JP3155110B2 - 三次元形状の形成方法 - Google Patents

三次元形状の形成方法

Info

Publication number
JP3155110B2
JP3155110B2 JP01074893A JP1074893A JP3155110B2 JP 3155110 B2 JP3155110 B2 JP 3155110B2 JP 01074893 A JP01074893 A JP 01074893A JP 1074893 A JP1074893 A JP 1074893A JP 3155110 B2 JP3155110 B2 JP 3155110B2
Authority
JP
Japan
Prior art keywords
resin liquid
fine powder
layer
photocurable
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01074893A
Other languages
English (en)
Other versions
JPH05286040A (ja
Inventor
内野々良幸
喜万 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP01074893A priority Critical patent/JP3155110B2/ja
Publication of JPH05286040A publication Critical patent/JPH05286040A/ja
Application granted granted Critical
Publication of JP3155110B2 publication Critical patent/JP3155110B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、三次元形状の形成方
法に関し、詳しくは、光の照射によって硬化する光硬化
性樹脂を用いて、立体的な三次元形状を有する物品を成
形製造する方法に関するものである。
【0002】
【従来の技術】光硬化性樹脂を用いて三次元形状を形成
する方法は、複雑な三次元形状を、成形型や特別な加工
工具等を用いることなく、簡単かつ正確に形成すること
ができる方法として、各種の製品モデルや立体模型の製
造等に利用することが考えられている。具体的には、例
えば、特開昭61−114817号公報や特開昭63−
141724号公報、特開昭60−247515号公報
などに開示された方法がある。
【0003】特開昭61−114817号公報記載の方
法は、つぎように実施される。容器内に光硬化性樹脂液
を供給して、一定厚みの樹脂液層を形成し、この樹脂液
層に対し、液面上方からレーザ光を照射して、この樹脂
液層を部分的に光硬化させる。その際、レーザ光の照射
位置を水平方向に順次移動させることにより、所定のパ
ターンを有する光硬化層を形成することができる。つぎ
に、この光硬化層の上に新たな樹脂液を供給して新しい
樹脂液層を形成し、この樹脂液層に再びレーザ光を照射
する。このような工程を繰り返して、光硬化層を順次積
み重ねることにより、所望の立体形状を有する樹脂製品
が得られる。
【0004】上記方法以外にも、光硬化させる樹脂液層
の形成方法や、レーザ光の照射方法、あるいは、光硬化
層の積み重ね方法などが違う様々な方法が提案されてい
る。例えば、特開昭63−141724号公報の方法
は、樹脂液の中に沈めた昇降自在な成形台を、樹脂液の
液面直下に配置して、液面にレーザ光を照射し、成形台
の上の樹脂液層を光硬化させて光硬化層を形成し、つぎ
に、成形台を少し沈めた後、前記同様の作業を行うとい
う工程を繰り返すことにより、複数層の光硬化層を積み
重ねていく。また、特開昭60−247515号公報に
は、樹脂液中に光ファイバを挿入して、先端からレーザ
光を照射しながら水平方向に走査して光硬化層を形成
し、光ファイバの挿入位置を順次高くしていくことによ
って、光硬化層を積み重ねていく方法などが開示されて
いる。
【0005】しかし、何れの方法でも、光硬化性樹脂液
に光を照射して光硬化させるときに、光硬化性樹脂が大
きな硬化収縮を起こし、そのために、形成される光硬化
層の形状が歪んでしまい、三次元形状の精度が悪くなる
という問題があった。通常、樹脂液層に光を照射したと
きには、光が先に照射される液面側と液面から遠い側で
は硬化の進行あるいは硬化度合が違ってしまうために、
形成された光硬化層は、液面側に反ることが多い。一般
的な光硬化性樹脂液の体積収縮率は10%近くもあり、
特に、光硬化性樹脂液の薄い層を光硬化させた場合に
は、大きな反りや歪みが生じるのである。
【0006】このような問題を解決する方法が、特開平
1−232025号公報に開示されている。この方法
は、光硬化性樹脂液に、ケイソウ土、酸化チタン、ビー
ズ、金粉あるいはカーボンウィスカ、ガラス繊維などの
充填材を混合しておくことにより、光硬化性樹脂液の硬
化収縮を小さくしようとするものである。
【0007】
【発明が解決しようとする課題】ところが、光硬化性樹
脂液に充填材を混合しておく上記方法では、多数の光硬
化層を積み重ねて三次元形状を造形しているうちに、反
りや歪みが生じたり、形状精度にバラツキが生じたりす
るという問題があった。これは、光照射の各段階におい
て、樹脂液層に充填材が均一に分布して混合されてお
り、かつ、各段階における樹脂液層に常に適正な量の充
填材が含まれていれば、複数の光硬化層は何れも反りや
歪みがなく、各光硬化層の形状精度も一定になるのであ
るが、実際には、樹脂液層によって充填材の含有量にバ
ラツキが生じたり、1層の樹脂液層でも場所によって充
填材の分布にバラツキが生じるためである。
【0008】このような充填材のバラツキが生じるの
は、予め樹脂液中に充填材を均一に混合していても、多
数の光硬化層を形成し、積み重ねている作業中に、樹脂
液の底に充填材が沈んで溜まったり、逆に液面近くに浮
き上がってしまったりするため、各樹脂液層毎に充填材
の含有量が異なってしまったり、ひとつの樹脂液層でも
場所によって充填材の偏りが生じるのである。
【0009】また、別の問題として、光硬化性樹脂液に
充填材が含まれていると、光の照射部分のみを確実かつ
正確な形状で光硬化させることができず、その結果、光
硬化層の形状精度が低下したり、仕上がり品質が低下し
たりする問題もあった。これは、例えば、充填材が光硬
化性樹脂と化学反応を起こして、光硬化性樹脂の特性に
悪影響を与えること、不透明な充填材では、充填材より
も下方の樹脂液に光が届かなくなること、光反射性を有
する充填材では、充填材の表面で反射した光が余計な部
分の光硬化性樹脂液を光硬化したり、光硬化性樹脂液に
与える光エネルギーに偏りが生じたりすること、などが
原因であると考えられる。
【0010】そこで、この発明の課題は、光硬化性樹脂
液に充填材を混合しておいて、光硬化層の反りや歪みを
防止する方法を改良し、光硬化層の反りや歪みをより確
実に防ぐことのできる方法を提供することにある。
【0011】
【課題を解決するための手段】上記課題を解決する、こ
の発明にかかる三次元形状の形成方法は、光硬化性樹脂
液に光を照射して光硬化層を形成し、この光硬化層を複
数層積み重ねて所望の三次元形状を備えた造形物を得る
方法において、各層の光硬化層を形成する段階毎に、光
硬化性樹脂液に対し、光硬化性樹脂と実質的に同じ密度
を有する固体の微粉末を供給して混合する
【0012】光硬化性樹脂液としては、従来の三次元形
状の形成方法でも用いられている各種の光硬化性樹脂が
用いられる。具体的には、ウレタン、ウレタン−アクリ
レート、エポキシ、エポキシ−アクリレート系の光硬化
性樹脂などが挙げられる。微粉末の材料としては、前記
従来技術にも開示されている各種材料のように、光硬化
性樹脂液の硬化収縮を防止できるような固体材料のう
ち、この発明では特に、光硬化性樹脂液に近い密度を有
する材料からなるものを用いる。光硬化性樹脂液の密度
は、通常1.1〜1.2g/cm3 であるが、樹脂原料の種
類や配合によっても若干異なり、それぞれの光硬化性樹
脂液に合わせて、微粉末の材料を選択すればよい。一般
に、無機物質からなる微粉末は、光硬化性樹脂液の密度
との差が大きいものが多く、このような材料は好ましく
ない。光硬化性樹脂液とは別の樹脂材料その他の有機物
質では、光硬化性樹脂液と密度の近いものを得られ易い
が、有機物質には光硬化性樹脂と化学反応を起こして、
変色するなどの悪影響を生じるものがあり、このような
材料も好ましくない。したがって、微粉末としては、光
硬化性樹脂液と密度が近く、かつ、光硬化性樹脂との反
応性を有しない材料を用いるものとする。
【0013】微粉末として、上記材料を、所望の粒径範
囲に微粉化したものが用いられる。微粉化の手段は、そ
れぞれの材料に合わせて適切な方法を採用すればよく、
粉砕その他の通常の微粉化手段が採用できる。微粉末の
粒径は、光硬化性樹脂液への均一な分散が可能であるこ
と、光硬化性樹脂液の光硬化を阻害し難いこと、取扱い
が容易であること、製造が容易であることなどの条件を
考慮して設定すればよい。具体的には、少なくとも、光
硬化させる際の樹脂液層の厚みよりも小さいことは必要
であるが、目的や用途に合わせて、数μmから数mm程度
までの範囲で選択すればよい。微粉末の粒径分布は、比
較狭い範囲で揃っているほうが、その特性や機能が均一
に発揮できるが、製造条件などによって、粒径分布にあ
る程度の幅があるものであっても構わない。また、後述
するように、粒径の異なる微粉末を積極的に利用するこ
ともできる。
【0014】微粉末として、光の屈折率や反射率、透過
性などの特性が光硬化性樹脂液に近いものを用いるのが
好ましい。具体的には、光硬化性樹脂液は、ほぼ透明に
近い樹脂なので、微粉末としても透明に近く、光の屈折
率も樹脂に近いものが好ましいことになる。光硬化性樹
脂液の密度に近い材料として、光硬化性樹脂液そのもの
を光硬化させ、この硬化体を粉砕するなどして微粉化し
たものを用いれば、光硬化性樹脂液にほぼ近い材料が確
実に使用できる。また、この光硬化性樹脂の硬化体を微
粉化した微粉末は、当然、屈折率などの光特性も光硬化
性樹脂液とほぼ同じものになる。
【0015】特に、三次元形状の造形に用いる光硬化性
樹脂液と同じ組成の光硬化性樹脂液から微粉末を製造す
れば、微粉末の密度その他の特性は、三次元形状の造形
に用いる光硬化性樹脂液と確実に近いものが得られる。
但し、三次元形状の造形に用いる光硬化性樹脂液とは異
なる組成の光硬化性樹脂液を用いて微粉末を製造する場
合でも、密度その他の特性を考慮して組成を選択すれば
よい。
【0016】上記のような微粉末を光硬化性樹脂液に均
一に混合分散させた状態で、三次元形状の形成工程に用
いる。三次元形状の形成工程を行っている間、連続的あ
るいは断続的に樹脂液を攪拌して、微粉末の分布をより
均一化させておくこともできる。具体的な三次元形状の
形成方法、すなわち、樹脂液の層を形成したり、光を照
射したり、光硬化層を積み重ねたりする方法もしくは工
程については、前記した各従来技術に開示されているよ
うな、通常の三次元形状の形成方法と同様の方法が適用
できる。
【0017】微粉末を光硬化性樹脂液に供給混合する方
法として、以下に説明する各種の方法が適用できる。ま
ず、三次元形状の造形に使用する光硬化性樹脂液の全体
に予め微粉末を供給して混合しておく方法のほか、各層
の光硬化層を形成する段階毎に、光硬化性樹脂液に微粉
末を供給して混合することができる。この場合、微粉末
は、その段階で光硬化させる厚み部分の光硬化性樹脂液
のみに供給して混合しておけばよい。例えば、前の段階
で形成された光硬化層の表面を光硬化性樹脂液の薄層で
覆い、この樹脂液薄層を次の段階で光硬化させるのであ
れば、上記樹脂液薄層に微粉末を供給すればよい。光硬
化層を形成する各段階毎に微粉末を供給するには、光硬
化性樹脂液の液面上方に、散布ノズルなどの微粉末の供
給手段を設けておけばよい。微粉末の供給手段が、レー
ザ光などの光照射の邪魔にならないように、微粉末の供
給手段を、樹脂液の液面上および液面外の間で移動可能
に設けておくこともできる。
【0018】微粉末の供給量すなわち光硬化性樹脂液に
混合する微粉末の量を、光硬化層を形成する各段階によ
って、変えることができる。微粉末の供給量を変えるに
は、前記した微粉末の供給手段を調整制御すればよい。
各段階における微粉末の供給量は、光硬化させる樹脂液
層の厚みや形成する光硬化層の形状その他の条件によっ
て、その段階で最も適切な微粉末の供給量に設定すれば
よい。
【0019】具体的には、光硬化層を形成する各段階の
うち、初期段階では、後の段階よりも光硬化性樹脂液に
供給する微粉末の量を多くすることができる。光硬化層
を下から上へと積み重ねる場合には、最下層の光硬化層
を形成するのが最初の段階であり、その後の段階で、順
次上層の光硬化層を形成する。初期段階とは、最初の光
硬化層を形成する段階だけの場合もあるし、最初の光硬
化層を含む複数の光硬化層が形成されるまでの複数の段
階の場合もある。後の段階とは、少なくとも上記初期段
階の次に光硬化層を形成するひとつの段階を意味してお
り、この段階よりもさらに後の段階において、必要に応
じて、微粉末の供給量を初期段階と同じにしたり、より
多くしたりすることも可能である。
【0020】微粉末の供給量は、先の段階よりもその後
の段階が、常に少なくなるように、連続的に減少させて
もよい。最初の段階を含む複数の段階のみで、微粉末の
供給量を連続的に減少させ、その後の段階では、一定の
供給量を維持してもよい。また、供給量を同じに設定し
た複数の段階を1組にして、各組毎に、先の組よりもそ
の後の組で、微粉末の供給量を少なくしてもよい。複数
の組のうち、最初の組よりも次の組では微粉末の供給量
が少なく、その次の組では微粉末の供給量が多くなって
もよい。
【0021】さらに、光硬化性樹脂液に微粉末を供給す
る段階と供給しない段階とが組み合わせられていてもよ
い。具体的には、形成する光硬化層の形状や上下に積み
重ねる光硬化層との相互関係によって、歪みや反りが生
じ難いことが判っている光硬化層を形成する段階、ある
いは、三次元形状物の造形物の機能上、微粉末を含まな
いことが要求される光硬化層を形成する段階では、微粉
末の供給を止めておくのである。ほぼ全ての段階で微粉
末を供給して、その中の特定の段階のみで微粉末の供給
を止めてもよいし、微粉末の非供給段階を複数段階にわ
たって設けることもできる。微粉末の供給段階と非供給
段階とを1段階毎に交互に繰り返すこともできる。
【0022】つぎに、光硬化性樹脂液に供給する微粉末
として、粒径の異なる粒子を組み合わせることができ
る。微粉末の粒径は、前記したような範囲で設定される
が、その中で、粒径の小さな粒子と粒径の大きな粒子を
混在させておくのである。粒径の分布は、異なる粒径の
ものを2種類あるいはそれ以上の複数種類で組み合わせ
てもよいし、小さな粒径から大きな粒径まで連続的に粒
径が分布するような組み合わせでもよい。大きな粒子と
小さな粒子の粒径の差、すなわち粒径分布の幅は、1段
階で光硬化させる樹脂液層の厚みすなわち光硬化層の厚
み、あるいは、樹脂液中に微粉末を均等に分散させてお
く必要のある時間、すなわち、樹脂液に微粉末を供給し
てから樹脂液を光硬化させるまでの時間などの条件に合
わせて設定すればよい。具体的には、たとえば、光硬化
層の厚みが大きいほど、粒径分布の幅を広く設定してお
くほうがよい。但し、微粉末の生産性や取扱い性なども
考慮して、粒径分布の幅を設定するのが好ましい。
【0023】上記の粒径が異なる粒子を組み合わせる方
法は、光硬化層の形成段階毎に微粉末を供給する方法だ
けでなく、光硬化性樹脂液に予め微粉末を混合しておく
方法においても有効である。
【0024】
【作用】光硬化性樹脂液の硬化収縮を防ぐために加える
充填材料が、光硬化性樹脂液に近い密度を有する固体の
微粉末であれば、光硬化性樹脂液中に、安定して均一に
分散させておくことができ、底のほうに沈んでしまった
り、液面に浮き上がったりして、場所による充填率のバ
ラツキや偏りが生じることがない。
【0025】したがって、樹脂液層の形成、光の照射、
光硬化層の積み重ねなどの工程を何度も繰り返して行っ
ても、それぞれの段階において、樹脂液層に含まれる微
粉末は常に適切な含有率であり、場所により分布のバラ
ツキも生じない。その結果、光硬化層に反りや歪みが生
じるのを確実に防止でき、形状精度の高い三次元形状を
作製することができる。
【0026】微粉末として、光硬化性樹脂液を硬化させ
た後、微粉化してなる微粉末を用いれば、この微粉末の
密度が、光硬化性樹脂液に近いものとなるのは当然であ
るから、前記した作用を確実に達成することができる。
しかも、この微粉末は、光に関する特性も光硬化性樹脂
液とほぼ近いものであるから、微粉末を含有させたこと
によって、光硬化性樹脂液の硬化特性に悪影響を与える
こともない。
【0027】微粉末の製造に用いる光硬化性樹脂液が、
三次元形状の造形に用いる光硬化性樹脂液と同じ組成で
あれば、光硬化性樹脂液の特性などを考えなくても、上
記作用は確実かつ容易に達成できる。但し、微粉末の製
造に用いる光硬化性樹脂液として、三次元形状の造形に
用いる光硬化性樹脂液とは異なる組成の光硬化性樹脂液
を用いても、必要とされる特性が近いものとなるよう
に、その組成を設定しておけば、前記同様の作用は達成
できる。微粉末の製造に用いる光硬化性樹脂液は、三次
元形状の造形に用いる光硬化性樹脂液に比べれば、必要
とされる光硬化特性などは緩やかでよいので、比較的安
価な材料を用いることができ、コストダウンを図ること
ができる。
【0028】各層の光硬化層を形成する段階毎に、光硬
化性樹脂液に微粉末を供給して混合すれば、三次元形状
の造形に用いる光硬化性樹脂液全体に予め微粉末を混合
しておくのに比べて、微粉末の沈降や偏在の問題が生じ
難い。これは、樹脂液に混合された微粉末は、たとえ密
度が樹脂液に近いものであっても、時間がたてば、徐々
に沈降したり偏在したりする可能性がある。造形する三
次元形状が大型化したり、積み重ねる光硬化層の数が増
えると、作業時間が長くかかり、上記のような問題が生
じる可能性がある。また、光硬化層の歪みや反りがわず
かでも生じては困る場合には、樹脂液中における微粉末
の偏在を、より完全に無くすことが要望される。
【0029】そこで、光硬化層を形成する段階毎に、す
なわち1段階の薄い樹脂液層毎に微粉末を供給混合し
て、直ぐに光硬化させれば、微粉末の沈降や偏在の問題
は、より確実に解消されることになる。また、この方法
を採用すれば、各段階毎に、微粉末の供給量を変えた
り、微粉末の種類を変えることも可能になる。光硬化層
を形成する各段階で、光硬化性樹脂液に供給する微粉末
の量を変えれば、光硬化層の形状や上下の光硬化層との
相互関係などによって、歪みや反りが発生し易い光硬化
層と、歪みや反りが発生し難い光硬化層とで、微粉末の
量を変えることができ、微粉末の使用量を必要かつ最小
限に抑えることができる。また、光硬化性樹脂液を光硬
化させるときには、出来るだけ介在物が存在しないほう
が好ましいので、不必要な微粉末の使用を止めることに
よって、光硬化工程の性能向上を果たすこともできる。
さらに、三次元形状造形物の使用目的や機能上、微粉末
が存在していてはいけない光硬化層には微粉末を供給せ
ず、その上下の光硬化層に供給した微粉末で、全体の歪
みや反りを防止するようなことも可能である。
【0030】光硬化層を形成する各段階のうち、初期段
階では、後の段階よりも光硬化性樹脂液に供給する微粉
末の量を多くすると、歪みや反りが発生し易い初期段階
で、微粉末の作用を良好に発揮させて、三次元形状造形
物全体の歪みや反りを確実に防止することができる。こ
れは、光硬化層をある程度の段数で積み重ねた状態で
は、その上に形成する光硬化層に光硬化に伴う収縮応力
が発生しても、下方の分厚い光硬化層全体で応力を分散
吸収することができ、歪みや反りが発生することは少な
い。しかし、先に形成された光硬化層が少ないか全く無
い初期段階では、光硬化層に形成時に発生する収縮応力
が、そのまま歪みや反りとして表れるのである。そこ
で、このように歪みや反りが発生し易い初期段階の樹脂
液に対する微粉末の供給量を多くしておくことが有効に
なる。
【0031】光硬化性樹脂液に微粉末を供給する段階と
供給しない段階とを組み合わせておくと、前記したよう
に、歪みや反りの発生があまり問題にならない光硬化層
を形成する段階や、微粉末の存在が好ましくない光硬化
層を形成する段階では、微粉末を供給しないようにし
て、微粉末の無駄な消費を防ぐとともに、三次元形状造
形物の機能や性能を高めることができる。また、微粉末
を供給しなければ、微粉末を供給するための作業時間も
省けるので、全体の作業時間も削減される。
【0032】光硬化性樹脂液に供給する微粉末として、
粒径の異なる粒子を組み合わせれば、粒径が同じ粒子の
みを用いた場合に比べて、樹脂液に供給された微粉末
が、樹脂液の底に溜まったり特定の個所に偏在したりす
るのを、より良好に防止できる。これは、以下に説明す
る作用による。前記したように、樹脂液の密度に近い微
粉末を用いても、微粉末と樹脂液の密度がわずかでも違
っていると、時間がたつにつれて、微粉末は樹脂液の底
に沈降してしまう可能性がある。前記したように、光硬
化層を形成する各段階毎に、微粉末を供給するようにし
ても、各段階の樹脂液層内で、樹脂液層の底に微粉末が
沈降してしまい、この樹脂液層を光硬化させたときに
は、樹脂液層の上層部分に、光硬化収縮応力による歪み
や反りが発生してしまう場合がある。
【0033】この際の微粉末の沈降速度は、微粉末の密
度とともに、微粉末の粒径にも影響を受ける。具体的に
は、力学の原理から、液中における物体の沈降速度は、
物体の直径の2乗に比例して大きくなるのである。すな
わち、微粉末の粒径が大きくなるほど、沈降速度が大き
くなる。そこで、粒径の異なる微粉末を混在させておけ
ば、粒径の小さな微粉末は樹脂液層中をなかなか沈まな
いのに対し、粒径の大きな微粉末は樹脂液層中を迅速に
沈むことになる。その結果、沈降を開始してから一定時
間後には、樹脂液の上層に近い位置には、沈降の遅い粒
径の小さな微粉末が存在し、樹脂液の下層に近い位置に
は、沈降の速い粒径の大きな微粉末が存在することにな
る。樹脂液の上下層の何れにも、一定の割合で微粉末が
分布することになる。
【0034】このようにして、光硬化させる樹脂液の全
体に微粉末が均等に分布していれば、光硬化層に歪みや
反りが発生するのを確実に防止できる。この方法は、前
記した光硬化層の形成段階毎に微粉末を供給する方法で
適用すれば、各段階の樹脂液層内での微粉末の分布をよ
り均等にでき、その作用をより高めることができるが、
光硬化性樹脂液に予め微粉末を混合しておく方法に適用
した場合でも、樹脂液全体における微粉末の分布を均等
化するのに有効である。また、微粉末の密度が樹脂液の
密度に近い範囲内で、ある程度の差がある場合でも、微
粉末の沈降あるいは偏在を軽減することができるので、
微粉末の材料選択が容易になる。
【0035】
【実施例】ついで、この発明の実施例について図面を参
照しながら以下に説明する。図2は、微粉末の作製方法
を示している。図2(a) に示すように、一定量の光硬化
性樹脂液80に光70を照射して全体を光硬化させる。
光硬化性樹脂液80としては、後に三次元形状を形成す
る工程で使用する光硬化性樹脂液と同じものを用いる。
この場合の光70は、光硬化性樹脂液80全体を光硬化
できればよいので、レーザ光のように厳密に制御された
光でなくてもよい。
【0036】図2(b) に示すように、光硬化性樹脂液8
0が光硬化した硬化体82が得られた後、図2(c) に示
すように、硬化体82を微粉化して、光硬化性樹脂微粉
末8を得る。図2(d) に示すように、三次元形状造形物
の形成に用いる光硬化性樹脂液1に、光硬化性樹脂微粉
末8を均一に混合する。この光硬化性樹脂微粉末8を含
む光硬化性樹脂液1を、各種の三次元形状の形成方法に
用いる。三次元形状の形成方法の具体的工程や装置は、
従来と同様の方法が採用できる。
【0037】図1は、三次元形状造形物を製造する方法
の具体例を示している。樹脂液槽6に、前記工程で得ら
れた光硬化性樹脂微粉末8を含む光硬化性樹脂液1を溜
めておく。樹脂液槽6内には、昇降自在な成形台3が備
えられている。成形台3を、樹脂液1の液面よりわずか
下に配置した状態で、樹脂液1の上方からレーザ光7を
照射し、成形台3と液面の間の樹脂液層2を光硬化させ
る。レーザ光7を水平方向に走査して、所定パターンを
有する光硬化層5が形成される。光硬化性樹脂液1が光
硬化すれば、同じ光硬化性樹脂からなる微粉末8と完全
に一体化して、一様な光硬化層5が得られる。1層分の
光硬化層5が形成されれば、成形台3を少し沈め、光硬
化層5と液面の間に樹脂液1を供給して、新たな樹脂液
層2を形成する。このような工程を順次繰り返すことに
よって、成形台3の上に、複数層の光硬化層5が積み重
ねられて、所望の三次元形状を有する樹脂成形品が作製
される。
【0038】つぎに、図3には、微粉末8を構成する材
料による、光硬化特性の違いについて説明している。図
3(a) に示すように、光硬化性樹脂液1に何も充填材料
が含まれていない場合には、液面にレーザ光7が照射さ
れると、液面から深くなるにつれて狭くなるU字断面状
の光硬化部20が形成される。
【0039】これに対し、図3(c) は、光反射性を有す
る充填材Pを光硬化性樹脂液1に混合しておいた場合で
あり、充填材Pの表面で反射した光が、様々な方向に向
かって、その部分の光硬化性樹脂液1を光硬化させるこ
とになる。但し、上方から照射された光を充填材Pで反
射しても、充填材Pの下側までは十分な光が到達しな
い。その結果、光硬化部22の断面形状は、外周に凹凸
のある歪んだ形になってしまう。また、硬化深さは浅く
なってしまう。
【0040】また、図3(d) は、光透過性の全くない充
填材Pを混合しておいた場合である。この場合には、充
填材Pがレーザ光7を遮るので、充填材Pの下側の光硬
化性樹脂液1は全く硬化されないことになる。その結
果、光硬化部22の断面形状は、充填材Pの下側がえぐ
れたような歪んだ形になってしまう。つぎに、図3(b)
は、この発明の実施例の場合であり、前記光硬化性樹脂
からなる微粉末8を光硬化性樹脂液1に混合している。
この場合、レーザ光7は、微粉末8の表面で反射するこ
となく、微粉末8を透過する。また、微粉末8を透過す
る際に大きく屈折したりすることもないので、レーザ光
7は、光硬化性樹脂液1のみの場合と、ほとんど同じ様
に進む。その結果、光硬化部20の断面形状は、光硬化
性樹脂液1のみの図3(a) の場合とほぼ同じになる。各
時点における光硬化部20の形状が光硬化性樹脂液1の
みの場合と同じであれば、光硬化部20の連続として形
成される光硬化層5の形状精度や品質が、光硬化性樹脂
液1のみの場合と同等になることは言うまでもない。
【0041】光硬化性樹脂液1に、同じ光硬化性樹脂か
らなる微粉末8を混合した場合の挙動について、具体的
に詳しく説明する。一般的な光硬化性樹脂液1の密度ρ
0 と、この光硬化性樹脂液1から作製された微粉末8の
密度ρとの差は、ρ−ρ0 =10-4g/mm3 程度になる。
また、微粉末8の平均粒径d=0.01mm、光硬化性樹
脂液1の粘度η=100cps 、重力加速度g=9800
mm/sec 2 とすれば、光硬化性樹脂液1に混合された微
粉末8の沈降速度は下式のようになる。
【0042】 沈降速度v=2d2 (ρ−ρ0 )g/9η ……(1) この(1)式に上記数値を代入して、 v=0.72mm/hr したがって、光硬化性樹脂液1に微粉末8を混合した
後、1時間たっても0.72mmしか沈降しない。三次元
形状の形成作業が、この程度の時間内に終了するのであ
れば、作業時間の間は、実質的にはほとんど沈降しない
とみなせる。通常は、使用前にある程度混合攪拌するの
で、実際の成形工程では、常に、光硬化性樹脂液1に微
粉末8が均一に分散された状態で使用できることが判
る。
【0043】実際に、上記のような条件で、光硬化性樹
脂液1および微粉末8を準備し、前記のような三次元形
状造形物を製造したところ、製造された三次元形状の成
形品は、形状精度が高いとともに、その他の品質性能も
優れたものであった。つぎに、図4に示す実施例は、光
硬化層5を形成する各段階毎に、微粉末8を供給する場
合を表している。
【0044】図4の(a) に示すように、樹脂液1の液面
の上方に微粉末8の散布ノズル84が配置されている。
樹脂液1中には、成形台3の上に先に形成された光硬化
層5が存在している。光硬化層5と樹脂液1の液面との
間に、次に形成する光硬化層の厚みに相当する間隔をあ
けている。この状態で、散布ノズル84から樹脂液1に
微粉末8を散布する。
【0045】図4の(b) に示すように、樹脂液1に供給
された微粉末8は、徐々に沈んでいくが、ある程度の時
間内であれば、樹脂液1の全体に均等に分布した状態で
存在する。散布ノズル84は、樹脂液1の液面上から取
り去る。この状態で、樹脂液1の液面にレーザ光7を照
射する。そうすると、光硬化層5と樹脂液1の液面の間
に存在する樹脂液層が光硬化して、所定のパターンを有
する光硬化層が形成される。このとき、樹脂液層には微
粉末8が均等に分布しているので、光硬化収縮に伴う歪
みや反りの発生が良好に防止される。
【0046】つぎに、図5に示す実施例は、微粉末8と
して、粒径の異なる粒子を混在させておく場合を表して
いる。基本的には、前記図4の実施例と同様の操作を行
うので、共通する部分の説明は省略する。図5の(a) に
示すように、樹脂液1の液面に散布する微粉末8とし
て、比較的粒径の小さな粒子8a、粒径が中くらいの粒
子8b、粒径が大きな粒子8cの3種類の粒子が存在し
ている。樹脂液1に供給された微粉末8a〜8cのう
ち、大きな粒子8cは速く沈み、小さな粒子8aはゆっ
くりと沈む。
【0047】図5の(b) に示すように、微粉末8a〜8
cを樹脂液1に供給してから一定時間後には、光硬化層
5の上方の樹脂液1のうち、液面近くにはまだ小さな粒
子8aが存在しているのに、樹脂液層の底すなわち光硬
化層5の表面近くには大きな粒子8cが存在し、その中
間深さには中くらいの粒子8bが存在することになる。
この状態で、レーザ光7を照射すれば、樹脂液層に均等
に微粉末8a〜8cが分布した状態で樹脂液1の光硬化
が行われる。
【0048】なお、微粉末8として粒径が全て同じもの
を用いた場合には、樹脂液1に散布した直後は、微粉末
8が液面近くのみにあり、時間がたつと、微粉末8は光
硬化層5の表面近くのみに沈んでしまうので、光硬化層
5の表面から液面までの全ての深さに、微粉末8を均等
に分布させるのが難しい。これは、光硬化層5の表面か
ら液面までの距離が大きいほど、すなわち光硬化させる
樹脂液層の厚みが分厚いほど問題になる。
【0049】したがって、前記図5の実施例のように、
粒径の異なる粒子を混在させておく方法は、樹脂液層の
厚みを分厚く設定する場合、あるいは、歪みや反りの発
生をより少なくするのに有効な方法となる。図6には、
微粉末8a〜8cの粒径の違いによる沈降状態の違い
を、詳しく説明している。ここで、小さな粒子8aの直
径Da=0.01mm、中くらいの粒子8bがその2倍の
直径Db=0.02mm、大きな粒子8cが3倍の直径D
c=0.03mmであるとする。
【0050】前記(1)式に、上記数値を代入すると、
それぞれの沈降速度Va、Vb、Vcが、以下のとおり
求められる。密度などの条件は前記図3の実施例と同様
とした。 小さな粒子8a :Va=0.0002mm/sec 中くらいの粒子8b:Vb=0.0008mm/sec 大きな粒子8c :Vc=0.0018mm/sec 沈降速度が大きい、大きな粒子8cが光硬化層5の表面
まで沈んだ状態では、小さな粒子8aは液面近くをわず
かに沈んだだけであり、中くらいの粒子8bの深さの中
間位置ぐらいに存在する。
【0051】光硬化層5の表面から液面までの距離H=
0.1mmとすると、大きな粒子8cが底についたときに
は、粒子8cの中心が液面からLc=0.1−0.01
5=0.085mmだけ沈むことになる。粒子8cが上記
Lcだけ沈むのに要する時間は、0.085/0.00
18=約47秒となる。同じ時間に、粒子8aおよび粒
子8bが沈む距離LaおよびLbを求めると次のとおり
である。
【0052】小さな粒子8a :La=約0.01mm 中くらいの粒子8b:Lb=約0.04mm 大きな粒子8c :Lc=0.85mm この状態で、大中小の各粒子8a〜8cは、光硬化層5
と液面の間にほぼ均等に配置されることになる。このと
きに、レーザ光7の照射を行えば、最も好ましい状態と
なる。
【0053】但し、上記したように、大きな粒子8cが
光硬化層5の表面まで完全に沈むのにも約47秒かかる
のであるから、微粉末8a〜8cを樹脂液1の液面に散
布してから、47秒後を挟む前後の一定時間内に、レー
ザ光7の照射が行われさえすれば、樹脂液層中にほぼ均
等に微粉末8a〜8cを分布させた状態でレーザ光7の
照射を行うことができる。
【0054】つぎに、図7に示す実施例は、光硬化層5
の形成段階のうち、初期段階と後の段階で微粉末8の供
給量を変える場合を表している。図7の(b) に示すよう
に、光硬化性樹脂液に微粉末8を全く供給せずに複数層
の光硬化層5を形成して積み重ね、三次元形状造形物M
を製造すると、初期に形成された光硬化層5(図の下方
部分)に、大きな反りが発生する。光硬化層5が上方に
なるほど、反りは少なくなっている。
【0055】そこで、図7の(a) に示すように、下層の
光硬化層5を形成する段階すなわち初期段階では、樹脂
液内に比較的多量の微粉末8を混合しておく。光硬化層
5の形成段階が進むほど、すなわち、後の段階になるほ
ど、微粉末8の供給量を少なくする。最上層に近い部分
の光硬化層5では、微粉末8が全く混合されていない。
【0056】この実施例によれば、反りが発生し易い初
期段階の光硬化層5には、比較的多量の微粉末8が混合
されているので、反りの発生を良好に防止できる。しか
し、上層の光硬化層5ほど、反りが発生する程度は少な
くなるので、微粉末8の混合量も少なくしており、微粉
末8の無駄を無くしている。その結果、微粉末8の使用
量を削減できるとともに、微粉末8の供給に要する作業
時間も削減できることになる。また、微粉末8の存在に
よる、光硬化性樹脂液の光硬化に対する影響も少なくな
り、三次元形状造形物の品質特性を向上させる効果も期
待できる。
【0057】つぎに、図8および図9に示す実施例は、
三次元形状の構造に合わせて、微粉末8の供給量を変更
した場合を表す。図8の(a) に示すように、三次元形状
造形物Mとして、全体が直方体状をなすとともに、中心
部分にXY両方向に貫通する十字角柱状の貫通部hを有
するものを造形する。
【0058】図8の(b) に示すように、微粉末8を全く
混合しておかなかった場合には、造形物Mは全体が上方
に大きく反り返るように歪んでしまう。この状態を詳し
くみると、貫通部hの存在する両側の柱状部分m1
は、あまり歪みが生じていないのに対し、その上下の広
い板状部分m2 、m2 で、大きな歪みが生じていること
が判る。
【0059】そこで、図9の(a) に示すように、造形物
Mのうち、板状部分m2 、m2 に相当する光硬化層を形
成する段階では、十分な量の微粉末8を混合しておくの
に対し、柱状部分m1 に相当する光硬化層を形成する段
階では、微粉末8を供給しないでおく。その結果、板状
部分m2 、m2 における歪みの発生を微粉末8で確実に
阻止できるとともに、歪みがあまり生じない柱状部分m
1 では微粉末8の供給を行わずにおいて、微粉末8の無
駄使いを防いでいる。
【0060】なお、上記柱状部分m1 でも歪みの発生を
防止する必要がある場合には、図9の(b) に示すよう
に、柱状部分m1 に相当する光硬化層を形成する段階で
も、微粉末8を供給するようにしてもよい。但し、この
柱状部分m1 に供給する微粉末8の量は、前記板状部分
2 、m2 に比べて少なくてもよい。
【0061】
【発明の効果】以上に述べた、この発明にかかる三次元
形状造形物の製造方法によれば、光硬化性樹脂液の硬化
収縮を防ぐために加える充填材料が、光硬化性樹脂液に
近い密度を有する固体の微粉末であることにより、光硬
化層を形成するための樹脂液層に、微粉末が均一に安定
して分散されて、光硬化時の硬化収縮を確実に防ぐこと
ができる。
【0062】その結果、光硬化層に反りや歪みが生じる
のを確実に防止でき、形状精度の高い三次元形状を作製
することができる。また、光硬化層に固体の微粉末が均
一に分散していることにより、光硬化層および三次元形
状造形物の機械的強度や耐久性を向上させる効果が期待
できる。微粉末として、光硬化性樹脂液を硬化させた
後、微粉化してなる微粉末を用いれば、微粉末の密度は
当然に光硬化性樹脂液と近いものとなるので、前記作用
効果を簡単かつ確実に達成することができる。また、光
硬化性樹脂液と微粉末が同じ材料であれば、光を照射し
たときの特性も同じになり、別材料の充填材料を入れた
場合のように、光硬化性樹脂液の硬化特性や作製された
光硬化層の品質性能を阻害する心配もない。
【0063】さらに、各層の光硬化層を形成する段階毎
に、光硬化性樹脂液に微粉末を供給して混合すれば、三
次元形状の造形に用いる光硬化性樹脂液全体に予め微粉
末を混合しておくのに比べて、微粉末の沈降や偏在の問
題がより生じ難くなり、前記した作用効果を、さらに向
上させることができる。各段階で、微粉末の供給量を変
えたり、微粉末の供給段階と非供給段階を組み合わせた
り、初期段階で後の段階よりも微粉末の供給量を増やし
たりすれば、造形物を構成する光硬化層のうち、歪みや
反りを防止するために必要な光硬化層を形成する段階だ
けで、必要な量の微粉末を供給して、目的の効果を発揮
させると同時に、不必要な微粉末の使用を避けて、コス
トの低減および作業の能率化、さらには三次元形状造形
物の性能向上をも果たすことができる。
【0064】光硬化性樹脂液に供給する微粉末として、
粒径の異なる粒子を組み合わせれば、同じ粒径の粒子の
みを用いる場合に比べて、樹脂液の全深さにわたって、
より均等に微粉末を分布させることができ、前記した微
粉末の効果、すなわち光硬化層の歪みや反りの発生防止
を、さらに向上させることができる。
【図面の簡単な説明】
【図1】 この発明の実施例となる方法を表す概略断面
【図2】 微粉末の作製方法の具体例を段階的に表す概
略説明図
【図3】 微粉末の存在による光硬化状態の違いを表す
概略断面図
【図4】 別の実施例を段階的に表す概略断面図
【図5】 別の実施例を段階的に表す概略断面図
【図6】 微粉末の粒子径による沈降状態の違いを表す
概略説明図
【図7】 別の実施例(a) および従来例(b) を示す概略
説明図
【図8】 図9の実施例に関する従来技術を表し、(a)
は造形物の斜視図、(b) は断面図
【図9】 別の実施例を表す概略断面図
【符号の説明】
1 光硬化性樹脂液 2 樹脂液層 5 光硬化層 7 レーザ光 8、8a〜8c 微粉末 84 散布ノズル M 造形物
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29C 67/00

Claims (9)

    (57)【特許請求の範囲】
  1. 【請求項1】 光硬化性樹脂液に光を照射して光硬化層
    を形成し、この光硬化層を複数層積み重ねて所望の三次
    元形状を備えた造形物を得る方法において、各層の光硬
    化層を形成する段階毎に、光硬化性樹脂液に対し、光硬
    化性樹脂と実質的に同じ密度を有する固体の微粉末を
    給して混合することを特徴とする三次元形状の形成方
    法。
  2. 【請求項2】 請求項1の方法において、三次元形状の
    形成に用いる光硬化性樹脂液にも予め必要量の微粉末の
    一部を混合しておく三次元形状の形成方法。
  3. 【請求項3】 請求項1または2の方法において、微粉
    末として、光硬化性樹脂液を硬化させた後、微粉化して
    なる微粉末を用いる三次元形状の形成方法。
  4. 【請求項4】 請求項の方法において、微粉末の製造
    に用いる光硬化性樹脂液として、三次元形状の造形に用
    いる光硬化性樹脂液と同じ組成の光硬化性樹脂液を用い
    る三次元形状の形成方法。
  5. 【請求項5】 請求項の方法において、微粉末の製造
    に用いる光硬化性樹脂液として、三次元形状の造形に用
    いる光硬化性樹脂液とは異なる組成の光硬化性樹脂液を
    用いる三次元形状の形成方法。
  6. 【請求項6】 請求項1〜5の何れかの方法において、
    光硬化層を形成する各段階で、光硬化性樹脂液に供給す
    る微粉末の量を変える三次元形状の形成方法。
  7. 【請求項7】 請求項6の方法において、光硬化層を形
    成する各段階のうち、初期段階では、後の段階よりも光
    硬化性樹脂液に供給する微粉末の量を多くする三次元形
    状の形成方法。
  8. 【請求項8】 請求項〜7の何れかの方法において、
    光硬化層を形成する各段階が、光硬化性樹脂液に微粉末
    を供給する段階と供給しない段階とが組み合わせられて
    いる三次元形状の形成方法。
  9. 【請求項9】 請求項1〜8の何れかの方法において、
    光硬化性樹脂液に供給する微粉末として、粒径の異なる
    粒子を組み合わせる三次元形状の形成方法。
JP01074893A 1992-02-15 1993-01-26 三次元形状の形成方法 Expired - Lifetime JP3155110B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01074893A JP3155110B2 (ja) 1992-02-15 1993-01-26 三次元形状の形成方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-28692 1992-02-15
JP2869292 1992-02-15
JP01074893A JP3155110B2 (ja) 1992-02-15 1993-01-26 三次元形状の形成方法

Publications (2)

Publication Number Publication Date
JPH05286040A JPH05286040A (ja) 1993-11-02
JP3155110B2 true JP3155110B2 (ja) 2001-04-09

Family

ID=26346066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01074893A Expired - Lifetime JP3155110B2 (ja) 1992-02-15 1993-01-26 三次元形状の形成方法

Country Status (1)

Country Link
JP (1) JP3155110B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423103B1 (en) 1999-01-25 2002-07-23 Nec Tokin Toyama, Ltd. Method for producing a solid electrolytic capacitor
CN108638496A (zh) * 2018-04-17 2018-10-12 深圳市雷凌广通技术研发有限公司 一种基于物联网的防凹陷和翘边的智能型3d打印机

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662934B2 (ja) * 1994-01-26 1997-10-15 帝人製機株式会社 光造形簡易型及びその製造方法
JP2891138B2 (ja) * 1995-07-13 1999-05-17 日本電気株式会社 光硬化造形装置
CA2239488C (en) * 1995-12-22 2005-12-06 Ciba Specialty Chemicals Holding Inc. Process for the homogenisation of fillers in the stereolithographic preparation of three-dimensional objects
JP3786467B2 (ja) * 1996-05-29 2006-06-14 Jsr株式会社 立体形状物の光造形装置
JP4307636B2 (ja) * 1999-07-13 2009-08-05 ナブテスコ株式会社 光学的立体造形用の光硬化性樹脂組成物
JP4493814B2 (ja) * 2000-07-28 2010-06-30 ナブテスコ株式会社 硬化性樹脂から成る着色造形物の製造方法および製造装置
JP2004351907A (ja) * 2003-03-28 2004-12-16 Fuji Photo Film Co Ltd 三次元造形物の製造方法
EP1475221A3 (en) 2003-05-09 2008-12-03 FUJIFILM Corporation Process for producing three-dimensional model
JP4246220B2 (ja) * 2006-07-04 2009-04-02 ナブテスコ株式会社 光造形装置
CN104015357B (zh) * 2014-05-30 2016-03-23 田野 Fdm 3d打印冷板成型树脂膜
CN107108768B (zh) * 2014-11-12 2019-07-05 日本电气硝子株式会社 立体造形用树脂组合物、立体造形物的制造方法及无机填料粒子
CA3026760C (en) * 2016-06-30 2020-09-15 Dws S.R.L. Method and system for making dental prostheses
CN107521097A (zh) * 2017-08-31 2017-12-29 西安铂力特增材技术股份有限公司 一种利用光固化技术成形金属或陶瓷材料零件的设备
US11104066B2 (en) * 2018-12-23 2021-08-31 General Electric Company Additive manufacturing method for functionally graded material
KR102392829B1 (ko) * 2020-12-30 2022-05-02 한국공학대학교산학협력단 이종유체를 수용하는 수조를 포함하는 3d 프린터 및 이를 구동하는 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423103B1 (en) 1999-01-25 2002-07-23 Nec Tokin Toyama, Ltd. Method for producing a solid electrolytic capacitor
CN108638496A (zh) * 2018-04-17 2018-10-12 深圳市雷凌广通技术研发有限公司 一种基于物联网的防凹陷和翘边的智能型3d打印机

Also Published As

Publication number Publication date
JPH05286040A (ja) 1993-11-02

Similar Documents

Publication Publication Date Title
JP3155110B2 (ja) 三次元形状の形成方法
US20230191701A1 (en) Additive manufacturing using foaming radiation-curable resin
EP0939695B1 (en) Process for forming a three-dimensional object and optical forming apparatus for forming three-dimensional objects
JP4888236B2 (ja) 三次元造形装置、および三次元造形方法
KR20010051780A (ko) 광경화성 수지 3차원 조형물의 적층 조형 장치 및 그 적층조형 방법
JP2871500B2 (ja) 光学的立体造形用樹脂及び光学的立体造形用樹脂組成物
WO2008151063A2 (en) High definition versatile stereolithic method and material
JPH06170954A (ja) 光学的造形法
EP0914242B1 (en) Process for the stereolithographic preparation of three-dimensional objects using a radiation-curable liquid formulation which contains fillers
WO1997017190A2 (en) Processes for preparing and using moulds
JP2665258B2 (ja) 三次元形状の形成方法
JPH0493228A (ja) 立体形状物の形成方法
JP2715649B2 (ja) 樹脂立体形状形成装置と形成方法
CN109203468A (zh) 一种快速光固化3d打印装置
JP2016097517A (ja) 立体造形物の製造方法
JPH0295831A (ja) 三次元形状の形成方法および装置
JPH0698686B2 (ja) 光学的造形法
JPH07329188A (ja) 光造形ファブリケ−ション法及びこれを利用した金属構造体の製造方法
JP3091316B2 (ja) 三次元形状の形成方法
CN108481738A (zh) 液气交互连续式3d打印系统、打印方法及光学透镜元件
JPH026877A (ja) 光硬化性流動物質及び重液を併用した光学的造形法
CN108454100B (zh) 基于全反射原理提高成型效果的光固化成型设备
JP2022007167A (ja) 樹脂型の製造方法
JPH09150459A (ja) 光硬化造型物及びその造型方法と造型装置
KR20000016233A (ko) 3차원 물체 형성을 위한 광형성 장치

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 12

EXPY Cancellation because of completion of term