JPH03291543A - Detector amplifier - Google Patents

Detector amplifier

Info

Publication number
JPH03291543A
JPH03291543A JP9332390A JP9332390A JPH03291543A JP H03291543 A JPH03291543 A JP H03291543A JP 9332390 A JP9332390 A JP 9332390A JP 9332390 A JP9332390 A JP 9332390A JP H03291543 A JPH03291543 A JP H03291543A
Authority
JP
Japan
Prior art keywords
detection
input terminal
constant current
operational amplifier
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9332390A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sone
清 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUTETSUKU KK
Hakusan Corp
Original Assignee
ARUTETSUKU KK
Hakusan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUTETSUKU KK, Hakusan Corp filed Critical ARUTETSUKU KK
Priority to JP9332390A priority Critical patent/JPH03291543A/en
Publication of JPH03291543A publication Critical patent/JPH03291543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To share one optional amplifier by supplying a constant current for detection to a 3rd detection input terminal through a three-wire type resistance bulb at the time of temperature measurement processing and cutting off the constant current for detection at the time of impedance conversion processing. CONSTITUTION:At the time of the temperature measurement processing, the constant current IO for detection which is supplied from a constant current source 4 to a 1st detection input terminal A through a constant current interruption means 5 for detection forming a conduction path is supplied to the 3rd detection input terminal C through the three-wire resistance bulb Rx. The operational amplifier 1 outputs a detection output voltage which is proportional to the resistance value of the resistance bulb Rx varying depending upon the temperature of an object of measurement and released from the error based upon the resistance of a lead wire attached to the resistance bulb Rx. At the time of the impedance conversion processing, the constant current interruption means 5 for detection cuts off the constant current IO for detection. In this case, a detection input terminal A is opened, the operational amplifier 1 constitutes a voltage follower between 2nd and 3rd detection input terminals B and C, and a DC voltages Vs applied between the terminals B and C is impedance- converted by the operational amplifier 1 and outputted.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、白金等から成る3線式測温抵抗体の抵抗値
変化依存で温度計測を行う際に用いられる検知増幅器に
関連し、とりわけ他の計測要素であって、電圧で表わさ
れるものを取り扱う際に。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a sense amplifier used when measuring temperature depending on resistance change of a three-wire resistance temperature detector made of platinum or the like, and particularly relates to When dealing with other measurement elements expressed in voltage.

1個の演算増幅器を抵抗値変化依存の温度計測用と、電
圧値依存の他要素の計測用とで切換え使用を可能にした
改良に関するものである。
This invention relates to an improvement in which one operational amplifier can be used for temperature measurement dependent on resistance value changes and for measurement of other elements dependent on voltage values.

〈従来の技術〉 従前、この種の検知増幅器では、3線式測温抵抗体の抵
抗値を検知する際には、その抵抗体に所定の定電流を通
ずる必要があるが1通常的には。
<Prior art> Conventionally, in this type of sense amplifier, when detecting the resistance value of a three-wire resistance temperature detector, it was necessary to pass a predetermined constant current through the resistor. .

かかる検知用定電流が、演算増幅器の反転入力端子に繋
がる検知入力端子経由でrcIl外の該抵抗体に供給さ
れるのに対して、例えば風速計に連動する発電機出力を
信号処理して得られる直流電圧等のように電圧で表わさ
れる入力信号を高入力インピーダンスで取り込んで低出
力インピーダンスで、出力する際には、演算増幅器が、
通常的には、ボルテージフォロアを構成するように結線
されるので、該増幅器の反転入力端子は、帰還抵抗経由
で該増幅器の出力端子に接続され、入力信号は該増幅器
の非反転入力端子に供給される。かくして、3線式測温
抵抗体の抵抗値を検知するためのものと、直流電圧をイ
ンピーダンス変換するためのものとでは、演算増幅器の
結線態様がまるで相違するので、公知の回路結線では、
これら2種類の信号処理に関して、演算増幅器の共用は
困難であり、結局、別個独立の演算増幅器を用いた別個
独立の信号処理回路が上述の2s類の信号処理について
必要であった。
The constant current for detection is supplied to the resistor outside the rcIl via the detection input terminal connected to the inverting input terminal of the operational amplifier. When an input signal expressed as a voltage, such as a DC voltage, is taken in with a high input impedance and outputted with a low output impedance, an operational amplifier
Usually, the wires are connected to form a voltage follower, so the inverting input terminal of the amplifier is connected to the output terminal of the amplifier via a feedback resistor, and the input signal is supplied to the non-inverting input terminal of the amplifier. be done. In this way, the operational amplifier wiring configurations are completely different between those for detecting the resistance value of a three-wire resistance temperature detector and those for converting DC voltage into impedance, so in the known circuit wiring,
Regarding these two types of signal processing, it is difficult to share an operational amplifier, and in the end, separate signal processing circuits using separate operational amplifiers are required for the above-mentioned 2s type signal processing.

従って、その分だけ構成部品数が増加し回路構成も複雑
になるという問題点があった。
Therefore, there is a problem that the number of component parts increases and the circuit configuration becomes complicated.

く問題点を解決するための手段〉 この発明は、上記回路構成上の制約による演算増幅器の
共用困燵の問題点に鑑み、温度計測処理時には、第1図
に示されるように、入力抵抗器3経由で演算増幅器1の
反転入力端子に接続された第1の検知入力端子Aに検知
用定電流源4を検知用定電流遮断手段5経由で接続し、
この第1の検知入力端子Aと、演算増幅器lの非反転入
力端子に接続された!$2の検知入力端子Bとt源帰線
Gに接続された第3の検知入力端子Cの3端子間に3線
式測温抵抗体を接続し、一方、インピーダンス変換処理
時には、第2図に示されるように、第1の検知入力端子
Aへの検知用定電流源4の接続を検知用定電流遮断手段
5で開放し、演算増幅器1の非反転入力端子に接続され
た第2の検知入力端子Bと既述の第3の検知入力端子C
の2端子間に直流電圧の入力信号を接続するように構成
することで、唯一の演算増幅器を温度計測処理時とイン
ピーダンス変換処理時とで共用可能とし、これにより構
成部品数を大幅に逓減し1回路構成自体をも簡潔なもの
にした優れた検知増幅器を提供せんとするものである。
Means for Solving the Problems> In view of the problem of the difficulty of sharing operational amplifiers due to the above-mentioned circuit configuration constraints, the present invention provides a method for solving the problems of input resistors during temperature measurement processing, as shown in FIG. A constant current source 4 for detection is connected to the first detection input terminal A connected to the inverting input terminal of the operational amplifier 1 via 3 via constant current interrupting means 5 for detection,
This first sensing input terminal A is connected to the non-inverting input terminal of the operational amplifier l! A three-wire resistance temperature detector is connected between the three terminals of the $2 detection input terminal B and the third detection input terminal C connected to the t source return line G. On the other hand, during impedance conversion processing, the As shown in FIG. Detection input terminal B and the third detection input terminal C mentioned above
By configuring the system so that a DC voltage input signal is connected between its two terminals, the only operational amplifier can be used for temperature measurement processing and impedance conversion processing, thereby significantly reducing the number of component parts. It is an object of the present invention to provide an excellent sense amplifier with a simple circuit configuration.

く作用〉 故にこの発明の構成は、温度計測処理時には、第1図に
示されるように、導電路を形成している検知用定電流遮
断手段5経由で検知用定電流源4から第1の検知入力端
子Aに供給される検知用定電流10が3線式測温抵抗体
Rx経由で@3の検知入力端子Cに流れ、これにより、
第1の検知入力端子A〜第3の検知入力端子C間には、
測温抵抗体の抵抗値Rxの端子間電圧降下分に2木分の
リード線抵抗値2「の電圧降下分を重畳した電圧Vaが
印加され、第2の検知入力端子B〜第3の検知入力端子
C間には、測温抵抗体の抵抗値R1の端子間電圧にl本
分のリード線抵抗rの電圧降下分を重畳した電圧vbが
印加され、これらの電圧Va、 Vbが各別に演算増幅
器lの反転入力端子と非反転入力端子とに、その順で供
給されて、演算増幅器lからは、被測定対象の温度依存
で変化する測温抵抗体の抵抗値に比例し、3線式測温抵
抗体付属のり一ト線抵抗由来の誤差から解放された検知
出力電圧が出力されるが、一方、インピーダンス変換処
理時には、第2図に示されるように、検知用定電流遮断
手段5で検知用定電流■0が遮断されて、この場合、第
1の検知入力端子Aが開放されていて、演算増幅器が第
2の検知入力端子B〜第3の検知用入力端子C間でボル
テージフォロアを構成し、これら両入力端子B、C間に
印加される直流電圧Vsが演算増幅器lでインピーダン
ス変換されて。
Therefore, in the configuration of the present invention, during temperature measurement processing, as shown in FIG. The constant current for detection 10 supplied to the detection input terminal A flows to the detection input terminal C of @3 via the 3-wire resistance temperature detector Rx, and as a result,
Between the first detection input terminal A and the third detection input terminal C,
A voltage Va obtained by superimposing the voltage drop of the resistance value 2 of the lead wire for two trees on the voltage drop between the terminals of the resistance value Rx of the resistance temperature sensor is applied, and the voltage Va is applied to the terminals of the resistance value Rx of the resistance temperature detector. A voltage vb is applied between the input terminals C, which is the voltage between the terminals of the resistance value R1 of the resistance temperature sensor and the voltage drop of one lead wire resistance r, and these voltages Va and Vb are separately It is supplied to the inverting input terminal and the non-inverting input terminal of the operational amplifier l in that order, and from the operational amplifier l, the three-wire signal is A detection output voltage that is free from errors caused by the linear resistance attached to the RTD is output, but on the other hand, during impedance conversion processing, as shown in FIG. In this case, the detection constant current ■0 is cut off, and in this case, the first detection input terminal A is open, and the operational amplifier generates a voltage between the second detection input terminal B and the third detection input terminal C. A follower is configured, and the DC voltage Vs applied between both input terminals B and C is impedance-converted by an operational amplifier l.

出力されるように作用する。It acts so that it is output.

〈実施例〉 第1図及び第2図に基づいて、この発明の一実施例の構
成と動作を以下に説明する。
<Embodiment> The configuration and operation of an embodiment of the present invention will be described below based on FIGS. 1 and 2.

第1図において、公知公用の演算増幅器lの出力端子は
検知出力端子りに接続され、さらに途中分岐で、該増幅
器の反転入力端子に戻されて該増幅器の出力端子と該反
転入力端子間には帰還抵抗器2が接続されている。演算
増幅器lの反転入力端子は途中分岐で、帰還抵抗器2と
同抵抗値の入力抵抗器3の一端に接続され、該抵抗器3
の他端は第1の検知入力端子Aに接続されている。演算
増幅器lの非反転入力端子の方は、第2の検知入力端子
Bに対して直接的に接続されている。第3の検知入力端
子Cは、演算増幅器lの電源*mG、典型的には、接地
に接続されている。そして、第1の検知入力端子Aには
、所定の電源線りから給電される公知公用の定電流源4
が検知用のものとして接続可能に配置されており、該定
電流s4と第1の検知入力端子Aとの間には、検知用定
電流遮断手段としてのスイッチ5が挿入されている。か
かる検知用定電流遮断手段に関しては、検知用定電流源
4の外部に設けられたスイッチ以外のものとして、該電
流源4の内部に設けられた電流調節回路等であって、定
電流値を零に調節可能なものであってもよいし、結局の
ところ、検知用定電流10の電流値を零に調節できるも
のはすべてここに言うところの検知用定電流遮断手段に
含まれる。
In FIG. 1, the output terminal of a publicly known operational amplifier l is connected to the detection output terminal, and is further returned to the inverting input terminal of the amplifier at a branch midway, and is connected between the output terminal of the amplifier and the inverting input terminal. is connected to feedback resistor 2. The inverting input terminal of the operational amplifier l is connected to one end of an input resistor 3 having the same resistance value as the feedback resistor 2 through a branch in the middle.
The other end is connected to the first detection input terminal A. The non-inverting input terminal of the operational amplifier l is directly connected to the second sensing input terminal B. The third sensing input terminal C is connected to the power supply *mG of the operational amplifier l, typically to ground. The first detection input terminal A is connected to a known public constant current source 4 that is supplied with power from a predetermined power line.
is arranged so as to be connectable as a detection device, and a switch 5 as a detection constant current cut-off means is inserted between the constant current s4 and the first detection input terminal A. Regarding the constant current interrupting means for detection, other than a switch provided outside the constant current source 4 for detection, a current adjustment circuit or the like provided inside the current source 4 is used to control the constant current value. It may be adjustable to zero, and after all, any device that can adjust the current value of the detection constant current 10 to zero is included in the constant detection current interrupting means referred to herein.

上記構成において、先ず、装置が温度計測処理時に温度
検知用の検知増幅器として作動する場合には、第1、第
2、第3の各検知入力端子A、B、Cに3線式測温体、
典型的には白金線で構成されたものが接続され、スイッ
チ5が閉成されている。かかる測温体の等価回路を第1
図に記入すると、測温抵抗体Rx、つまり被測定対象の
温度依存で変化する抵抗と、同形状の3本のリード線由
来の3つの等値のリード線抵抗rで代表されるものとな
る。
In the above configuration, first, when the device operates as a detection amplifier for temperature detection during temperature measurement processing, a three-wire temperature measuring device is connected to each of the first, second, and third detection input terminals A, B, and C. ,
A wire typically made of platinum wire is connected, and the switch 5 is closed. The equivalent circuit of such a thermometer is the first
If you fill in the diagram, it will be represented by the resistance temperature detector Rx, that is, the resistance that changes depending on the temperature of the object to be measured, and the three lead wire resistances of equal value derived from three lead wires of the same shape. .

ここで、上述の抵抗値等に関して現実的な数値例を参考
までに挙げておくと、以下の通りであり、Rは(Rx+
r)に対して相対的に極めて大きな値に選定される。
Here, for reference, a realistic numerical example regarding the above-mentioned resistance value etc. is as follows, and R is (Rx +
r) is selected to have a relatively large value.

114温抵抗体Rx  、、、、o”cニーrtoo 
Q、 3500PPM/”Cリード線抵抗r 、、、、
 1Ω 検知用定電流10、、、、 2.857 mA帰還抵抗
器2及び入力抵抗器3の抵抗 R,,,,IO0にΩ そして、温度検知用の検知増幅器としての作動の詳細に
関し、第1図中に併記された電流等を参照しつつ続いて
以下に説明する。
114 temperature resistor Rx ,,, o”c knee rtoo
Q, 3500PPM/”C lead wire resistance r,,,,
1 Ω constant current for detection 10,..., 2.857 mA Ω for the resistance R,..., IO0 of feedback resistor 2 and input resistor 3. The following description will be made with reference to the currents and the like shown in the drawings.

検知用定電流源4からの検知用定電流10は11と12
に2分されて流れるが、R71CRx+r)に選定され
ているので、検知用定電流10のほとんどすべてがRx
側に流れ込む(i2= 10) 、従って、ノードaの
電圧Vaは、 Va  =  (r+Rx+r)I。
The detection constant current 10 from the detection constant current source 4 is 11 and 12.
However, since R71CRx+r) is selected, almost all of the detection constant current 10 flows through Rx.
(i2=10), so the voltage Va at node a is Va = (r+Rx+r)I.

となり、ノードbの電圧vbは、 Vb=  (r+Rx)IO となる。Therefore, the voltage vb of node b is Vb= (r+Rx)IO becomes.

そこで入力抵抗器3の端子間電圧Va−Vbは、Va 
−Vb= (r+ Rx+ r)10 −(r+Rx)
 1a= rI。
Therefore, the voltage Va-Vb between the terminals of the input resistor 3 is Va
-Vb= (r+Rx+r)10 -(r+Rx)
1a = rI.

であるので、結局、演算増幅器lの出力端子の電圧、即
ち検知出力端子りでの出力電圧VDは、V D  = 
Vb −(Va−Vb)  = (r+Rx)io−r
10  = RXIOとなる。
Therefore, the voltage at the output terminal of the operational amplifier l, that is, the output voltage VD at the detection output terminal, is V D =
Vb-(Va-Vb) = (r+Rx)io-r
10 = RXIO.

但し、vbは演算増幅器lの反転入力端子の電圧にも等
しく、(Va−Vb)は帰還抵抗器2の端子間電圧にも
等しい。
However, vb is also equal to the voltage at the inverting input terminal of the operational amplifier l, and (Va-Vb) is also equal to the voltage between the terminals of the feedback resistor 2.

以上のことから、検知出力端子りに現われる検知出力電
圧VDはリード線抵抗rの影響を全く受けないというこ
とが分る。
From the above, it can be seen that the detection output voltage VD appearing at the detection output terminal is not affected by the lead wire resistance r at all.

かくして、被測定対象の温度に晒されて、その温度依存
で変化する測温抵抗体の抵抗R1に正比例し、3線式測
温体のリード線抵抗由来の誤差から解放された検知出力
電圧VDが、温度計測の結果を表わす電気信号として、
増幅器外に出力されて1図外の表示装置や他の計装機器
に伝送される。
In this way, the detection output voltage VD is directly proportional to the resistance R1 of the resistance temperature detector, which changes depending on the temperature of the object to be measured, and is free from errors caused by the lead wire resistance of the three-wire temperature detector. is an electrical signal representing the result of temperature measurement.
It is output outside the amplifier and transmitted to a display device or other instrumentation equipment not shown in the figure.

次いで、装置がインピーダンス変換処理時に、例えば、
他の計測系からの出力信号(典型的には、風速計に連動
する発電機出力を整流して得られる直流電圧)等のため
の直流電圧検知用の検知増幅器として作動する場合には
、第2図に示されるように、第2の検知入力端子Bと第
3の検知入力端子C間に直流電圧の信号源Vsが接続さ
れ、スイッチ5が開成されている。この場合、演算増幅
器lに関しては、スイッチ5が開成され、しかも第1の
検知入力端子Aが開放されていることから、抵抗器3は
電気的に無意味な存在となり、結局、該増幅器1は、開
放された反転入力端子と出力端子との間に挿入された抵
抗器2を伴って、通常的なボルテージフォロアを構成す
る。
Then, when the device performs the impedance conversion process, for example,
When operating as a sense amplifier for detecting DC voltage for output signals from other measurement systems (typically DC voltage obtained by rectifying generator output linked to an anemometer), the As shown in FIG. 2, a DC voltage signal source Vs is connected between the second detection input terminal B and the third detection input terminal C, and the switch 5 is opened. In this case, as for the operational amplifier l, the switch 5 is open and the first detection input terminal A is open, so the resistor 3 becomes electrically meaningless, and as a result, the amplifier 1 , with a resistor 2 inserted between the open inverting input terminal and the output terminal, constitute a conventional voltage follower.

従って、第2、第3の検知入力端子B、C間に入力され
た直流電圧は、高入力インピーダンスで演算増幅器1に
供給され、利得lで増幅されて低出力インピーダンスで
検知出力端子りに出力される。
Therefore, the DC voltage input between the second and third detection input terminals B and C is supplied to the operational amplifier 1 with high input impedance, amplified with a gain of l, and outputted to the detection output terminal with low output impedance. be done.

かくして、例えば風速計等からの出力信号としての直流
電圧がここでインピーダンス変換されて図外の表示装置
や他の計装機器に伝送される。
Thus, for example, a DC voltage as an output signal from an anemometer or the like is impedance-converted and transmitted to a display device or other instrumentation equipment (not shown).

く効果〉 以上のようにこの発明によれば、温度計測処理時には、
検知用定電流遮断手段5経由で検知用定電流源4から演
算増幅器1の反転入力端子に繋がる第1の検知入力端子
A経由で3線式測温抵抗体Rxに検知用定電流10が供
給され、演算増幅器lからは3&1式測温抵抗体R1付
属のリード線由来の誤差なしで被測定対象の温度依存で
変化する測温抵抗体の抵抗値に比例する検知出力電圧が
出力されるが、一方、インピーダンス変換処理時には、
検知用定電流遮断手段5で検知用定電流10を遮断して
、第1の検知入力端子Aを開放し、演算増幅器lの非反
転入力端子に繋がる第2の検知入力端子Bと帰線間で演
算増幅器lをボルテージフォロアに結線する構成とした
ことにより、温度計測処理時とインピーダンス変換処理
時とで唯一の演算増幅器lを共用することができるので
、構成部品数が大幅に低減し、回路構成自体もすこぶる
簡潔なものになるという優れた効果が奏される。
Effect> As described above, according to the present invention, during temperature measurement processing,
A constant current for detection 10 is supplied from the constant current source for detection 4 to the three-wire resistance temperature detector Rx via the first detection input terminal A connected to the inverting input terminal of the operational amplifier 1 via the constant current for detection interrupting means 5. The operational amplifier l outputs a detection output voltage that is proportional to the resistance value of the resistance temperature detector, which changes depending on the temperature of the object to be measured, without any error caused by the lead wire attached to the 3 & 1 type resistance temperature detector R1. , On the other hand, during impedance conversion processing,
The detection constant current interrupting means 5 interrupts the detection constant current 10, opens the first detection input terminal A, and connects the return line to the second detection input terminal B connected to the non-inverting input terminal of the operational amplifier l. By configuring the operational amplifier l to be connected to the voltage follower, the only operational amplifier l can be used in both temperature measurement processing and impedance conversion processing, which greatly reduces the number of components and reduces the circuit complexity. This has the excellent effect of making the structure itself extremely simple.

しかも温度計測処理動作とインピーダンス変換処理動作
の切換え操作に関しては、検知用定電流遮断手段5、典
型的にはスイッチの開閉を行い、第1.第2、第3の検
知入力端子A、B、C間に接続される3線式測温抵抗体
と第1.第2の検知入力端子B、C間に接続される直流
電圧の信号源とを接続交換すれば足りるので、取り扱い
が簡便であるという利点もある。
Moreover, for the switching operation between the temperature measurement processing operation and the impedance conversion processing operation, the detection constant current interrupting means 5, typically a switch, is opened and closed, and the first. A three-wire resistance temperature detector connected between the second and third detection input terminals A, B, and C; Since it is sufficient to connect and exchange the DC voltage signal source connected between the second detection input terminals B and C, there is an advantage that handling is simple.

5 、、、、検知用定電流遮断手段 A、B、C,,、、第1.第2、第3の検知入力端子D
 、、、検知出力端子
5. Detection constant current interrupting means A, B, C, . . . 1st. Second and third detection input terminals D
,,,Detection output terminal

Claims (1)

【特許請求の範囲】 演算増幅器1と、 演算増幅器1の出力端子に接続された検知出力端子Dと
、 演算増幅器1の出力端子と該増幅器の反転入力端子との
間に接続された帰還抵抗器2と、 演算増幅器1の反転入力端子にその一端が接続された入
力抵抗器3と、 入力抵抗器3の他端に接続された第1の検出入力端子A
と、 演算増幅器1の非反転入力端子に接続された第2の検知
入力端子Bと、 演算増幅器1の電源帰線Gに接続された第3の検知入力
端子Cと、 第1の検知入力端子Aに接続され、該端子に検知用定電
流10を供給可能な検知用定電流源4と、検知用定電流
源4から第1の検知入力端子Aに供給される検知用定電
流10を遮断する検知用定電流遮断手段5と を備えて成る検知増幅器。
[Claims] An operational amplifier 1; a detection output terminal D connected to the output terminal of the operational amplifier 1; and a feedback resistor connected between the output terminal of the operational amplifier 1 and the inverting input terminal of the amplifier. 2, an input resistor 3 whose one end is connected to the inverting input terminal of the operational amplifier 1, and a first detection input terminal A connected to the other end of the input resistor 3.
, a second sensing input terminal B connected to the non-inverting input terminal of the operational amplifier 1, a third sensing input terminal C connected to the power supply return line G of the operational amplifier 1, and a first sensing input terminal. A is connected to the detection constant current source 4 that can supply the detection constant current 10 to the terminal, and the detection constant current 10 supplied from the detection constant current source 4 to the first detection input terminal A is cut off. A detection amplifier comprising a detection constant current interrupting means 5.
JP9332390A 1990-04-09 1990-04-09 Detector amplifier Pending JPH03291543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9332390A JPH03291543A (en) 1990-04-09 1990-04-09 Detector amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9332390A JPH03291543A (en) 1990-04-09 1990-04-09 Detector amplifier

Publications (1)

Publication Number Publication Date
JPH03291543A true JPH03291543A (en) 1991-12-20

Family

ID=14079078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9332390A Pending JPH03291543A (en) 1990-04-09 1990-04-09 Detector amplifier

Country Status (1)

Country Link
JP (1) JPH03291543A (en)

Similar Documents

Publication Publication Date Title
JP3075072B2 (en) Temperature converter
JPH03291543A (en) Detector amplifier
JPH0766480B2 (en) Measuring head
US9470580B2 (en) Infrared sensor
JP3937364B2 (en) Voltage / resistance generator
JP3158862B2 (en) RTD circuit
JPS59212997A (en) Multipoint input switch
JPS5816073Y2 (en) Resistance/electrical signal converter
JPS582085A (en) Hall element device
JPS59212008A (en) Input device
JPH0641174Y2 (en) Voltage-current measuring device
JP3156331B2 (en) measuring device
JPS63304123A (en) Temperature measuring circuit
JP2512934B2 (en) Temperature measurement circuit
JPS5812142Y2 (en) Micro resistance change measuring device
JPS6361917A (en) Multipoint measuring instrument
JPS6221958Y2 (en)
RU2024831C1 (en) Device for measuring pressure
JPH032533A (en) Resistance bulb circuit
JPH0434323A (en) Resistance thermometer
SU983553A1 (en) Measuring converter
JPH063463B2 (en) Electricity detector for signal source
JPS6143650B2 (en)
JP3521094B2 (en) Oxygen concentration measurement device
JP2531786Y2 (en) Temperature measuring device