JP3937364B2 - Voltage / resistance generator - Google Patents

Voltage / resistance generator Download PDF

Info

Publication number
JP3937364B2
JP3937364B2 JP26553497A JP26553497A JP3937364B2 JP 3937364 B2 JP3937364 B2 JP 3937364B2 JP 26553497 A JP26553497 A JP 26553497A JP 26553497 A JP26553497 A JP 26553497A JP 3937364 B2 JP3937364 B2 JP 3937364B2
Authority
JP
Japan
Prior art keywords
resistance
voltage
mode
converter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26553497A
Other languages
Japanese (ja)
Other versions
JPH11108774A (en
Inventor
良雄 小熊
正 山本
Original Assignee
横河メータ&インスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河メータ&インスツルメンツ株式会社 filed Critical 横河メータ&インスツルメンツ株式会社
Priority to JP26553497A priority Critical patent/JP3937364B2/en
Publication of JPH11108774A publication Critical patent/JPH11108774A/en
Application granted granted Critical
Publication of JP3937364B2 publication Critical patent/JP3937364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する分野】
本発明は電圧・抵抗発生測定装置に関し、特に測温抵抗体温度計を校正するための電子的な等価抵抗発生機能、測温抵抗体による温度測定機能、熱電対温度計を校正するための等価電圧発生機能、熱電対による温度測定機能などを組み込んだ装置を簡単な回路構成で実現するものである。
【0002】
【従来の技術】
石油精製や化学プラントなどに代表される工業計測分野における温度測定手段として、測温抵抗体や熱電対が広く使われている。ここで、測温抵抗体は測定対象である温度を測温抵抗体の抵抗値の変化として測定するものであり、熱電対は測定対象である温度を熱電対が出力する熱起電力の値から求めるものである。
【0003】
一般にこれら測温抵抗体や熱電対は温度センサとして単体で取り扱われるものであり、温度測定にあたっては測温抵抗体は抵抗値測定機能を有する測温抵抗体温度測定装置の入力端子に着脱可能に接続され、熱電対は電圧測定機能を有する熱電対温度測定装置の入力端子に着脱可能に接続される。
【0004】
ところで、これらの温度センサおよび温度測定装置は長期安定性に対する品質管理や回路設計上の配慮がなされてはいるものの、長期間にわたって使用している過程では測定場所の環境雰囲気ガスによる特性変化や断線、回路部品の経時変化に起因する測定値の変化などを生じることがあり、定期的にそれらの機能を点検校正して変化の動向を把握することが望ましい。
【0005】
従来、これらの温度センサおよび温度測定装置の点検校正にあたっては、それぞれの対象に適合した点検校正用の複数の装置を用いている。例えば点検校正の対象である抵抗値がRxの測温抵抗体に値が既知の定電流Isを供給して測温抵抗体に生じる電圧降下V(=Is・Rx)をデジタルボルトメータで測定してRxの値を求めたり、測温抵抗体と直列に基準抵抗を接続して測温抵抗体および基準抵抗の電圧降下をそれぞれ測定しその比演算から測温抵抗体の抵抗値を求めることが行われている。
【0006】
【発明が解決しようとする課題】
しかし、前者の方法によれば抵抗測定用に値の正確な独立した定電流源が必要であり、後者の方法によれば値の正確な定電流源は不要になるものの測温抵抗体が接続される温度測定装置の校正には別途測温抵抗体に相当する抵抗発生装置を準備しなければならない。
【0007】
一方、熱電対の点検校正にあたっては、熱電対の熱起電力に相当するmVの電圧を発生する装置と熱電対が発生するmVの熱起電力を精度よく測定できる装置が必要になる。
【0008】
測定現場にはこれら測温抵抗体と熱電対が混在することも多く、従来は複数の点検校正用装置を準備して測定現場に出向かなければならないことから機動性に欠けるという問題点があった。
【0009】
本発明はこのような問題点を解決するためになされたもので、その目的は、測温抵抗体と熱電対の校正機能およびこれら測温抵抗体または熱電対が接続される温度測定装置の校正機能を1台の装置に組み込み、かつそれぞれの機能に必要な回路素子を簡単な回路構成と切換回路とで共通に使用するようにした電圧・抵抗発生測定装置を提供することにある。
【0010】
【課題を解決するための手段】
前述した目的を達成するために、本発明のうちで請求項1記載の発明は、演算増幅器よりなる電流電圧変換回路と、変換係数が設定可能で前記電流電圧変換回路の出力に変換係数を乗算して変換出力するD−A変換器と、2系統の入力端子を有しこれら2入力の比率演算結果を変換出力するA−D変換器と、基準電圧源と、抵抗測定用定電流源と、信号発生モードと信号測定モードとを切り換える第1の切換スイッチ群と、抵抗モードと電圧モードとを切り換える第2の切換スイッチ群とで構成され、前記第1の切換スイッチ群は、信号発生モードでは前記電流電圧変換回路の出力をD−A変換器に加え、該D−A変換器の変換係数を設定することで信号を発生し、信号測定モードではA−D変換器の一方の入力端子に前記電流電圧変換回路の出力を加えるとともに他方の入力端子に被測定信号を加え、前記A−D変換器の変換出力で信号を測定するように切り換え、前記第2の切換スイッチ群は、抵抗モードでは前記電流電圧変換回路を構成する演算増幅器の非反転入力端子を共通電位点に接続するとともに反転入力端子には前記定電流源の出力電流又は被校正対象の抵抗測定装置の抵抗測定電流を加え、電圧モードでは前記電流電圧変換回路を構成する演算増幅器の非反転入力端子に前記基準電圧源の出力を加えるように切り換えることを特徴とする電圧・抵抗発生測定装置。
【0011】
これにより、1台の装置に抵抗信号発生、抵抗信号測定、電圧信号発生および電圧信号測定の機能を少ない回路素子で組み込むことができ、簡単な切り換え回路でこれらの機能の中から任意の機能を選択できる。
【0012】
本発明のうちで請求項2記載の発明は、請求項1の電圧・抵抗発生測定装置において、抵抗信号発生モードではD−A変換器の変換係数に応じて測温抵抗体の等価抵抗を発生し、抵抗信号測定モードでは測温抵抗体を温度センサとして温度測定することを特徴とする。
【0013】
これにより、測温抵抗体が接続される温度測定装置の保守調整などを実際の測温抵抗体を用いることなく高精度に行うことができ、測温抵抗体があれば直ちに温度を測定でき、また測温抵抗体が接続される温度測定装置の故障の有無を測温抵抗体で温度を実測して測定結果を比較することにより確認できる。
【0014】
本発明のうちで請求項3記載の発明は、請求項1の電圧・抵抗発生測定装置において、電圧信号発生モードではD−A変換器の変換係数に応じて熱電対の等価熱起電力を発生し、電圧信号測定モードでは熱電対を温度センサとして温度測定することを特徴とする。
【0015】
これにより、熱電対が接続される温度測定装置の保守調整などを実際の熱電対を用いることなく高精度に行うことができ、熱電対があれば直ちに温度を測定でき、また熱電対が接続される温度測定装置の故障の有無を熱電対で温度を実測して測定結果を比較することにより確認できる。
【0016】
本発明のうちで請求項4記載の発明は、請求項1の電圧・抵抗発生測定装置において、信号測定モードの測定結果をD−A変換器からアナログ信号として取り出すことを特徴とする。
【0017】
これにより、抵抗や電圧や温度等の測定結果を必要に応じてレコーダ等で記録できる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図により説明する。
図1は本発明に係わる電圧・抵抗発生測定装置の一実施例を示す回路構成図である。図において、T1,T2は装置の入出力端子である。S1a,S1bは電圧レンジmVまたは抵抗レンジΩを選択する切換スイッチであり、2個の切換スイッチは連動して切り換えられる。S2a〜S2dは信号発生モードSと測定モードMとを選択する切換スイッチであり、4個の切換スイッチは連動して切り換えられる。端子T1には切換スイッチS1bの可動接点が接続され、端子T2には切換スイッチS2c,S2dの可動接点が接続されている。
【0020】
1は電流電圧変換回路であり、増幅器A1と抵抗Rとで構成されていて、端子T1に印加される抵抗測定電流iを電圧V1に変換する。増幅器A1の非反転入力端子は切換スイッチS1aの可動接点に接続され、反転入力端子は切換スイッチS1bの一方の固定接点Ωに接続されるとともに抵抗Rの一端に接続されている。該抵抗Rの他端は増幅器A1の出力端子に接続されている。
【0021】
切換スイッチS1aの固定接点Ωと切換スイッチS1bの固定接点mVは共通電位点に接続されている。切換スイッチS1aの固定接点mVには基準電圧源Vrefのプラス端子が接続されている。該電流電圧変換回路1の出力端子はD−A変換器2に接続されるとともに、A−D変換器3の基準電圧VREFの入力端子に接続されている。D−A変換器2としては、パルス幅(PWM)で入出力関係が設定できる乗算型のものを用いる。D−A変換器2の出力端子は切換スイッチS2aの固定接点Sに接続されるとともに演算増幅器で構成されるバッファアンプ4を介して出力端子T3に接続されている。該出力端子T3には例えばアナログ信号を記録するためのレコーダを接続する。
【0022】
5も演算増幅器で構成されるバッファアンプである。該バッファアンプ5を構成する演算増幅器の非反転入力端子は切換スイッチS2bの固定接点Sに接続されるとともに切換スイッチS2dの固定接点Mに接続され、反転入力端子は切換スイッチS2bの固定接点Mに接続されるとともに切換スイッチS2dの固定接点Sに接続され、さらに出力端子は切換スイッチS2aの固定接点Mと切換スイッチS2cの固定接点SおよびA−D変換器3の電圧VINの入力端子に接続されている。ここでA−D変換器3は入力される電圧VINと基準電圧VREFとのレシオ演算を行ってその演算結果をマイクロプロセッサ6に出力する。
【0023】
マイクロプロセッサ6は表示部7に表示データを出力するとともにD−A変換器2にパルス幅制御信号PWMを出力する。
8は抵抗測定用の内蔵定電流源であり、スイッチSWを介して切換スイッチS2cの固定接点Mに接続されている。
【0024】
このような構成において、切換スイッチS1a,S1bの可動接点を固定接点Ωに切り換えることにより抵抗モードになり、固定接点mVに切り換えることにより電圧モードになる。そして、抵抗モードにおいて切換スイッチS2a〜S2dの可動接点を固定接点Sに切り換えることにより図2に示すような抵抗発生モードになって固定接点Mに切り換えることにより図3に示すような抵抗測定モードになり、電圧モードにおいて切換スイッチS2a〜S2dの可動接点を固定接点Sに切り換えることにより図4に示すような電圧発生モードになって固定接点Mに切り換えることにより図5に示すような電圧測定モードになる。
【0025】
次に本発明の電圧・抵抗発生測定装置の各モードの動作を説明する。
図2に示す抵抗発生モードにおいて、被校正対象の抵抗測定装置から加えられる抵抗測定電流Iは電流電圧変換回路1により電圧V1に変換されてD−A変換器2に入力される。ここで、D−A変換器2に設定される変換係数をkとすると、端子T1,T2間の出力電圧V0は、
0=k・I・R
になる。そして、Req=V0、I=k・Rにより、任意の等価抵抗Reqを端子T1,T2間に得ることができる。
【0026】
このような抵抗発生モードにおいて、D−A変換器2の変換係数kを測温抵抗体の等価抵抗を発生できるようにマイクロプロセッサで設定することにより、測温抵抗体シミュレータとしての機能を持たせることができる。
【0027】
これにより、測温抵抗体が接続される温度測定装置の保守調整などを実際の測温抵抗体を用いることなく高精度に行うことができる。
図3に示す抵抗測定モードでは、定電流源8の出力電流iは端子T1,T2間に接続される被測定抵抗Rxに印加され、該被測定抵抗Rxを流れる電流iは電流電圧変換回路1により電圧に変換されて端子T1側の電圧としてA−D変換器3の基準電圧端子VREFに入力される。端子T2側の電圧はバッファアンプ5を介してA−D変換器3の電圧端子VINに入力される。A−D変換器3は以下のようにこれら入力電圧VINと基準電圧VREFの比率演算を行って変換出力する。
【0028】

Figure 0003937364
すなわち、A−D変換器3から変換出力される被測定抵抗Rxの抵抗測定値は基準抵抗Rとの比として定電流源8の出力電流iの値とは無関係に求めることができる。
【0029】
このような抵抗測定モードにおいて、マイクロプロセッサ内部にリニアライズ機能を持たせることにより、測温抵抗体を温度センサとする温度測定機能を持たせることができる。
【0030】
これにより、測温抵抗体があれば直ちに温度を測定でき、また測温抵抗体が接続される温度測定装置の故障の有無を測温抵抗体で温度を実測して測定結果を比較することにより確認できる。
【0031】
図4に示す電圧発生モードにおいて、D−A変換器2には電流電圧変換回路1を介して基準電圧源Vrefの出力電圧がV1=Vrefとして入力される。これにより、D−A変換器2の変換係数kの設定に応じて任意の電圧を発生させることができる。
【0032】
このような電圧発生モードにおいて、熱電対の熱起電力に相当するmVを発生できるように設定することにより、熱電対シミュレータとしての機能を持たせることができる。
【0033】
これにより、熱電対が接続される温度測定装置の保守調整などをダイヤル抵抗器等を用いることなく高精度に行うことができる。
図5に示す電圧測定モードにおいて、A−D変換器3の基準電圧端子VREFには電流電圧変換回路1を介して基準電圧源Vrefの出力電圧が入力され、A−D変換器3の電圧端子VINにはバッファアンプ5を介して端子T2側の電圧Vxが入力される。これにより、A−D変換器3はVx/Vrefの比率演算を行って変換出力する。
【0034】
このような電圧測定モードにおいて、mV測定として基準接点補償とマイクロプロセッサ内部にリニアライズ機能を持たせることにり、熱電対を温度センサとする温度測定機能を持たせることができる。
【0035】
これにより、熱電対があれば直ちに温度を測定でき、また熱電対が接続される温度測定装置の故障の有無を熱電対で温度を実測して測定結果を比較することにより確認できる。
【0036】
ところで、測温抵抗体を2線式、3線式、4線式のいずれで測定するかの抵抗測定切り換えは一般には切り換え回路で行われているが、本発明のように簡単な操作を意図した装置では被測定対象を接続することにより自動的に識別して測定できることが望ましい。
【0037】
図6は本発明に係わる装置でこのような点に着目した測温抵抗体測定回路の具体例図であり、図1と共通部分には同一符号を付けている。
図において、Rxは被測定対象の測温抵抗体であり、3本のリード線はそれぞれ端子Ta,Tb,Tcに接続されている。r1〜r3はリード線抵抗、r4は抵抗であり、r1=r2=r,r4>>r3とする。S1〜S3はアナログスイッチであり、S1は端子Taとバッファアンプ5(演算増幅器A2)の非反転入力端子の間に接続され、S2は端子Tcとバッファアンプ5の非反転入力端子の間に接続され、S3は端子Tbとバッファアンプ5の非反転入力端子の間に接続されている。演算増幅器A1の反転入力端子には端子Tbが直接接続されるとともに抵抗r4を介して端子Tcが接続されている。端子Taには定電流源8が接続されている。Vos1は演算増幅器A1のオフセット電圧、Vos2は演算増幅器A2のオフセット電圧である。
【0038】
このような構成において、アナログスイッチS1〜S3を順次選択的にオンにし、各検出電圧V1,V2,V3をバッファアンプ5を介してA−D変換器3にVINとして加える。A−D変換器3の基準電圧VREFとしてi・Rが印加される。マイクロプロセッサ6は、次式の演算を行う。
【0039】
V1−2・V2−V3
これにより、3線式接続の場合にはリード線抵抗とオフセットの補償が行われて2線式接続の場合にはオフセット補償のみが行われる。実際の使用にあたってはこれら3線式接続と2線式接続を意識しなくてもよく、装置が測温抵抗体の接続状態を自動識別して演算処理を実行する。
【0040】
2線式接続の場合端子Tcはオープンになって各検出電圧V1,V2,V3は以下のようになる。
1=Vos1+(Rx+2r)i+Vos2
2=Vos1 +Vos2
3=Vos1 +Vos2
そして演算結果は(Rx+2r)iになる。
【0041】
3線式接続の場合の各検出電圧V1,V2,V3は以下のようになる。
1=Vos1+(Rx+2r)i+Vos2
2=Vos1 +r・i+Vos2
3=Vos1 +Vos2
そして演算結果はRx・iになる。
【0042】
A−D変換器3では前述のようにVREFに対するVINの比が変換される。すなわち3線式の場合のA−D変換結果は、
Figure 0003937364
になる。
【0043】
なお抵抗r4の効果と影響は以下のようになる。
まず2線式接続の場合には端子Tcがオープンになっても抵抗r4を通してV2が測定される。
【0044】
3線式接続におけるV2は厳密に次のようになる。
Figure 0003937364
ここでr4>>r3であることから、
2=i・r+(Vos1+Vos2
になる。
【0045】
このように構成することにより、2線式接続の場合には2線測定が行われて3線式接続の場合にはリード線抵抗の影響を補償した3線測定が行われ、これらは特別なスイッチ切り換え操作なしに入力接続を自動識別することによって実行される。
【0046】
そして抵抗測定結果はRxとRの比率演算で得ることができ、定電流源の出力電流iの値に影響されることなく高精度の測定が可能になる。
さらに入力回路の増幅器のオフセット成分Vos1,Vos2は理論的に補正されることになり、誤差要因にはならない。
【0047】
【発明の効果】
以上説明したように、本発明のうち請求項1記載の発明によれば、1台の装置に抵抗信号発生、抵抗信号測定、電圧信号発生および電圧信号測定の機能を少ない回路素子で組み込むことができ、簡単な切り換え回路でこれらの機能の中から任意の機能を選択できる。
【0048】
本発明のうちで請求項2記載の発明によれば、測温抵抗体が接続される温度測定装置の保守調整などを実際の測温抵抗体を用いることなく高精度に行うことができ、測温抵抗体があれば直ちに温度を測定でき、また測温抵抗体が接続される温度測定装置の故障の有無を測温抵抗体で温度を実測して測定結果を比較することにより確認できる。
【0049】
本発明のうちで請求項3記載の発明によれば、熱電対が接続される温度測定装置の保守調整などを実際の熱電対を用いることなく高精度に行うことができ、熱電対があれば直ちに温度を測定でき、また熱電対が接続される温度測定装置の故障の有無を熱電対で温度を実測して測定結果を比較することにより確認できる。
【0050】
本発明のうちで請求項4記載の発明によれば、抵抗や電圧や温度等の測定結果を必要に応じてレコーダ等で記録できる。
【図面の簡単な説明】
【図1】本発明に係わる電圧・抵抗発生測定装置の一実施例を示す回路構成図である。
【図2】本発明の抵抗発生モードの動作説明図である。
【図3】本発明の抵抗測定モードの動作説明図である。
【図4】本発明の電圧発生モードの動作説明図である。
【図5】本発明の電圧測定モードの動作説明図である。
【図6】本発明の他の実施例の回路構成図である。
【符号の説明】
1 電流電圧変換回路
2 D−A変換器
3 A−D変換器
4,5 バッファアンプ
6 マイクロプロセッサ
7 表示部
8 内蔵定電流源
1a,S1b,S2a〜S2d 切換スイッチ
T1,T2,T3 端子
ref 基準電圧源[0001]
[Field of the Invention]
The present invention relates to a voltage / resistance generation measuring device, and more particularly, an electronic equivalent resistance generation function for calibrating a resistance thermometer, a temperature measurement function using a resistance thermometer, and an equivalent for calibrating a thermocouple thermometer. A device incorporating a voltage generation function, a temperature measurement function by a thermocouple, and the like is realized with a simple circuit configuration.
[0002]
[Prior art]
Resistance temperature detectors and thermocouples are widely used as temperature measurement means in the industrial measurement field represented by petroleum refining and chemical plants. Here, the resistance thermometer measures the temperature to be measured as a change in the resistance value of the resistance thermometer, and the thermocouple determines the temperature to be measured from the value of the thermoelectromotive force output from the thermocouple. It is what you want.
[0003]
In general, these resistance thermometers and thermocouples are handled as a single temperature sensor. When measuring temperature, the resistance thermometer can be attached to or removed from the input terminal of a resistance thermometer temperature measuring device that has a resistance measurement function. The connected thermocouple is detachably connected to an input terminal of a thermocouple temperature measuring device having a voltage measuring function.
[0004]
By the way, although these temperature sensors and temperature measuring devices are designed for quality control and circuit design for long-term stability, changes in characteristics and disconnection due to ambient atmospheric gas at the measurement site during long-term use. Changes in measured values due to changes over time in circuit components may occur, and it is desirable to periodically check and calibrate their functions to grasp the trend of changes.
[0005]
Conventionally, when inspecting and calibrating these temperature sensors and temperature measuring devices, a plurality of devices for inspection and calibration suitable for the respective objects are used. For example, a voltage drop V (= Is · Rx) generated in a resistance temperature detector is measured with a digital voltmeter by supplying a constant current Is having a known resistance value to the resistance temperature detector having a resistance value Rx to be inspected and calibrated. Rx value is obtained, or a reference resistor is connected in series with the resistance temperature detector to measure the voltage drop of the resistance temperature detector and the reference resistance, and the resistance value of the resistance temperature detector is obtained from the ratio calculation. Has been done.
[0006]
[Problems to be solved by the invention]
However, the former method requires an independent constant current source with an accurate value for resistance measurement, and the latter method eliminates the need for an accurate constant current source with a value, but a resistance temperature detector is connected. In order to calibrate the temperature measuring device, a resistance generator corresponding to a resistance temperature detector must be prepared separately.
[0007]
On the other hand, when inspecting and calibrating thermocouples, a device that generates a voltage of mV corresponding to the thermoelectromotive force of the thermocouple and a device that can accurately measure the thermoelectromotive force of mV generated by the thermocouple are required.
[0008]
In many cases, these resistance thermometers and thermocouples are mixed at the measurement site. Conventionally, multiple inspection and calibration devices have to be prepared and sent to the measurement site, resulting in a lack of mobility. It was.
[0009]
The present invention has been made to solve such problems, and its purpose is to calibrate a temperature measuring resistor and a thermocouple, and to calibrate a temperature measuring device to which these temperature measuring resistor or thermocouple is connected. An object of the present invention is to provide a voltage / resistance generation measuring apparatus in which functions are incorporated into one apparatus and circuit elements necessary for each function are commonly used in a simple circuit configuration and a switching circuit.
[0010]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention is a current-voltage conversion circuit comprising an operational amplifier, a conversion coefficient can be set, and the output of the current-voltage conversion circuit is multiplied by the conversion coefficient. A D-A converter for converting and outputting, an A-D converter having two input terminals for converting and outputting the ratio calculation result of these two inputs, a reference voltage source, and a constant current source for resistance measurement When, it is composed of a second switching switch group for switching the first switching switch group for switching a signal generating mode and a signal measurement mode, a resistance mode and voltage mode, the first changeover switch groups, signal generator In the mode, the output of the current-voltage conversion circuit is added to the DA converter, and a signal is generated by setting the conversion coefficient of the DA converter. In the signal measurement mode, one input of the AD converter is input. the current-voltage conversion times to the terminal The signal to be measured in addition to the other input terminal with added output, switched to measure a signal conversion output of the A-D converter, the second changeover switch group, the current-voltage conversion by the resistor mode the non-inverting output current or resistance measuring current of the calibration target resistance measuring device of the constant current source to the inverting input terminal with the input terminal connected to the common potential point of the operational amplifier constituting the circuit addition, said voltage mode voltage and resistance generating measuring apparatus characterized by switching to a non-inverting input terminal of the operational amplifier constituting the current-voltage conversion circuit so as to apply the output of the reference voltage source.
[0011]
As a result, the functions of resistance signal generation, resistance signal measurement, voltage signal generation and voltage signal measurement can be incorporated into a single device with few circuit elements, and any function can be selected from these functions with a simple switching circuit. You can choose.
[0012]
The invention according to claim 2 of the present invention is the voltage / resistance generation measuring device according to claim 1, wherein in the resistance signal generation mode , the equivalent resistance of the resistance temperature detector is generated according to the conversion coefficient of the DA converter. In the resistance signal measurement mode , the temperature is measured using the resistance temperature detector as a temperature sensor .
[0013]
As a result, maintenance and adjustment of the temperature measuring device to which the resistance temperature detector is connected can be performed with high accuracy without using an actual resistance temperature detector, and if there is a resistance temperature detector, the temperature can be measured immediately. Further, whether or not the temperature measuring device to which the resistance temperature detector is connected can be confirmed by measuring the temperature with the resistance temperature detector and comparing the measurement results.
[0014]
According to a third aspect of the present invention, in the voltage / resistance generation measuring apparatus according to the first aspect, in the voltage signal generation mode , an equivalent thermoelectromotive force of the thermocouple is generated in accordance with a conversion coefficient of the DA converter. In the voltage signal measurement mode , the temperature is measured using a thermocouple as a temperature sensor .
[0015]
As a result, maintenance and adjustment of the temperature measuring device to which the thermocouple is connected can be performed with high accuracy without using an actual thermocouple, and if there is a thermocouple, the temperature can be measured immediately, and the thermocouple is connected. The presence or absence of failure of the temperature measuring device can be confirmed by actually measuring the temperature with a thermocouple and comparing the measurement results.
[0016]
According to a fourth aspect of the present invention, the voltage / resistance generation measuring apparatus according to the first aspect is characterized in that the measurement result in the signal measurement mode is taken out from the DA converter as an analog signal.
[0017]
Thereby, measurement results, such as resistance, a voltage, and temperature, can be recorded with a recorder etc. as needed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit configuration diagram showing an embodiment of a voltage / resistance generation measuring apparatus according to the present invention. In the figure, T1 and T2 are input / output terminals of the apparatus. S 1a and S 1b are changeover switches for selecting the voltage range mV or the resistance range Ω, and the two changeover switches are switched in conjunction with each other. S 2a to S 2d are changeover switches for selecting the signal generation mode S and the measurement mode M, and the four changeover switches are switched in conjunction with each other. The movable contact of the changeover switch S 1b is connected to the terminal T1, and the movable contact of the changeover switches S 2c and S 2d is connected to the terminal T2.
[0020]
Reference numeral 1 denotes a current-voltage conversion circuit, which includes an amplifier A1 and a resistor R, and converts a resistance measurement current i applied to a terminal T1 into a voltage V1. The non-inverting input terminal of the amplifier A1 is connected to the movable contact of the changeover switch S 1a, an inverting input terminal connected to one end of the resistor R is connected to one fixed contact Ω of the switch S 1 b. The other end of the resistor R is connected to the output terminal of the amplifier A1.
[0021]
Stationary contact mV fixed contact Ω and the changeover switch S 1b of the changeover switch S 1a is connected to the common potential point. The positive terminal of the reference voltage source Vref is connected to the fixed contact mV of the changeover switch S 1a . The output terminal of the current / voltage conversion circuit 1 is connected to the D / A converter 2 and to the input terminal of the reference voltage V REF of the A / D converter 3. As the DA converter 2, a multiplying type that can set an input / output relationship with a pulse width (PWM) is used. Output terminals of the D-A converter 2 is connected to the output terminal T3 via the configured buffer amplifier 4 in the operational amplifier is connected to the fixed contact S of the changeover switch S 2a. For example, a recorder for recording an analog signal is connected to the output terminal T3.
[0022]
Reference numeral 5 denotes a buffer amplifier including an operational amplifier. The non-inverting input terminal of the operational amplifier constituting the buffer amplifier 5 is connected is connected to the fixed contact S of the changeover switch S 2b to the fixed contact M of the switch S 2d, the inverting input terminal is fixed changeover switch S 2b is connected to the fixed contact S of the changeover switch S 2d is connected to the contact M, further fixed contact S and the voltage of the a-D converter 3 V fixed contact M and the changeover switch S 2c of the output terminal changeover switch S 2a Connected to the IN input terminal. Here, the AD converter 3 performs a ratio calculation between the input voltage V IN and the reference voltage V REF, and outputs the calculation result to the microprocessor 6.
[0023]
The microprocessor 6 outputs display data to the display unit 7 and also outputs a pulse width control signal PWM to the DA converter 2.
Reference numeral 8 denotes a built-in constant current source for resistance measurement, which is connected to the fixed contact M of the changeover switch S2c via the switch SW.
[0024]
In such a configuration, when the movable contacts of the changeover switches S 1a and S 1b are switched to the fixed contact Ω, the resistance mode is set, and by switching to the fixed contact mV, the voltage mode is set. Then, by switching the movable contacts of the changeover switches S 2a to S 2d to the fixed contact S in the resistance mode, the resistance generation mode as shown in FIG. When the movable contact of the changeover switches S 2a to S 2d is switched to the fixed contact S in the voltage mode, the voltage generation mode as shown in FIG. The voltage measurement mode is set.
[0025]
Next, the operation of each mode of the voltage / resistance generation measuring apparatus of the present invention will be described.
In the resistance generation mode shown in FIG. 2, the resistance measurement current I applied from the resistance measuring device to be calibrated is converted into the voltage V 1 by the current-voltage conversion circuit 1 and input to the DA converter 2. Here, if the conversion coefficient set in the DA converter 2 is k, the output voltage V 0 between the terminals T1 and T2 is
V 0 = k · I · R
become. An arbitrary equivalent resistance R eq can be obtained between the terminals T1 and T2 by R eq = V 0 and I = k · R.
[0026]
In such a resistance generation mode, the conversion coefficient k of the DA converter 2 is set by a microprocessor so that the equivalent resistance of the resistance temperature detector can be generated, thereby providing a function as a resistance temperature detector simulator. be able to.
[0027]
Thereby, maintenance adjustment of the temperature measuring device to which the resistance temperature detector is connected can be performed with high accuracy without using an actual resistance temperature detector.
In the resistance measurement mode shown in FIG. 3, the output current i of the constant current source 8 is applied to the measured resistance Rx connected between the terminals T1 and T2, and the current i flowing through the measured resistance Rx is the current-voltage conversion circuit 1. The voltage is converted to a voltage by the terminal T1, and is input to the reference voltage terminal VREF of the AD converter 3 as a voltage on the terminal T1 side. The voltage on the terminal T2 side is input to the voltage terminal VIN of the A / D converter 3 via the buffer amplifier 5. The AD converter 3 performs a ratio calculation between the input voltage V IN and the reference voltage V REF as follows, and converts and outputs the result.
[0028]
Figure 0003937364
That is, the resistance measurement value of the measured resistance Rx converted and output from the A / D converter 3 can be obtained as a ratio with the reference resistance R irrespective of the value of the output current i of the constant current source 8.
[0029]
In such a resistance measurement mode, by providing a linearization function inside the microprocessor, it is possible to provide a temperature measurement function using the resistance temperature detector as a temperature sensor.
[0030]
As a result, if there is a resistance temperature detector, the temperature can be measured immediately, and the temperature measuring device to which the resistance temperature detector is connected can be measured for failure by measuring the temperature with the resistance temperature detector and comparing the measurement results. I can confirm.
[0031]
In the voltage generation mode shown in FIG. 4, the D-A converter 2 output voltage of the reference voltage source V ref via a current-voltage conversion circuit 1 is inputted as V 1 = V ref. Thereby, an arbitrary voltage can be generated according to the setting of the conversion coefficient k of the DA converter 2.
[0032]
In such a voltage generation mode, a function as a thermocouple simulator can be provided by setting so that mV corresponding to the thermoelectromotive force of the thermocouple can be generated.
[0033]
Thereby, maintenance adjustment of the temperature measuring device to which the thermocouple is connected can be performed with high accuracy without using a dial resistor or the like.
In the voltage measurement mode shown in FIG. 5, the output voltage of the reference voltage source Vref is input to the reference voltage terminal V REF of the A / D converter 3 via the current-voltage conversion circuit 1, and the voltage of the A / D converter 3 is A voltage Vx on the terminal T2 side is input to the terminal V IN via the buffer amplifier 5. As a result, the A-D converter 3 performs a ratio calculation of Vx / Vref and performs conversion output.
[0034]
In such a voltage measurement mode, it is possible to provide a temperature measurement function using a thermocouple as a temperature sensor by providing a reference junction compensation and a linearization function inside the microprocessor as mV measurement.
[0035]
Thus, if there is a thermocouple, the temperature can be measured immediately, and the presence or absence of failure of the temperature measuring device to which the thermocouple is connected can be confirmed by actually measuring the temperature with the thermocouple and comparing the measurement results.
[0036]
By the way, the resistance measurement switching between the two-wire type, the three-wire type, and the four-wire type is generally performed by a switching circuit, but a simple operation like the present invention is intended. In such a device, it is desirable to be able to automatically identify and measure by connecting the object to be measured.
[0037]
FIG. 6 is a specific example of a resistance temperature detector measuring circuit that pays attention to such a point in the apparatus according to the present invention.
In the figure, Rx is a resistance temperature detector to be measured, and three lead wires are connected to terminals Ta, Tb, and Tc, respectively. r1 to r3 are lead wire resistances, r4 is a resistance, and r1 = r2 = r, r4 >> r3. S1 to S3 are analog switches, S1 is connected between the terminal Ta and the non-inverting input terminal of the buffer amplifier 5 (operational amplifier A2), and S2 is connected between the terminal Tc and the non-inverting input terminal of the buffer amplifier 5. S 3 is connected between the terminal Tb and the non-inverting input terminal of the buffer amplifier 5. A terminal Tb is directly connected to an inverting input terminal of the operational amplifier A1, and a terminal Tc is connected via a resistor r4. A constant current source 8 is connected to the terminal Ta. V os1 is an offset voltage of the operational amplifier A1, and V os2 is an offset voltage of the operational amplifier A2.
[0038]
In such a configuration, the analog switches S1 to S3 are selectively turned on sequentially, and the detection voltages V1, V2, and V3 are applied to the A / D converter 3 as V IN via the buffer amplifier 5. I · R is applied as the reference voltage V REF of the AD converter 3. The microprocessor 6 performs the following calculation.
[0039]
V1-2 ・ V2-V3
Thus, lead wire resistance and offset compensation are performed in the case of a three-wire connection, and only offset compensation is performed in the case of a two-wire connection. In actual use, there is no need to be aware of these three-wire connection and two-wire connection, and the apparatus automatically identifies the connection state of the resistance temperature detector and executes the arithmetic processing.
[0040]
In the case of the two-wire connection, the terminal Tc is open and the detection voltages V 1 , V 2 , V 3 are as follows.
V 1 = V os1 + (Rx + 2r) i + V os2
V 2 = V os1 + V os2
V 3 = V os1 + V os2
The calculation result is (Rx + 2r) i.
[0041]
The detection voltages V 1 , V 2 , V 3 in the case of the 3-wire connection are as follows.
V 1 = V os1 + (Rx + 2r) i + V os2
V 2 = V os1 + r · i + V os2
V 3 = V os1 + V os2
The calculation result is Rx · i.
[0042]
As described above, the AD converter 3 converts the ratio of V IN to V REF . That is, the A-D conversion result in the case of the 3-wire system is
Figure 0003937364
become.
[0043]
The effect and influence of the resistor r4 are as follows.
First, in the case of the two-wire connection, V 2 is measured through the resistor r4 even if the terminal Tc is opened.
[0044]
V2 in the three-wire connection is strictly as follows.
Figure 0003937364
Since r4 >> r3 here,
V 2 = i · r + (V os1 + V os2 )
become.
[0045]
With this configuration, two-wire measurement is performed in the case of a two-wire connection, and three-wire measurement in which the influence of the lead wire resistance is compensated in the case of a three-wire connection. This is done by automatically identifying the input connection without switching operation.
[0046]
The resistance measurement result can be obtained by calculating the ratio of Rx and R, and high-precision measurement is possible without being affected by the value of the output current i of the constant current source.
Further, the offset components V os1 and V os2 of the amplifier of the input circuit are theoretically corrected and do not cause an error.
[0047]
【The invention's effect】
As described above, according to the first aspect of the present invention, the functions of resistance signal generation, resistance signal measurement, voltage signal generation, and voltage signal measurement can be incorporated into a single device with a small number of circuit elements. Any function can be selected from these functions with a simple switching circuit.
[0048]
According to the second aspect of the present invention, maintenance adjustment of a temperature measuring device to which a resistance temperature detector is connected can be performed with high accuracy without using an actual resistance temperature detector. If there is a temperature resistor, the temperature can be measured immediately, and whether or not the temperature measuring device to which the temperature measuring resistor is connected can be confirmed by measuring the temperature with the temperature measuring resistor and comparing the measurement results.
[0049]
According to the third aspect of the present invention, maintenance adjustment of the temperature measuring device to which the thermocouple is connected can be performed with high accuracy without using an actual thermocouple. The temperature can be measured immediately, and the presence or absence of failure of the temperature measuring device to which the thermocouple is connected can be confirmed by actually measuring the temperature with a thermocouple and comparing the measurement results.
[0050]
According to the fourth aspect of the present invention, measurement results such as resistance, voltage and temperature can be recorded by a recorder or the like as necessary.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram showing an embodiment of a voltage / resistance generation measuring apparatus according to the present invention.
FIG. 2 is an operation explanatory diagram of a resistance generation mode according to the present invention.
FIG. 3 is an operation explanatory diagram of a resistance measurement mode of the present invention.
FIG. 4 is an operation explanatory diagram of a voltage generation mode according to the present invention.
FIG. 5 is an operation explanatory diagram of a voltage measurement mode of the present invention.
FIG. 6 is a circuit configuration diagram of another embodiment of the present invention.
[Explanation of symbols]
1 current-voltage conversion circuit 2 D-A converter 3 A-D converters 4 and 5 the buffer amplifier 6 microprocessor 7 display unit 8 built constant current source S 1a, S 1b, S 2a ~S 2d changeover switch T1, T2, T3 terminal V ref reference voltage source

Claims (4)

演算増幅器よりなる電流電圧変換回路と、変換係数が設定可能で前記電流電圧変換回路の出力に変換係数を乗算して変換出力するD−A変換器と、2系統の入力端子を有しこれら2入力の比率演算結果を変換出力するA−D変換器と、基準電圧源と、抵抗測定用定電流源と、信号発生モードと信号測定モードとを切り換える第1の切換スイッチ群と、抵抗モードと電圧モードとを切り換える第2の切換スイッチ群とで構成され、
前記第1の切換スイッチ群は、信号発生モードでは前記電流電圧変換回路の出力をD−A変換器に加え、該D−A変換器の変換係数を設定することで信号を発生し、信号測定モードではA−D変換器の一方の入力端子に前記電流電圧変換回路の出力を加えるとともに他方の入力端子に被測定信号を加え、前記A−D変換器の変換出力で信号を測定するように切り換え、
前記第2の切換スイッチ群は、抵抗モードでは前記電流電圧変換回路を構成する演算増幅器の非反転入力端子を共通電位点に接続するとともに反転入力端子には前記定電流源の出力電流又は被校正対象の抵抗測定装置の抵抗測定電流を加え、電圧モードでは前記電流電圧変換回路を構成する演算増幅器の非反転入力端子に前記基準電圧源の出力を加えるように切り換えることを特徴とする電圧・抵抗発生測定装置。
A current-voltage conversion circuit consisting of an operational amplifier, and a D-A converter for converting the output transform coefficient is multiplied by the conversion factor to the output of possible the current-voltage conversion circuit set has an input terminal of the two systems these 2 An A / D converter that converts and outputs an input ratio calculation result, a reference voltage source, a constant current source for resistance measurement, a first selector switch group that switches between a signal generation mode and a signal measurement mode, and a resistance mode And a second selector switch group for switching between the voltage mode and
The first changeover switch group, the signal generation mode added output of the current-voltage converting circuit D-A converter, and generates a signal by setting the transform coefficients of the D-A converter, signal measurement the signal to be measured in addition to the other input terminal with added output of the current-voltage conversion circuit to one input terminal of the a-D converter mode, to measure the signal at the converted output of the a-D converter switching,
The second changeover switch group, the output current or the calibration of the constant current source in the resistance mode to the inverting input terminal with connecting the non-inverting input terminal of the operational amplifier constituting the current-voltage conversion circuit to the common potential point the resistance measurement current target resistance measuring device added, the voltage mode voltage or resistance, characterized in that switching to apply the output of the reference voltage source to the non-inverting input terminal of the operational amplifier constituting the current-voltage conversion circuit Generation measuring device.
請求項1の電圧・抵抗発生測定装置において、
抵抗信号発生モードではD−A変換器の変換係数に応じて測温抵抗体の等価抵抗を発生し、
抵抗信号測定モードでは測温抵抗体を温度センサとして温度測定することを特徴とする電圧・抵抗発生測定装置。
The voltage / resistance generation measuring device according to claim 1,
In the resistance signal generation mode , the equivalent resistance of the resistance temperature detector is generated according to the conversion coefficient of the DA converter,
In the resistance signal measurement mode , a voltage / resistance generation measuring device that measures temperature using a resistance temperature detector as a temperature sensor .
請求項1の電圧・抵抗発生測定装置において、
電圧信号発生モードではD−A変換器の変換係数に応じて熱電対の等価熱起電力を発生し、
電圧信号測定モードでは熱電対を温度センサとして温度測定することを特徴とする電圧・抵抗発生測定装置。
The voltage / resistance generation measuring device according to claim 1,
In the voltage signal generation mode , an equivalent thermoelectromotive force of the thermocouple is generated according to the conversion coefficient of the DA converter,
In the voltage signal measurement mode , a voltage / resistance generation measuring device that measures temperature using a thermocouple as a temperature sensor .
請求項1の電圧・抵抗発生測定装置において、
信号測定モードの測定結果をD−A変換器からアナログ信号として取り出すことを特徴とする電圧・抵抗発生測定装置。
The voltage / resistance generation measuring device according to claim 1,
A voltage / resistance generation measuring apparatus, wherein a measurement result in a signal measurement mode is taken out from a DA converter as an analog signal.
JP26553497A 1997-09-30 1997-09-30 Voltage / resistance generator Expired - Fee Related JP3937364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26553497A JP3937364B2 (en) 1997-09-30 1997-09-30 Voltage / resistance generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26553497A JP3937364B2 (en) 1997-09-30 1997-09-30 Voltage / resistance generator

Publications (2)

Publication Number Publication Date
JPH11108774A JPH11108774A (en) 1999-04-23
JP3937364B2 true JP3937364B2 (en) 2007-06-27

Family

ID=17418468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26553497A Expired - Fee Related JP3937364B2 (en) 1997-09-30 1997-09-30 Voltage / resistance generator

Country Status (1)

Country Link
JP (1) JP3937364B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810122A (en) * 2015-04-14 2015-07-29 常州信息职业技术学院 Programmable control precision resistor box
CN110618300A (en) * 2019-09-18 2019-12-27 宿州市泰华仪表有限公司 Circuit for simulating resistor

Also Published As

Publication number Publication date
JPH11108774A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
Nagarajan et al. Improved single-element resistive sensor-to-microcontroller interface
JP5081239B2 (en) Temperature measuring apparatus and measuring method
EP2273277B1 (en) Internal self-check resistance bridge and method
JP3309380B2 (en) Digital measuring instrument
JP2000241258A (en) Instrument and method for temperature measurement
JP3937364B2 (en) Voltage / resistance generator
JP3075072B2 (en) Temperature converter
US4783175A (en) Temperature measuring apparatus capable of displaying measured temperatures in different temperature scales
JP4941164B2 (en) Reference voltage calibration circuit and method
JP2010096606A (en) Voltage applying current measurement circuit and semiconductor tester using the same
RU2549255C1 (en) Digital temperature meter
JP2002084151A (en) Physical quantity detector
KR19980076201A (en) Temperature measuring device using RTD
JP2001249150A (en) Resistance value measuring apparatus
JP3562703B2 (en) Measuring device
JPS6221958Y2 (en)
JP2968380B2 (en) Input measuring device
SU1499298A1 (en) Apparatus for checking the measuring instruments
SU1728678A1 (en) Digital temperature meter
SU983553A1 (en) Measuring converter
JPH05264371A (en) Voltage generator
SU1661588A1 (en) Apparatus to measure temperature difference
CN116429293A (en) Multi-conductor measuring device and method for detecting resistance sensor
SU947783A1 (en) Device for measuring parameters and calibrating linear non-uniform materials
Neaves et al. An analogue current-mode signal processing ASIC for interrogating resistive sensor arrays

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees