JPS5868615A - Output circuit of magnetic type rotary encoder - Google Patents

Output circuit of magnetic type rotary encoder

Info

Publication number
JPS5868615A
JPS5868615A JP56168248A JP16824881A JPS5868615A JP S5868615 A JPS5868615 A JP S5868615A JP 56168248 A JP56168248 A JP 56168248A JP 16824881 A JP16824881 A JP 16824881A JP S5868615 A JPS5868615 A JP S5868615A
Authority
JP
Japan
Prior art keywords
output
differential amplifier
magnetic field
output circuit
rotary encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56168248A
Other languages
Japanese (ja)
Inventor
Hirakazu Tsukamoto
塚本 平和
Yoshiki Iwanishi
岩西 良樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56168248A priority Critical patent/JPS5868615A/en
Publication of JPS5868615A publication Critical patent/JPS5868615A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices

Abstract

PURPOSE:To increase the output with regard to unit current, by using one constant current power source in the output circuit, thereby detecting the change in magnetic field efficiently. CONSTITUTION:A series circuit of magnetic resistance element S1 and S2 is connected to the constant current power source, and a current (i) always flows. When a rotary magnetic field is generated by the movement of a probe, the voltages generated across the element S1 and S2 are detected by differential amplifiers 2 and 3. The amplifier 2 outputs V1=i(R0-DELTAR), and the amplifier 3 outputs V2=i(R0-DELTAR). The outputs are made to be the output V=V2-V1= 2iDELTAR(2iDELTARsintheta) by the operation of a differential amplifier 4.

Description

【発明の詳細な説明】 本発明は長さ等の測定器において、測定子の移動量を検
出するたZ¥段れ1tfiE。−JIJ−zンコーダを
用い、特に測定子の移動量を電気的に正確に検出できる
出力回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a measuring instrument for measuring length, etc., in which the distance of movement of a measuring point is detected. The present invention relates to an output circuit that uses a JIJ-z encoder and can electrically accurately detect, in particular, the amount of movement of a probe.

長さ等の測定器において、測定子の移動量を電気信号に
変換し測定するために、ロータリ・エンコーダが周知で
あり、例えばマイクロメータその他の測定器に広く用い
られている。ロータリ・エンコーダは、測定子と直接又
は間接的に連動する部分にスリット円板を設け、測定子
の移動量に対応したスリット円板の回転角を検出し被6
11j定物の長さ等を例えばディジタル表示するもので
ある。
2. Description of the Related Art Rotary encoders are well known for converting the amount of movement of a probe into an electrical signal for measurement in length measuring instruments, and are widely used in, for example, micrometers and other measuring instruments. A rotary encoder has a slit disk in the part that directly or indirectly interlocks with the measuring tip, and detects the rotation angle of the slit disk corresponding to the amount of movement of the measuring tip.
11j The length of a constant object, etc., is displayed digitally, for example.

本発明は、回転する上記スリット円板のかわりとして、
マグネット (マグネットロータ)を設け、このマグネ
ットに対向した例えは固定部に、磁界の強度を検出する
手段を備え、測定子の移動量に対応した磁界の強さを検
出する構成の磁気式ロータリ・エンコーダに関する。磁
界の強度を検出する手段としては、4磁界の強度に応じ
て抵抗値が変化する磁気抵抗素子が一般的に用いられて
いる。つまり、この素子に定電流を流せは、磁界に応じ
て素子間の電圧が変化し、これを検出すれば、測定子の
移動量が測定できる訳である。
The present invention provides, instead of the rotating slit disk,
A magnetic rotary rotor is equipped with a magnet (magnet rotor), and a fixed part facing the magnet is equipped with a means for detecting the strength of the magnetic field, which detects the strength of the magnetic field corresponding to the amount of movement of the probe. Regarding encoders. As means for detecting the strength of the magnetic field, a magnetoresistive element whose resistance value changes depending on the strength of the four magnetic fields is generally used. In other words, when a constant current is passed through this element, the voltage between the elements changes depending on the magnetic field, and by detecting this, the amount of movement of the probe can be measured.

一般に磁気抵抗素子は、磁界の変化に対し、変化しない
部分R6と変化する部分ΔRとに分けられる。そこで、
磁気抵抗素子を用いた磁気式ロータリ・エンコーダの出
力回路においては、信号成分としてJR酸成分みを出力
し、Ro成分による直流分全敗り除くことが必要となる
。また、抵抗R6の温度変化による直流分のドリフトラ
補償することも必要となる。
Generally, a magnetoresistive element is divided into a portion R6 that does not change and a portion ΔR that changes with respect to changes in the magnetic field. Therefore,
In the output circuit of a magnetic rotary encoder using a magnetoresistive element, it is necessary to output only the JR acid component as a signal component and completely eliminate the DC component due to the Ro component. It is also necessary to compensate for the drift of the DC component due to temperature changes in the resistor R6.

従来、変化しないR8の直流分及びドリフトを補償する
出力回路としては、第1図及び第2図に示すものがある
。まず第1図において、Slは磁気抵抗素子、Rxは磁
気抵抗素子S、の磁界に対し変化しない抵抗ROと同等
の抵抗値を有した抵抗である。この抵抗Rxと磁気抵抗
素子S1に夫々定電流源(図示せず)にてセンシング電
流iを流す。これにより磁気抵抗素子S1にはV、−1
(RO+ΔR)、抵抗RxにはVz = i ROの電
りが生じる。つまり、抵抗Rx両端に生じる電圧v2は
、磁気抵抗素子S1の変化しない抵抗R8の直流分の電
圧である。そこで、磁気抵抗素子S1の両端に生じる電
圧■、より抵抗Rx両端に生じる電+= V 2を差し
引けば、Roの直流分を取り除けに、V、、V2を加え
ており、差動増幅器1は出力V=V、−V2=iΔR(
iΔRs inθ)を出力する。
Conventionally, there are output circuits shown in FIGS. 1 and 2 that compensate for the DC component and drift of R8, which does not change. First, in FIG. 1, Sl is a magnetoresistive element, and Rx is a resistor having the same resistance value as the resistance RO, which does not change with respect to the magnetic field of the magnetoresistive element S. A sensing current i is applied to each of the resistor Rx and the magnetoresistive element S1 by a constant current source (not shown). As a result, the magnetoresistive element S1 has V, -1
(RO+ΔR), a voltage of Vz = i RO is generated in the resistor Rx. In other words, the voltage v2 generated across the resistor Rx is the DC voltage of the unchanging resistor R8 of the magnetoresistive element S1. Therefore, by subtracting the voltage += V2 generated across the resistor Rx from the voltage ■ generated across the magnetoresistive element S1, V2 is added to remove the DC component of Ro, and the differential amplifier 1 is the output V=V, -V2=iΔR(
iΔRs inθ) is output.

従って第1図の出力回路によれば、磁気抵抗素子SIの
変化抵抗値外の電圧1JR=Vのみの出力が得られ、正
確な測定が可能となる。この、第1図の出力回路では、
温度変化によるドリフトラ補償することはできない。
Therefore, according to the output circuit of FIG. 1, an output of only the voltage 1JR=V outside the variable resistance value of the magnetoresistive element SI can be obtained, making accurate measurement possible. In this output circuit of Fig. 1,
It is not possible to compensate for drift due to temperature changes.

第2図は第1図の出力回路の欠点を解消するために、温
度変化によるドリフトを補償したものである。図におい
て、Sl+S2は夫々好気抵抗素子であり、磁界に対し
て逆相関係となるように接続されている。つまり磁気抵
抗素子S l + 82の抵抗値がR7二R6−ΔR,
R2=Ro+ΔRとなるように配置される。従って、第
1図同様にて差動増幅器1からは、V=2iΔR(2i
ΔR51nθ)の出力が得られ、第1図の場合と比べ2
倍の出力電圧が得られる。ここで、温度変化に対しては
、2個の磁気抵抗素子S1.S2嬬、温度係数が等しい
ものを選べば直流ドリフトを補償できる。
In order to eliminate the drawbacks of the output circuit shown in FIG. 1, FIG. 2 shows a circuit in which drift due to temperature changes is compensated for. In the figure, Sl+S2 are aerobic resistance elements, which are connected so as to have a negative phase relationship with respect to the magnetic field. In other words, the resistance value of the magnetoresistive element S l + 82 is R72R6-ΔR,
They are arranged so that R2=Ro+ΔR. Therefore, as in FIG. 1, from the differential amplifier 1, V=2iΔR(2i
An output of ΔR51nθ) is obtained, which is 2
Double the output voltage can be obtained. Here, for temperature changes, two magnetoresistive elements S1. DC drift can be compensated for by selecting S2s with equal temperature coefficients.

しかしながら、第1図及び第2図の回路によれ6′、[
、センシング電流iによる定電流源を2個必要としてお
り、単位センシング電流iに対する差動第2図によれば
ΔR51nθ となる。
However, due to the circuits of FIGS. 1 and 2, 6', [
, two constant current sources are required based on the sensing current i, and according to FIG. 2, the differential for the unit sensing current i is ΔR51nθ.

本発明は1つの定電流源を備えるだけで、磁界の変化を
電圧変化として検出し得る磁気式ロータリエンコーダの
出力回路を提供するものである。
The present invention provides an output circuit for a magnetic rotary encoder that is capable of detecting changes in a magnetic field as changes in voltage with only one constant current source.

本発明は、2個の磁気抵抗素子を備え、この素子を直列
に接続すると共に逆相関係に配置し、各素子の両端に生
じる電圧各差動増幅器を通して出力した後、画壇幅器の
出力を更に第2の差動増幅器を通して、出力を得るもの
である。
The present invention comprises two magnetoresistive elements, these elements are connected in series and arranged in an anti-phase relationship, and the voltage generated across each element is outputted through each differential amplifier, and then the output of the step width amplifier is outputted. Furthermore, an output is obtained through a second differential amplifier.

以下図面に従って本発明の磁気式ロータリーエンコーダ
の出力回路を詳細に説明する。第3図は本発明における
出力回路の一具体例を示す回路図である。図中Sl、S
2は磁界の変化によりΔRが変化し得る磁気抵抗素子で
、磁界に対し逆相関係にシテ謁母儀−上記磁気抵抗素子
S、、S2は、例えばマイクロメータ等であれば、固定
部側に設けられており、移動し得る測定子側に設けられ
た回転磁界を生じるマグネットロータの磁界によりその
抵抗ΔRが変化する。
The output circuit of the magnetic rotary encoder of the present invention will be explained in detail below with reference to the drawings. FIG. 3 is a circuit diagram showing a specific example of the output circuit according to the present invention. In the figure, Sl, S
Reference numeral 2 denotes a magnetoresistive element whose ΔR can change depending on changes in the magnetic field, and has an antiphase relationship with respect to the magnetic field.The above magnetoresistive elements S, S2 are, for example, micrometers, etc., on the fixed part side. The resistance ΔR is changed by the magnetic field of a magnet rotor that generates a rotating magnetic field and is provided on the side of the movable measuring element.

ま光図中2は磁気抵抗素子S1の両端に生じる電圧を検
出するだめの1段目の差動増幅器、3は磁気抵抗素子S
2の両端に生じる電圧を検出するために供する1段目の
差動増幅器である。上記画差動増幅器2及び3かもの出
力V、、V2は2段目の差動増幅器4の夫々の入力端に
加えられ、出力端子よりV=V2−V、の出力が得られ
る。上記磁気抵抗素子S、、S2の直列回路は、定心流
源5に接続されており、常に電流1が流れる構成である
0 上述の構成により、測定子の移動により回転磁界が生じ
れば、それに応じて磁気抵抗素子S1.S2の抵抗外J
Rが変イヒする。そこで、センシング電流iが流れると
、各磁気抵抗素子S1+ 82の両端に電圧が発生する
。この電圧は1段目の差動増幅器2.3にて検出される
。上記差動増幅器2はv 、−1(RO−ΔR)−を出
力し、もう一方の差動増幅器3は、V2=i(R6十Δ
R)全出力する。各増幅器2.3より出力されたV、、
V2は、次の差動増幅器4にて差動増幅され、その出力
■はV2−V、=i (RO十ΔR)  t(Ro−Δ
R)=2iΔR(2iΔR51nのとなる。つまり、2
段目の差動増幅器4は、各磁気抵抗素子Sl、S2の両
端に生じる電圧の内、抵抗R8による直流分を取り除い
た、磁界による抵( 抗変化分JRのみ電圧降下分の21ΔR=Vが出力され
る。第3図の回路方式によれば、定電流源が1つで、単
位電流に対する出力は2ΔR51nθとなる。
In the optical diagram, 2 is the first stage differential amplifier for detecting the voltage generated across the magnetoresistive element S1, and 3 is the magnetoresistive element S.
This is a first-stage differential amplifier used to detect the voltage generated across the two ends of the circuit. The outputs V, V2 of the differential amplifiers 2 and 3 are applied to the respective input terminals of the second stage differential amplifier 4, and an output of V=V2-V is obtained from the output terminal. The series circuit of the magnetoresistive elements S, S2 is connected to a constant current source 5, and has a configuration in which a current 1 always flows.0 With the above configuration, if a rotating magnetic field is generated by the movement of the probe, Accordingly, the magnetoresistive element S1. S2 resistance outside J
R changes. Therefore, when the sensing current i flows, a voltage is generated across each magnetoresistive element S1+ 82. This voltage is detected by the first stage differential amplifier 2.3. The differential amplifier 2 outputs v, -1(RO-ΔR)-, and the other differential amplifier 3 outputs V2=i(R6+Δ
R) Full output. V output from each amplifier 2.3,
V2 is differentially amplified in the next differential amplifier 4, and its output ■ is V2-V, = i (RO + ΔR) t (Ro-Δ
R)=2iΔR(2iΔR51n. That is, 2
The differential amplifier 4 in the second stage is constructed by removing the DC component due to the resistor R8 from among the voltages generated across the magnetoresistive elements Sl and S2. According to the circuit system shown in Fig. 3, there is one constant current source, and the output for a unit current is 2ΔR51nθ.

本発明の出力回路は第1図及び第2図に示す出力回路と
の出力の大きさを分かりやすくするために下記の如く表
に示した。
The output circuit of the present invention is shown in the table below to make it easier to understand the magnitude of the output compared to the output circuits shown in FIGS. 1 and 2.

上記表に示す如く本発明によれば、年位センンング電流
当りの出力は、第1図に比べ4倍、第2図に比べ2倍と
なる。
As shown in the table above, according to the present invention, the output per yearly sensing current is four times that of FIG. 1 and twice that of FIG. 2.

又、温度変化に対しては、磁気抵抗素子S、、S2とし
て温度係数の等しいものを選べは、直流ドラフトは補償
できる。
Furthermore, with respect to temperature changes, direct current draft can be compensated for by selecting magnetoresistive elements S, . . . S2 that have equal temperature coefficients.

以上説明した様に本発明の磁気式ロータリ、・エンコー
ダの出力回路によれば、1個の定電流源を用いるだけで
、効率よく磁気界の変化を検出でき、しかも単位電流に
対する出力が従来のものと比べ大きくなる。また磁気抵
抗素子St、82等は直列接続方式であるため、上記磁
気抵抗素子の数が増そうとも、センシング電流は増加す
ることはない。
As explained above, according to the magnetic rotary encoder output circuit of the present invention, changes in the magnetic field can be detected efficiently by using only one constant current source, and the output per unit current is lower than that of the conventional one. It becomes larger compared to other things. Moreover, since the magnetoresistive elements St, 82, etc. are connected in series, even if the number of the magnetoresistive elements increases, the sensing current will not increase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の磁気式ロータリ・エンコーダ
の出力回路を示す回路図、第3図は本発明による磁気式
ロータリ・エンコーダの出力回路の一具体例を示す回路
図である。 2.3ニ一段目の差動増幅器 4:2段目の差動増幅器
 5:定電流源 i:センシング電流Sl、82 :磁
気抵抗素子 R6:変化しない抵抗成分 ΔR:磁界に
より変化する抵抗成分代理人 弁理士 福 士 愛 彦 第1図 二
1 and 2 are circuit diagrams showing the output circuit of a conventional magnetic rotary encoder, and FIG. 3 is a circuit diagram showing a specific example of the output circuit of the magnetic rotary encoder according to the present invention. 2.3 D First stage differential amplifier 4: Second stage differential amplifier 5: Constant current source i: Sensing current Sl, 82: Magnetoresistive element R6: Resistance component that does not change ΔR: Resistance component proxy that changes due to magnetic field Person Patent Attorney Aihiko Fukushi Figure 1 2

Claims (1)

【特許請求の範囲】[Claims] 1、 マグネットロータにより与えられる回転磁界が逆
相関係になるよう配置され且つ電気的に直列接続された
2個の磁気抵抗素子と、この直列接続された磁気抵抗素
子に検出用電流を流す定電流源と、各磁気抵抗素子の両
端に生じる電圧を検出するための第1段目の差動増幅器
と、該差動増幅器の出力より磁界による抵抗変化分のみ
の検出信号を出力する第2段目の差動増幅器とを備えて
なる磁気式ロータリーエンコーダの出力回路。
1. Two magnetoresistive elements arranged so that the rotating magnetic field given by the magnet rotor has an opposite phase relationship and electrically connected in series, and a constant current that flows a detection current through the series-connected magnetoresistive elements. a first-stage differential amplifier for detecting the voltage generated across the magnetoresistive element; and a second-stage differential amplifier for outputting a detection signal corresponding to only the resistance change due to the magnetic field from the output of the differential amplifier. A magnetic rotary encoder output circuit comprising a differential amplifier and a differential amplifier.
JP56168248A 1981-10-20 1981-10-20 Output circuit of magnetic type rotary encoder Pending JPS5868615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56168248A JPS5868615A (en) 1981-10-20 1981-10-20 Output circuit of magnetic type rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56168248A JPS5868615A (en) 1981-10-20 1981-10-20 Output circuit of magnetic type rotary encoder

Publications (1)

Publication Number Publication Date
JPS5868615A true JPS5868615A (en) 1983-04-23

Family

ID=15864496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56168248A Pending JPS5868615A (en) 1981-10-20 1981-10-20 Output circuit of magnetic type rotary encoder

Country Status (1)

Country Link
JP (1) JPS5868615A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212313A (en) * 1988-02-19 1989-08-25 Sankyo Seiki Mfg Co Ltd Magnetism detecting device
JPH01212312A (en) * 1988-02-19 1989-08-25 Sankyo Seiki Mfg Co Ltd Magnetism detecting device
JPH01265113A (en) * 1988-04-18 1989-10-23 Japan Servo Co Ltd Magnetic encoder
JPH0370320U (en) * 1989-11-10 1991-07-15
WO2006064169A2 (en) * 2004-12-17 2006-06-22 S.N.R. Roulements Current-loop position sensor and antifriction bearing equipped with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827943A (en) * 1971-08-18 1973-04-13
JPS55151210A (en) * 1979-05-15 1980-11-25 Sharp Corp Detector for movement of magnetic medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827943A (en) * 1971-08-18 1973-04-13
JPS55151210A (en) * 1979-05-15 1980-11-25 Sharp Corp Detector for movement of magnetic medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212313A (en) * 1988-02-19 1989-08-25 Sankyo Seiki Mfg Co Ltd Magnetism detecting device
JPH01212312A (en) * 1988-02-19 1989-08-25 Sankyo Seiki Mfg Co Ltd Magnetism detecting device
JPH01265113A (en) * 1988-04-18 1989-10-23 Japan Servo Co Ltd Magnetic encoder
JPH0370320U (en) * 1989-11-10 1991-07-15
WO2006064169A2 (en) * 2004-12-17 2006-06-22 S.N.R. Roulements Current-loop position sensor and antifriction bearing equipped with same
FR2879737A1 (en) * 2004-12-17 2006-06-23 Snr Roulements Sa CURRENT LOOP POSITION SENSOR AND BEARING EQUIPPED WITH SUCH A SENSOR
WO2006064169A3 (en) * 2004-12-17 2007-03-01 Roulements Soc Nouvelle Current-loop position sensor and antifriction bearing equipped with same
JP2008524571A (en) * 2004-12-17 2008-07-10 エス.エヌ.エール.ルールマン Current loop position sensor and rotary bearing including the same

Similar Documents

Publication Publication Date Title
JP2529960B2 (en) Magnetic position detector
JPS5868615A (en) Output circuit of magnetic type rotary encoder
JPS61210965A (en) Measuring equipment for low resistance
JPS6325572A (en) Leakage current measuring system of electrometer amplifier
CN102080994A (en) Isolated measurement technology of strain bridge circuit
US10302678B2 (en) Motor control circuitry
JP2002006014A (en) Magnetic sensor
JPS626171B2 (en)
JP3158862B2 (en) RTD circuit
JP2007033270A (en) Sensor circuit and circuit unit
SU900132A1 (en) Strain gauge converter
JPS6324268B2 (en)
JPH0625701B2 (en) Temperature detection circuit of 3-wire resistance temperature sensor
JP2544130B2 (en) Temperature measurement circuit
JPS63133069A (en) Apparatus for measuring dc difference voltage
JP2017142068A (en) Current sensor and filtering method thereof
RU2071065C1 (en) Converter for mechanical quantities into electric signal
KR910009926B1 (en) Means power detecting circuit using hall cell
SU1247784A1 (en) Input device for registering electrostatic field in atmosphere
SU789938A1 (en) Three-component ferroprobe magnetometer
JP2001141756A (en) Current sensor
RU2099722C1 (en) Low-resistance meter
SU712763A1 (en) Resistance measuring device
SU1679617A1 (en) Current-to-voltage converter
JPS59212008A (en) Input device