JPS6221958Y2 - - Google Patents

Info

Publication number
JPS6221958Y2
JPS6221958Y2 JP1980190536U JP19053680U JPS6221958Y2 JP S6221958 Y2 JPS6221958 Y2 JP S6221958Y2 JP 1980190536 U JP1980190536 U JP 1980190536U JP 19053680 U JP19053680 U JP 19053680U JP S6221958 Y2 JPS6221958 Y2 JP S6221958Y2
Authority
JP
Japan
Prior art keywords
lead wire
resistor
voltage
resistance
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980190536U
Other languages
Japanese (ja)
Other versions
JPS57114498U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980190536U priority Critical patent/JPS6221958Y2/ja
Publication of JPS57114498U publication Critical patent/JPS57114498U/ja
Application granted granted Critical
Publication of JPS6221958Y2 publication Critical patent/JPS6221958Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、測温抵抗体の抵抗変化を電圧変化
として取り出す抵抗−電圧変換回路に関するもの
である。
[Detailed Description of the Invention] This invention relates to a resistance-voltage conversion circuit that extracts a change in resistance of a temperature-measuring resistor as a change in voltage.

一般に、白金測温抵抗体の抵抗変化を電圧に変
換して、温度を測定するような抵抗−電圧変換回
路において、リード線の抵抗が測定誤差となるこ
とを除去することや、リード線の断線を検出して
バーンアウトさせることが要望されている。従来
は、いたずらに回路を複雑にして行つており、そ
れだけ高価なものとなつてしまう欠点があつた。
In general, in a resistance-voltage conversion circuit that converts the resistance change of a platinum resistance thermometer into voltage to measure temperature, it is necessary to eliminate measurement errors caused by lead wire resistance, and to eliminate lead wire breakage. It is desired to detect and burn out. Conventionally, the circuit has been unnecessarily complicated, which has the disadvantage of making it more expensive.

この考案の目的は、簡単な回路にて、これらの
欠点を解消する抵抗−電圧変換回路を提供するこ
とである。
The purpose of this invention is to provide a resistance-voltage conversion circuit that eliminates these drawbacks with a simple circuit.

第1図は、この考案の一実施例を示す構成説明
図である。図においてIは、電圧Vを有し演算増
幅器Ao、トランジスタTrよりなる定電流源、Ro
は、一端に第1のリード線r1を介して端子Aよ
り定電流源Iが接続され、他端には第2のリード
線r2および第3のリード線r3が接続された測温抵
抗体で、第2のリード線r2は端子Bより第1の抵
抗R1を介してアースされ、第3のリード線r3には
端子B′を介して第2の抵抗R2が接続され、第1
の抵抗R1と第2の抵抗R2との間にダイオードD
が接続され、ダイオードDの一端に抵抗R3が接
続してアースされ、第2のリード線r2と第1の抵
抗R1との接続点の端子Bより定電流源Iの演算
増幅器Aoに電圧Voと比較して定電流化するため
の負帰還がかかつている。そして、定電流源Iと
第1のリード線r1との接続点の端子Aは入力抵抗
R4、帰還抵抗R5を有する演算増幅器A1の反転入
力端子に接続され、非反転入力端子には第2の抵
抗R2が接続され、出力端子tより出力電圧eoが
取り出せるようになつている。
FIG. 1 is a configuration explanatory diagram showing an embodiment of this invention. In the figure, I is a constant current source having a voltage V and consisting of an operational amplifier Ao, a transistor Tr, and Ro
is a temperature measuring resistor with one end connected to a constant current source I from a terminal A via a first lead wire r1, and the other end connected to a second lead wire r2 and a third lead wire r3 . In the main body, the second lead wire r2 is grounded from terminal B through the first resistor R1 , and the third lead wire r3 is connected to the second resistor R2 through terminal B'. , 1st
A diode D is connected between the resistor R 1 and the second resistor R 2
is connected, a resistor R3 is connected to one end of the diode D and grounded, and the operational amplifier Ao of the constant current source I is connected from the terminal B at the connection point of the second lead wire R2 and the first resistor R1 . Negative feedback is applied to make the current constant compared to the voltage Vo. Terminal A at the connection point between constant current source I and first lead wire r1 is an input resistor.
R 4 is connected to the inverting input terminal of an operational amplifier A 1 having a feedback resistor R 5 , and a second resistor R 2 is connected to the non-inverting input terminal, so that the output voltage eo can be taken out from the output terminal t. There is.

正常に動作しているとき、第1のリード線r1
測温抵抗体Ro、第2のリード線r2を流れる電流
をi、端子Bの電圧をVo、リード線r1,r2,r3
抵抗を等しくr、抵抗R4,R5の抵抗を等しくR
とし、演算増幅器A1の出力電圧をeoとすれば次
式が成り立つ。
During normal operation, the first lead r 1 ,
The current flowing through the resistance temperature detector Ro and the second lead wire r2 is i, the voltage at terminal B is Vo, the resistances of the lead wires r1 , r2 , and r3 are equal to r, and the resistances of resistors R4 and R5 are is equal to R
If the output voltage of operational amplifier A1 is eo, the following equation holds true.

(Vo+2ir+iRo)−R/r+R+R(Vo+ir)=R/r+R+R(Vp+ir)−eo ……(1) これにより、eoを求めると となる。ここでr+R2≪R3より eo≒2(Vo+ir) −(Vo+2ir+iRo)=Vo−iRo ……(3) となる。これにより電圧Vo分を差し引いて、符
号を反転させてやれば、リード線の配線抵抗の影
響が除去された抵抗−電圧出力が得られる。この
出力電圧eoは、ブリツジ回路等より得られる電圧
と異なり、抵抗変化に対してリニアで比例した温
度変化特性電圧となる。
(Vo+2ir+iRo) -R3 /r+ R2 + R3 (Vo+ir)= R3 /r+ R2 + R3 ( Vp +ir)-eo......(1) From this, eo can be calculated. becomes. Here, from r+R 2 ≪R 3 , eo≒2(Vo+ir) −(Vo+2ir+iRo)=Vo−iRo ……(3). By subtracting the voltage Vo and reversing the sign, a resistance-voltage output can be obtained in which the influence of the wiring resistance of the lead wire has been removed. Unlike the voltage obtained from a bridge circuit or the like, this output voltage eo is a temperature change characteristic voltage that is linear and proportional to the resistance change.

また、バーンアウト動作は次の通りである。 Moreover, the burnout operation is as follows.

第1のリード線r1が断線したとすると、演算増
幅器A1の非反転入力端子の電圧はゼロで、端子
Aより正の電圧Vが反転入力端子に供給され、出
力電圧eoはマイナスに大となりバーンアウトす
る。
Assuming that the first lead wire r1 is disconnected, the voltage at the non-inverting input terminal of operational amplifier A1 is zero, a positive voltage V is supplied from terminal A to the inverting input terminal, and the output voltage eo becomes negative and large. Burnout.

第2のリード線r2が断線すると、電流iは、第
1のリード線r1、測温抵抗体Ro、第3のリード
線r3、第2の抵抗R2、ダイオードDと流れるの
で、ダイオードDの両端の電圧をVDとして出力
電圧eoは次のようになる。
When the second lead wire r 2 is disconnected, the current i flows through the first lead wire r 1 , the resistance temperature detector Ro, the third lead wire r 3 , the second resistor R 2 , and the diode D. Assuming that the voltage across diode D is VD, the output voltage eo is as follows.

eo=2(Vo+VD) −(Vo+VD+iR2+2ir+iRo) =Vo+VD−iR2−2ir−iRo ……(4) ここで、iR2≫VD,iRoと選んでおけば、出力
電圧eoはマイナスに大となりバーンアウトする。
eo = 2 (Vo + VD) - (Vo + VD + iR 2 + 2ir + iRo) = Vo + VD - iR 2 - 2ir - iRo ... (4) Here, if you choose iR 2 ≫ VD, iRo, the output voltage eo becomes negative and burns out. Go out.

第3のリード線r3が断線すると電流iは、第1
のリード線r1、測温抵抗体Ro、第2のリード線r2
と流れ、演算増幅器A1の非反転入力端子の電圧
はダイオードDによりカツトオフされゼロである
ので次式が成り立つ。
When the third lead wire r3 is disconnected, the current i is
lead wire r 1 , resistance temperature detector Ro, second lead wire r 2
Since the voltage at the non-inverting input terminal of the operational amplifier A1 is cut off by the diode D and is zero, the following equation holds true.

eo=−(Vo+2ir+iRo) ……( ) この電圧もマイナスに十分大きいのでバーンア
ウトする。
eo=-(Vo+2ir+iRo)... ( ) This voltage is also negative enough to cause burnout.

このように、いずれのリード線が断線してもバ
ーンアウトすることができるわけである。
In this way, burnout can occur even if any lead wire is disconnected.

又、抵抗R1の抵抗値を変えることにより、測
温抵抗体の種類等により異なる定格電流に応じた
電流値を選ぶことができるので、それだけ測定精
度が向上する。
Furthermore, by changing the resistance value of the resistor R1 , it is possible to select a current value that corresponds to the rated current, which varies depending on the type of resistance temperature detector, etc., and thus the measurement accuracy is improved accordingly.

以上述べたように、この考案は、3本のリード
線を有する測温抵抗体に定電流を供給し、演算増
幅器にて、差電圧を取り出すようにした抵抗−電
圧変換回路である。
As described above, this invention is a resistance-voltage conversion circuit in which a constant current is supplied to a temperature-measuring resistor having three lead wires, and a differential voltage is extracted using an operational amplifier.

従つて、定電流回路と1個の演算増幅器を含む
簡単な回路で、リード線の影響の除去を図れると
ともにバーンアウトも確実にできるものであり、
実用的効果が極めて大きい。又、抵抗変化に比例
した温度変化特性電圧が取り出せるので、記録計
に記録させる等の使用や、その後の信号処理が容
易である。又、測温抵抗体の種類等により異なる
定格電流に応じた電流値が選べるので、それだけ
測定精度が向上する。
Therefore, with a simple circuit including a constant current circuit and one operational amplifier, it is possible to eliminate the influence of the lead wire and also ensure burnout.
The practical effect is extremely large. Further, since a temperature change characteristic voltage proportional to the resistance change can be obtained, it is easy to record the voltage on a recorder and to perform subsequent signal processing. Furthermore, since the current value can be selected according to the rated current, which varies depending on the type of resistance temperature detector, the measurement accuracy is improved accordingly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この考案の一実施例を示す構成説明
図である。 I……定電流源、Ro……測温抵抗体、r1,r2
r3……リード線、R1,R2,R3,R4,R5……抵
抗、D……ダイオード、A1……演算増幅器。
FIG. 1 is a configuration explanatory diagram showing an embodiment of this invention. I... Constant current source, Ro... Resistance temperature detector, r 1 , r 2 ,
r 3 ... Lead wire, R 1 , R 2 , R 3 , R 4 , R 5 ... Resistor, D ... Diode, A 1 ... Operational amplifier.

Claims (1)

【実用新案登録請求の範囲】 1 一端に第1のリード線が接続された測温抵抗
体と、この測温抵抗体の他端に接続された第2
のリード線および第3のリード線と、第2のリ
ード線とアースとの間に接続する第1の抵抗
と、第3のリード線に接続する第2の抵抗と、
第1の抵抗と第2の抵抗との間に接続されたダ
イオードと、第2のリード線と第1の抵抗との
接続点の電圧が所定の電圧となるよう比較して
負帰還をかけ定電流を前記第1のリード線を介
して測温抵抗体に供給する定電流源と、定電流
源と第1のリード線との接続点および第2の抵
抗とダイオードとの接続点より取り出された電
圧が供給される演算増幅器とを備えたことを特
徴とする抵抗−電圧変換回路。 2 前記定電流源として、演算増幅器を含み、そ
の反転入力端子に第2のリード線と第1の抵抗
との接続点の電圧を印加し、その非反転入力端
子に所定電圧を印加し、両電圧が一致するよう
に第1のリード線を介して測温抵抗体に定電流
を供給するものを用いたことを特徴とする実用
新案登録請求の範囲第1項記載の抵抗−電圧変
換回路。 3 前記第1の抵抗として、得たい電流値に対応
した抵抗値としたものを用いたことを特徴とす
る実用新案登録請求の範囲第1項または第2項
記載の抵抗−電圧変換回路。
[Claims for Utility Model Registration] 1. A resistance temperature detector with a first lead wire connected to one end, and a second lead wire connected to the other end of the resistance temperature detector.
a first resistor connected between the lead wire and the third lead wire, the second lead wire and the ground, and a second resistor connected to the third lead wire;
A diode connected between the first resistor and the second resistor is compared with the voltage at the connection point between the second lead wire and the first resistor to a predetermined voltage, and negative feedback is applied to determine the voltage. A constant current source that supplies current to the resistance temperature sensor through the first lead wire, and a current that is taken out from a connection point between the constant current source and the first lead wire and a connection point between the second resistor and the diode. 1. A resistance-voltage conversion circuit comprising: an operational amplifier to which a voltage is supplied. 2 The constant current source includes an operational amplifier, the voltage at the connection point between the second lead wire and the first resistor is applied to its inverting input terminal, the predetermined voltage is applied to its non-inverting input terminal, and both 2. The resistance-voltage conversion circuit according to claim 1, wherein a constant current is supplied to the temperature-measuring resistor through the first lead wire so that the voltages match. 3. The resistance-voltage conversion circuit according to claim 1 or 2, wherein the first resistor has a resistance value corresponding to a desired current value.
JP1980190536U 1980-12-29 1980-12-29 Expired JPS6221958Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980190536U JPS6221958Y2 (en) 1980-12-29 1980-12-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980190536U JPS6221958Y2 (en) 1980-12-29 1980-12-29

Publications (2)

Publication Number Publication Date
JPS57114498U JPS57114498U (en) 1982-07-15
JPS6221958Y2 true JPS6221958Y2 (en) 1987-06-04

Family

ID=29994926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980190536U Expired JPS6221958Y2 (en) 1980-12-29 1980-12-29

Country Status (1)

Country Link
JP (1) JPS6221958Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316732B2 (en) * 2014-11-11 2018-04-25 アズビル株式会社 Temperature measuring system and temperature measuring instrument

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134328A (en) * 1979-04-06 1980-10-20 Hitachi Ltd Temperature converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134328A (en) * 1979-04-06 1980-10-20 Hitachi Ltd Temperature converter

Also Published As

Publication number Publication date
JPS57114498U (en) 1982-07-15

Similar Documents

Publication Publication Date Title
JPH09105681A (en) Temperature measuring circuit
JPS6221958Y2 (en)
JPS61210965A (en) Measuring equipment for low resistance
JPS6347999Y2 (en)
JPS626171B2 (en)
JPH0614082B2 (en) Temperature measuring device
JPS5925029Y2 (en) Disconnection detection circuit for 3-wire resistance temperature measurement circuit
JP2544130B2 (en) Temperature measurement circuit
JPH0127070Y2 (en)
JPH0625701B2 (en) Temperature detection circuit of 3-wire resistance temperature sensor
JPS6241261Y2 (en)
JPS5937711Y2 (en) temperature measurement circuit
JPS647284Y2 (en)
JPS6143650B2 (en)
JPH0645263Y2 (en) Current-current conversion circuit
JPS5812142Y2 (en) Micro resistance change measuring device
JP2576235Y2 (en) Voltage or current measuring device
JPS594263Y2 (en) Temperature difference measuring device
JPS6236126Y2 (en)
JP2512934B2 (en) Temperature measurement circuit
JPH02218903A (en) Wiring method for resistor type sensor
KR960010283Y1 (en) Digital voltage measuring circuit
CN116972998A (en) Temperature measurement circuit, temperature acquisition device and processing equipment
JPS625291B2 (en)
SU1597602A1 (en) Digital meter of temperature