CSは2
mAの電流Iを吸い込むものとする。このとき、端子A
の電位VA、端子Bの電位VB、端子bの電位Vbは白金
系の場合と同じになるが、演算増幅器OP4の出力電圧
4は0になる。
[0015] <When using copper-based> to turn on the second switch SW 2 in the first off the switch SW 1 when a copper-based as RTD R t, the constant current source CS 2
It is assumed that a current I of mA is drawn. At this time, the terminal A
Potential V A, the potential of the terminal B V B, although the potential V b of the terminal b is the same as the case of platinum-based, the output voltage V 4 of the operational amplifier OP 4 becomes zero.

【0016】これらから、演算増幅器OP1の出力電圧
1は、 V1=−(R3/R1)V4+{1+(R3/R1)}VA
2VA になり、演算増幅器OP2の出力電圧V2は、 V2=−(R4/R2)V4+{1+(R4/R2)}Vb
2Vb になる。
From these, the output voltage V 1 of the operational amplifier OP 1 is given by: V 1 = − (R 3 / R 1 ) V 4 + {1+ (R 3 / R 1 )} V A =
2V A , and the output voltage V 2 of the operational amplifier OP 2 becomes V 2 = − (R 4 / R 2 ) V 4 + {1+ (R 4 / R 2 )} V b =
2 Vb .

【0017】この結果、演算増幅器OP3の出力電圧E
outは、 Eout=−(V1/2)−(V2/2)+2VB=−VA
b+2VB=I(Rt+RC+2r)+IRC−2I(RC
+r)=IRt になって、白金系の場合と同じように測温抵抗体Rt
リード線の抵抗値rの影響を受けることなく精度の高い
測定が行える。
As a result, the output voltage E of the operational amplifier OP 3
out is, E out = - (V 1 /2) - (V 2/2) + 2V B = -V A -
V b + 2V B = I ( R t + R C + 2r) + IR C -2I (R C
+ R) = become IR t, enabling measurement with high accuracy without being affected by the resistance value r of the leads just as RTD R t in the case of platinum-based.

【0018】そして、この場合の出力電圧Eoutのノイ
ズマージンに着目すると、出力電圧Eoutは図3にやや
太い破線で示すように100mVを起点にする位置にシ
フトすることになり、図2の従来の構成に比べて大幅に
改善されることになる。このように構成することによ
り、同一の測温抵抗体回路で白金系と銅系の測温抵抗体
tを混在使用しても従来のようにノイズマージンが大
きく低下することはなく、いずれの測温抵抗体Rtであ
ってもリード線の抵抗値rの影響を受けることなく精度
の高い測定が行えるので、記録計やデータロガーなどの
組み込み回路としても好適である。
[0018] Then, focusing on the noise margin of the output voltage E out of this case, the output voltage E out will be shifted to a position starting from the 100mV as indicated by a slightly thick broken line in FIG. 3, in FIG. 2 This is a great improvement over the conventional configuration. With such a configuration, the same resistance temperature detector circuit be mixed using RTD R t of platinum-based and copper-based in never noise margin is greatly reduced as in the prior art either since perform measurement with high accuracy without being affected by the temperature measuring resistor R t is a the resistance value r also lead, is also suitable as embedded circuits such as a recorder or data logger.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
比較的簡単な回路構成で、測温抵抗体Rtとして銅系を
用いた場合であっても十分なノイズマージンが確保でき
るとともに、測温抵抗体のリード線の抵抗値の影響を受
けることなく精度の高い温度測定が行える測温抵抗体回
路を実現することができる。
As described above, according to the present invention,
In a relatively simple circuit configuration, the copper can be secured a sufficient noise margin in the case of using as a measuring resistor R t, without being affected by the resistance of the RTD leads It is possible to realize a resistance thermometer circuit capable of performing highly accurate temperature measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing one embodiment of the present invention.

【図2】従来の測温抵抗体回路の一例を示す回路図であ
る。
FIG. 2 is a circuit diagram showing an example of a conventional resistance temperature detector circuit.

【図3】図1および図2の動作説明図である。FIG. 3 is an operation explanatory diagram of FIGS. 1 and 2;

【図4】従来の測温抵抗体回路のノイズマージンの説明
図である。
FIG. 4 is an explanatory diagram of a noise margin of a conventional resistance temperature detector circuit.

【符号の説明】[Explanation of symbols]

t 測温抵抗体 RC 基準抵抗 OP 演算増幅器 CS 定電流源 SW スイッチR t RTD R C reference resistance OP Operational amplifier CS Constant current source SW switch

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】3端子A,B,bを有する測温抵抗体Rt
と、 測温抵抗体Rtの端子Aに接続された電流源と、 測温抵抗体Rtの端子bと共通電位点間に接続された抵
抗値が既知の基準抵抗RCと、 測温抵抗体Rtの端子Aの出力電圧と第4の演算増幅器
の出力電圧との差を演算出力する第1の演算増幅器と、 測温抵抗体Rtの端子bの出力電圧と第4の演算増幅器
の出力電圧との差を演算出力する第2の演算増幅器と、 これら第1の演算増幅器の出力電圧と第2の演算増幅器
の出力電圧の和と測温抵抗体Rtの端子Bの出力電圧と
の差を演算出力する第3の演算増幅器と、 基準抵抗RCと測温抵抗体Rtの端子bとの接続点に接続
された第1のスイッチと、 基準抵抗RCと共通電位点との接続点に接続された第2
のスイッチと、 これら第1,第2のスイッチの出力側が非反転入力端子
に接続されボルテージフォロワとして動作する第4の演
算増幅器を設け、 測温抵抗体Rtとして白金系を用いるときは第1のスイ
ッチをオンにして第2のスイッチをオフにし、測温抵抗
体Rtとして銅系を用いるときは第1のスイッチをオフ
にして第2のスイッチをオンすることを特徴とする測温
抵抗体回路。
1. A resistance thermometer R t having three terminals A, B and b.
When a current source connected to the terminal A of the RTD R t, connected resistance between the common potential point and the terminal b of the RTD R t is a known reference resistance R C, temperature measurement first operational amplifier and, calculating the output voltage and the fourth terminal b of RTD R t for calculating outputting a difference between the output voltage and the output voltage of the fourth operational amplifier terminal a of the resistor R t a second operational amplifier which calculates and outputs the difference between the output voltage of the amplifier, the output terminal B of the first operational amplifier output voltage and a second sum of the output voltage of the operational amplifier and the temperature measuring resistor R t third operational amplifier and a first switch connected to a connection point between the terminal b of the reference resistor R C and the temperature measuring resistor R t, the reference resistor R C to a common potential for calculating outputting a difference between the voltage The second connected to the connection point with the point
And switch, these first, the fourth operational amplifier output of the second switch is operated as a non-inverting input connected to a voltage follower to the terminal provided, when using a platinum-based as RTD R t first and the switch is turned on to turn off the second switch, when using copper-based as RTD R t resistance thermometer, characterized in that turning on the second switch to turn off the first switch Body circuit.
JP10273694A 1994-05-17 1994-05-17 RTD circuit Expired - Fee Related JP3158862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10273694A JP3158862B2 (en) 1994-05-17 1994-05-17 RTD circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10273694A JP3158862B2 (en) 1994-05-17 1994-05-17 RTD circuit

Publications (2)

Publication Number Publication Date
JPH07311096A JPH07311096A (en) 1995-11-28
JP3158862B2 true JP3158862B2 (en) 2001-04-23

Family

ID=14335535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10273694A Expired - Fee Related JP3158862B2 (en) 1994-05-17 1994-05-17 RTD circuit

Country Status (1)

Country Link
JP (1) JP3158862B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250594B1 (en) * 2013-10-10 2021-05-12 (주)아모레퍼시픽 Method for evaluating skin elasticity using mold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111751017A (en) * 2020-07-03 2020-10-09 格力电器(郑州)有限公司 Air conditioner temperature sensing bulb detection circuit and air conditioner temperature sensing bulb detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250594B1 (en) * 2013-10-10 2021-05-12 (주)아모레퍼시픽 Method for evaluating skin elasticity using mold

Also Published As

Publication number Publication date
JPH07311096A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
JPS63108499A (en) Method of determining tap position of resistance remote transmitter and circuit apparatus for implementing the same
JP3158862B2 (en) RTD circuit
JPH0330918B2 (en)
JPS5868615A (en) Output circuit of magnetic type rotary encoder
US5119096A (en) Analog to frequency converter with balancing compensation cycles
JPH0511476Y2 (en)
JP2001249150A (en) Resistance value measuring apparatus
JP3161311B2 (en) RTD circuit
JPS5816073Y2 (en) Resistance/electrical signal converter
JPH076850B2 (en) Temperature measurement circuit
JP2512934B2 (en) Temperature measurement circuit
JP3937364B2 (en) Voltage / resistance generator
JPS6221958Y2 (en)
JPH0241546Y2 (en)
JPH0455729A (en) Temperature measuring resistor circuit
US4047087A (en) Electromechanical transducer
JPS59212008A (en) Input device
RU2099722C1 (en) Low-resistance meter
JPS6316970Y2 (en)
JPH03291543A (en) Detector amplifier
JP3156331B2 (en) measuring device
SU1185271A1 (en) Apparatus for measuring current follower gain factor
JPH063463B2 (en) Electricity detector for signal source
JPH0519951B2 (en)
JPH0743624Y2 (en) Temperature measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees