JP3126288B2 - Method of measuring rail rail shape - Google Patents

Method of measuring rail rail shape

Info

Publication number
JP3126288B2
JP3126288B2 JP6740195A JP6740195A JP3126288B2 JP 3126288 B2 JP3126288 B2 JP 3126288B2 JP 6740195 A JP6740195 A JP 6740195A JP 6740195 A JP6740195 A JP 6740195A JP 3126288 B2 JP3126288 B2 JP 3126288B2
Authority
JP
Japan
Prior art keywords
rail
data
height
bending
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6740195A
Other languages
Japanese (ja)
Other versions
JPH08261742A (en
Inventor
保 山 洋 一 久
中 知 行 弘
伯 和 彦 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6740195A priority Critical patent/JP3126288B2/en
Publication of JPH08261742A publication Critical patent/JPH08261742A/en
Application granted granted Critical
Publication of JP3126288B2 publication Critical patent/JP3126288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、鉄道用レ−ル製造ライ
ンで、搬送中のレ−ル上面の長手方向の個々の凹凸量全
ておよび曲がり量を測定し、形状の合否判定するための
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a railroad rail manufacturing line for measuring all the individual irregularities and the amount of bending in the longitudinal direction of the upper surface of a rail being conveyed, and for determining the conformity of the shape. About the method.

【0002】[0002]

【従来技術】鉄道用レ−ルはレ−ル上面に凹凸がある
と、車両走行中に輪重変動が発生し車両が振動するた
め、乗り心地に悪影響を及ぼす。その影響は車両速度が
高速になればなるほど大きく、レ−ル上面の波1つ1つ
の凹凸の波長は2000mm以上及び波高は0.2mm以下に、微
小な凹凸は波長200mm以上及び波高0.13mm以下に抑える
ことが要求されている。更に端部に曲がりが生じると、
レ−ル敷設時のレ−ル間接続に矯正作業が発生するた
め、鋼種によって異なるが、上曲がりで約1500mmに対し
て0.5mm以下及び下曲がり0mmにすることが要求されてい
る。レ−ル上部上面長さ方向の凹凸量測定方法は、従来
人手によりストレ−トエッジとテ−パ−ゲ−ジにより測
定されていた。また機械による自動測定では特開平5−
196457号公報の「鉄道用レ−ル頭部上面の曲がり
測定方法及び装置」がある。この方法では図7のごと
く、3台の距離計44a,44b,44cをそれぞれL
a/2間隔で配置し、レ−ル上面の凹凸状の曲がりをS
in波、周期をλと仮定することで、3台の距離計出力
ha,hb,hcよりレ−ル上面長さ方向の凹凸状の曲
がり量Δhを算出するものである。
2. Description of the Related Art In railroad rails, if the rails have irregularities on the upper surface of the rails, fluctuations in wheel load occur during running of the vehicle and the vehicle vibrates, which adversely affects ride comfort. The effect increases as the vehicle speed increases.The wavelength of each wave on the rail top surface is 2000 mm or more and the wave height is 0.2 mm or less, and the minute unevenness is 200 mm or more and the wave height 0.13 mm or less. It is required to suppress. If the end bends further,
Since straightening work occurs at the connection between the rails when laying the rails, it depends on the type of steel. The method of measuring the amount of unevenness in the length direction of the upper surface of the rail has conventionally been measured manually by a straight edge and a taper gauge. In addition, automatic measurement by a machine is disclosed in
Japanese Patent Application Laid-Open No. 196457/1992 discloses "Method and Apparatus for Measuring the Top of the Rail Rail Top". In this method, as shown in FIG. 7, the three distance meters 44a, 44b, and 44c are respectively set to L.
a / 2 intervals, and the uneven bend on the upper surface of the rail is S
Assuming that the in-wave and the period are λ, the three-dimensional rangefinder outputs ha, hb, and hc are used to calculate the uneven amount of curvature Δh in the rail top surface length direction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
5−196457号公報による方法では、レ−ル上面に
存在する凹凸をSin波と仮定しているが、実際にオフ
ラインでレ−ル上面の凹凸を測定するとSin波になる
ことはあり得ない。それ故、算出された振幅及び周期は
信頼性に欠けているという問題点があった。また、レ−
ルの全長に対する波長及び振幅を測定するものであり、
レ−ル上面に存在する個々の凹凸に対する評価ができな
いことから、要求されている品質保証に対応ができない
という問題があった。
However, in the method disclosed in Japanese Patent Application Laid-Open No. 5-196457, the unevenness existing on the rail upper surface is assumed to be a sine wave. Can not be a sine wave. Therefore, there is a problem that the calculated amplitude and cycle lack reliability. In addition,
To measure the wavelength and amplitude for the entire length of the
Since it is not possible to evaluate individual irregularities existing on the rail upper surface, there is a problem that required quality assurance cannot be met.

【0004】本発明はかかる課題を解決するためになさ
れたものであり、個々の凹凸状の波全てに対し、波長及
び波高を算出可能とし、さらに端部の曲がり量も算出で
きるといった機能も付加した方法を提供することを目的
とする。
The present invention has been made to solve such a problem, and has a function of calculating a wavelength and a wave height with respect to each of all the uneven waves, and further adding a function of calculating a bending amount of an end portion. It is intended to provide a method that has been implemented.

【0005】[0005]

【課題を解決するための手段】本願の発明は、鉄道用レ
−ル上面の高さを該レ−ルの長手方向に順次測定し、
定デ−タより、レ−ル端部のプロフィ−ルデ−タを0に
するための平行移動処理を行い、その後、レ−ル端部の
プロフィ−ルデ−タを固定し、かつ端部基準長さ相当の
プロフィ−ルデ−タを0にするよう移動し、移動したデ
−タの0軸に対する正負の最大曲がり量をそれぞれ算出
し、その結果から、レ−ルの品質合否判定を行うことを
特徴とする。
The inventors [SUMMARY OF] is railroad Les - Le top height該Re - successively measured in the longitudinal direction of the Le, measured
From the constant data, set the profile data at the end of the rail to 0.
To perform parallel movement, and then the rail end
Fix the profile data and set the end reference length.
Move the profile data to 0 and move the data
- the maximum bending amount of positive relative to 0 axis data were calculated, from the result of that, Le - and performing quality acceptance judgment Le.

【0006】一実施態様は、端部基準長さを品種別に任
意に変更できることを特徴とする。
One embodiment is characterized in that the end reference length can be arbitrarily changed for each product type.

【0007】[0007]

【作用】レ−ル上面の長手方向のプロフィ−ル(測定値
分布)は、図1のごとく、2台の距離計1a,1bを、
レ−ル2の長手方向xに間隔Lで配置し、レ−ル2上面
の高さyを一定時間毎に測定した測定値と、レ−ルの搬
送速度を測定する速度計の測定値から測定できる。この
時、図2のごとく長手方向の位置をX、プロフィ−ルを
F(X)とすると、F(X)は多数のノイズを含んでい
るため、それを解決するために移動平均処理を施す。そ
れにより、滑らかな凹凸曲線が得られることになり、後
の極値抽出の事前処理が出来ることになる。移動平均処
理を施したプロフィ−ルデ−タをG(X)とすると、次
に、極値を抽出するために、G(X)に一次微分を施
す。一次微分値G(X)’は、x方向で必ずプラスから
マイナス及びマイナスからプラス(0も含む)となるこ
とから、符号が逆転する位置が凹凸の極値となる。その
極値から極小値及び極大値を判別し、それぞれの値を図
3のごとくおくと、各凹凸の波長及び波高が算出できる
ことになる。その値とあらかじめ設定した基準値との比
較により、レ−ルの凹凸に対する品質合否判定が行える
ことになる。一方、レ−ル端部の曲がり量に関しては、
移動平均処理されたプロフィ−ルデ−タG(X)より算
出する。図4のごとく、まずレ−ル端部デ−タG(0)
を0に合わせるための平行移動をプロフィ−ルデ−タ全
てに施こす。次に、曲がりの判定を行う長手方向の距離
TのG(T)を0に合わせるために、G(0)を基準に
垂直方向yに等比移動処理を施す。このデ−タの最大曲
がり量とあらかじめ設定した基準値との比較により、レ
−ルの端部の曲がりに対する品質の合否判定が行えるこ
とになる。さらに曲がり判定を行う長手方向の距離Tは
レ−ルの品種毎に異なるが、本方法は、その品種毎に任
意設定できるため、品種に対応した曲がり量合否判定が
行えることになる。
The profile (measured value distribution) in the longitudinal direction of the rail upper surface is obtained by using two distance meters 1a and 1b as shown in FIG.
It is arranged at intervals L in the longitudinal direction x of the rail 2, and the height y of the upper surface of the rail 2 is measured at regular intervals and the measured value of a speedometer for measuring the rail transport speed is used. Can be measured. At this time, assuming that the position in the longitudinal direction is X and the profile is F (X) as shown in FIG. 2, since F (X) contains a lot of noise, moving average processing is performed to solve it. . As a result, a smooth concave-convex curve can be obtained, and preprocessing for the subsequent extremum extraction can be performed. Assuming that the profile data on which the moving average processing has been performed is G (X), a first derivative is applied to G (X) in order to extract an extreme value. Since the first derivative G (X) ′ always changes from plus to minus and minus to plus (including 0) in the x direction, the position where the sign is reversed becomes the extreme value of the unevenness. When the minimum value and the maximum value are determined from the extreme values and the respective values are set as shown in FIG. 3, the wavelength and the wave height of each unevenness can be calculated. By comparing the value with a preset reference value, it is possible to determine whether or not the rail is uneven. On the other hand, regarding the amount of bending at the rail end,
It is calculated from the moving average processed profile data G (X). As shown in FIG. 4, first, rail end data G (0)
Is applied to all the profile data so that is set to zero. Next, in order to make G (T) of the distance T in the longitudinal direction at which the bend is determined equal to 0, an equi-ratio moving process is performed in the vertical direction y based on G (0). By comparing the maximum bending amount of the data with a preset reference value, it is possible to determine the quality of the bending at the end of the rail. Further, the length T in the longitudinal direction in which the bending is determined differs for each type of rail, but since the present method can be set arbitrarily for each type, it is possible to determine whether or not the bending amount is appropriate for the type.

【0008】[0008]

【実施例】本発明の実施例を図面を参照しながら説明す
る。図1において、1a,1bはレ−ルの変位測定に使
用するスキャン式距離計、2は搬送レ−ル、3a,3b
は搬送ロ−ル、4は距離計コントロ−ラ、5はA/D変
換器、6は演算装置、7はロ−タリエンコ−ダである。
2台のスキャン式距離計1a,1bは、レ−ル搬送ライ
ン(x軸)にLの間隔で配置されている。スキャン式距
離計1a,1bは投光器のスキャン幅に対して、レ−ル
の遮蔽による減少分の受光部での受光幅により、レ−ル
の高さ(y方向)を測定するものである。距離計コント
ロ−ラ4は、ロ−タリエンコ−ダ7が設定数のパルスを
発生する毎に、すなわちレ−ル2の所定量の移動毎に、
スキャン式距離計1a,1bの測定信号(高さ信号)を
デジタルデ−タ(高さデ−タ)に変換して、計算機6に
与える。計算機6は与えられる高さデ−タをメモリ(プ
ロフィ−ルテ−ブル)に順次に書込む。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. In FIG. 1, reference numerals 1a and 1b denote scanning distance meters used for measuring rail displacement, 2 denotes a transport rail, and 3a and 3b.
Is a transport roll, 4 is a distance meter controller, 5 is an A / D converter, 6 is an arithmetic unit, and 7 is a rotary encoder.
The two scanning rangefinders 1a and 1b are arranged at L intervals on the rail transport line (x-axis). The scanning rangefinders 1a and 1b measure the height (y direction) of the rail based on the light receiving width at the light receiving portion, which is reduced by the shielding of the rail with respect to the scan width of the projector. Each time the rotary encoder 7 generates a set number of pulses, that is, each time the rail 2 moves a predetermined amount,
The measurement signals (height signals) of the scanning rangefinders 1a and 1b are converted into digital data (height data) and given to the computer 6. The computer 6 sequentially writes the given height data into a memory (profile table).

【0009】計算機6は、メモリの高さデ−タに基づい
てレ−ル上面の凹凸量を算出してレ−ルの品質合否判定
を行う。この処理を、図5のS2〜S6に示す。
The computer 6 calculates the amount of irregularities on the upper surface of the rail based on the height data of the memory, and determines the quality of the rail. This processing is shown in S2 to S6 in FIG.

【0010】上述の距離計1a,1bによる測定(図5
のS1)により、メモリ(プロフィ−ルテ−ブル)に
は、図2にしめすような高さ分布(レ−ルプロフィ−
ル)を示すデ−タが格納されている。計算機6は、これ
らのデ−タに対してノイズを除去するために移動平均処
理を行う(S2)。得られた移動平均処理デ−タG
(X)から極値を抽出するために、G(X)に1階微分
を施す(S3)。その処理の内容は G’(X)=G(X+1)−G(X) ・・・(1) である。G’(X)がプラスからマイナス及びマイナス
からプラスになるXより、図3のごとく極小値・極大値
を抽出し(S4)、個々の凹凸の波長及び波高を算出す
る(S5)。その際、極大値から極小値同士を結ぶ直線
に垂線をおろし、その交点の座標を(X”,Y”)とす
ると、それを求めるための算出式は
[0010] Measurements by the above rangefinders 1a and 1b (FIG. 5)
According to S1), the memory (profile table) has a height distribution (rail profile) as shown in FIG.
) Is stored. The computer 6 performs a moving average process on these data to remove noise (S2). Obtained moving average processing data G
In order to extract an extremum from (X), G (X) is subjected to first-order differentiation (S3). The contents of the processing are as follows: G ′ (X) = G (X + 1) −G (X) (1) From X in which G ′ (X) changes from plus to minus and from minus to plus, the minimum and maximum values are extracted as shown in FIG. 3 (S4), and the wavelength and wave height of each unevenness are calculated (S5). At this time, if a perpendicular line is drawn down to a straight line connecting the local maximum value to the local minimum value and the coordinates of the intersection point are (X ", Y"), the calculation formula for obtaining it is:

【0011】[0011]

【数2】 (Equation 2)

【0012】である。(3)式より算出された(X”,
Y”)から、凹凸の波長及び波高の算出式は
## EQU1 ## (X ″, calculated by equation (3)
Y ”), the formula for calculating the wavelength and wave height of the unevenness is

【0013】[0013]

【数4】 (Equation 4)

【0014】となり、これを全ての極値に対して行うこ
とにより、個々の凹凸の波長及び波高を算出する。その
算出結果と合否判定基準値を比較して、レ−ルの形状品
質を合否判定する(S6)。
By performing this for all the extreme values, the wavelength and the wave height of each unevenness are calculated. The calculation result is compared with a pass / fail judgment reference value to judge pass / fail of the shape of the rail (S6).

【0015】次に、レ−ル端部の曲がり量を算出してレ
−ルの品質合否判定を行う計算機6による処理を、図6
に示すフロ−チャ−トにしたがって説明する。曲がり量
判定の場合には上記と同様、プロフィ−ルデ−タに移動
平均処理を施し、図3のごとくG(0)を0になるよ
う、0から鋼種別に定められた基準長さTまでG(X)
にΔG(0)を加算する(S7)。その計算式は H(X)=G(X)+ΔG(0) ・・・(6) である。そして判定基準長さTにおけるH(T)を0に
なるよう、H(0)を基準に垂直方向に等比移動する
(S8)。その計算式は I(X)=H(X)−〔H(T)/T〕・X ・・・(7) となる。なお、本来であれば回転移動を施さなければな
らないが、基準距離Tに対する曲がり量は小さいため、
本移動方法で実質上問題はない。そして、算出されたI
(X)を0からTの範囲で比較することで、基準長さに
おける最大曲がり量を算出する(S9)。この処理をレ
−ル両端部に対して行い、算出結果と合否判定基準値を
比較することで、レ−ルの品質をオンラインで合否判定
する(S10)。なお、基準長さTは鋼種毎に計算機6
に入力して設定するものである。
Next, the processing by the computer 6 for calculating the amount of bending at the end of the rail and determining whether or not the rail quality is acceptable will be described with reference to FIG.
The description will be made according to the flowchart shown in FIG. In the case of the bend amount determination, the profile data is subjected to a moving average process in the same manner as described above, so that G (0) becomes 0 as shown in FIG. G (X)
Is added to ΔG (0) (S7). The calculation formula is: H (X) = G (X) + ΔG (0) (6) Then, an equal ratio movement is performed in the vertical direction with reference to H (0) so that H (T) at the determination reference length T becomes 0 (S8). The calculation formula is as follows: I (X) = H (X)-[H (T) / T] .X (7) It should be noted that the rotation must be performed originally, but since the amount of bending with respect to the reference distance T is small,
There is practically no problem with this moving method. Then, the calculated I
By comparing (X) in the range of 0 to T, the maximum bending amount at the reference length is calculated (S9). This process is performed for both ends of the rail, and the quality of the rail is determined online or not by comparing the calculation result with a pass / fail judgment reference value (S10). The reference length T is calculated by the computer 6 for each steel type.
Is entered and set.

【0016】[0016]

【発明の効果】本願の発明によれば、鋼種毎に判定基準
が違う端部曲がり量を容易に算出できることから、正確
で信頼性の高いオンラインでの曲がり検査が可能とな
り、製造ラインの能率を低下させることなく全数・全鋼
種検査が容易となって、レ−ルの品質向上を図ることが
できる。
According to the invention of the present application, the criterion is determined for each steel type.
Is easy to calculate the amount of end bending
In this way, highly reliable on-line bending inspection can be performed, and inspection of all and all types of steel can be easily performed without lowering the efficiency of the production line, thereby improving rail quality.

【0017】発明の上述の実施態様によれば、端部基
準長さを品種別に任意に変更できるので、品種に対応し
た曲がり量合否判定が行える。
According to the above embodiment of the present invention, the end base
The quasi-length can be changed arbitrarily for each product type.
It is possible to make a pass / fail judgment of the bent amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明を一態様で実施する装置構成の概要を
示すブロック図である。
FIG. 1 is a block diagram showing an outline of a device configuration for implementing the present invention in one aspect.

【図2】 (a)は図1に示す距離計1a,1bにより
測定したレ−ル2の上面高さ分布を示すグラフであり、
(b)は(a)の高さデ−タを移動平均処理により平滑
化して得た高さ分布を示すグラフである。
FIG. 2 (a) is a graph showing an upper surface distribution of the rail 2 measured by the distance meters 1a and 1b shown in FIG. 1,
(B) is a graph showing a height distribution obtained by smoothing the height data of (a) by moving average processing.

【図3】 図2の(b)に示すグラフの一部分を、レ−
ル上面高さ軸(縦軸)を拡大して示すグラフである。
FIG. 3 is a graph showing a part of the graph shown in FIG.
4 is a graph showing an enlarged view of the upper surface height axis (vertical axis).

【図4】 (a)はレ−ルの端部領域の高さデ−タを移
動平均処理により平滑化して得た高さ分布を示すグラ
フ、(b)は(a)に示すグラフ上の曲線を高さ方向に
平行移動したグラフ、(c)は(b)に示す曲線を、レ
−ル端を基点に垂直等比移動処理したグラフである。
FIG. 4A is a graph showing a height distribution obtained by smoothing height data of a rail end region by a moving average process, and FIG. 4B is a graph showing a height distribution on the graph shown in FIG. A graph obtained by translating the curve in the height direction, and (c) is a graph obtained by subjecting the curve shown in (b) to vertical equi-ratio movement processing using the rail end as a base point.

【図5】 図1に示すコントロ−ラ4および計算機6の
形状測定処理の内容を示すフロ−チャ−トである。
FIG. 5 is a flowchart showing details of a shape measurement process of the controller 4 and the computer 6 shown in FIG.

【図6】 図1に示すコントロ−ラ4および計算機6
の、レ−ル端部曲がり量判定のための設定処理の内容を
示すフロ−チャ−トである。
FIG. 6 shows a controller 4 and a computer 6 shown in FIG.
7 is a flowchart showing the contents of the setting process for determining the amount of bending at the end of the rail.

【図7】 従来のレ−ル頭部上面の曲がり量測定におけ
る測定器の配置と測定値の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the arrangement of measuring instruments and measured values in the conventional measurement of the amount of bending of the upper surface of the rail head.

【符号の説明】[Explanation of symbols]

1a,1b:スキャン式レ−ザ距離計 2:レ−ル 3a,3b:搬送ロ−ル 4:レ−ザ
−距離計コントロ−ラ 5:A/D変換器 6:計算機 7:ロ−タリ−エンコ−ダ D:搬送方
向 44a,44b,44c:レ−ザ−距離計 ha,h
b,hc:距離計出力 Δh:曲がり量 A:曲がり
振幅 B:オフセット λ:曲がり
周期
1a, 1b: Scanning laser range finder 2: Rail 3a, 3b: Carrier roll 4: Laser range finder controller 5: A / D converter 6: Computer 7: Rotary -Encoder D: Transport direction 44a, 44b, 44c: Laser distance meter ha, h
b, hc: Rangefinder output Δh: Bending amount A: Bending amplitude B: Offset λ: Bending period

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−196457(JP,A) 特開 昭59−30009(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 21/00 - 21/32 B21B 1/08 B21C 51/00 G01B 11/00 - 11/30 102 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-196457 (JP, A) JP-A-59-30009 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 21/00-21/32 B21B 1/08 B21C 51/00 G01B 11/00-11/30 102

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鉄道用レ−ル上面の高さを該レ−ルの長
手方向に順次測定し、測定デ−タより、レ−ル端部のプ
ロフィ−ルデ−タを0にするための平行移動処理を行
い、その後、レ−ル端部のプロフィ−ルデ−タを固定
し、かつ端部基準長さ相当のプロフィ−ルデ−タを0に
するよう移動し、移動したデ−タの0軸に対する正負の
最大曲がり量をそれぞれ算出し、その結果から、レ−ル
の品質合否判定を行うことを特徴とするレ−ル端部曲が
り量測定方法。
1. A method for sequentially measuring the height of a railroad rail upper surface in the longitudinal direction of the rail, and setting the profile data at the end of the rail to 0 based on the measured data. A parallel movement process is performed. Thereafter, the profile data at the end of the rail is fixed, and the profile data corresponding to the reference length at the end is moved to zero, and the moved data is A rail end bending amount measuring method, comprising calculating a maximum positive / negative bending amount with respect to the 0 axis and determining whether or not the rail quality is acceptable based on the result.
【請求項2】 端部基準長さを品種別に任意に変更でき
ることを特徴とする請求項記載のレ−ル端部曲がり量
測定方法。
2. A method according to claim 1, wherein the record, characterized in that to change the end reference length arbitrarily by breed - le end bending amount measuring method.
JP6740195A 1995-03-27 1995-03-27 Method of measuring rail rail shape Expired - Fee Related JP3126288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6740195A JP3126288B2 (en) 1995-03-27 1995-03-27 Method of measuring rail rail shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6740195A JP3126288B2 (en) 1995-03-27 1995-03-27 Method of measuring rail rail shape

Publications (2)

Publication Number Publication Date
JPH08261742A JPH08261742A (en) 1996-10-11
JP3126288B2 true JP3126288B2 (en) 2001-01-22

Family

ID=13343897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6740195A Expired - Fee Related JP3126288B2 (en) 1995-03-27 1995-03-27 Method of measuring rail rail shape

Country Status (1)

Country Link
JP (1) JP3126288B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234540A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk H-section steel shape measuring method
JP4797568B2 (en) * 2005-10-24 2011-10-19 Jfeスチール株式会社 Slab vertical crack detection method and apparatus
KR100733996B1 (en) * 2005-11-14 2007-06-29 한국철도기술연구원 Method and apparatus for measuring contact position of wheel/rail in railroad car
JP2007253221A (en) * 2006-03-24 2007-10-04 Tokyu Car Corp Laser welding method
JP5343314B2 (en) * 2006-12-05 2013-11-13 日本電気硝子株式会社 Surface shape measuring device
JP5109598B2 (en) * 2007-11-02 2012-12-26 住友ゴム工業株式会社 Article inspection method
JP6023561B2 (en) * 2012-11-15 2016-11-09 キヤノン株式会社 Measuring device, measuring method, and absolute encoder
JP6425243B2 (en) * 2014-12-22 2018-11-21 国立研究開発法人産業技術総合研究所 Identification device and identification method
JP2016138814A (en) * 2015-01-28 2016-08-04 東レ株式会社 Periodic defect inspection method and periodic defect inspection device
JP6678567B2 (en) * 2016-12-27 2020-04-08 公益財団法人鉄道総合技術研究所 Outlier determination method of waveform data and outlier determination system using this method
CN112033299A (en) * 2020-07-24 2020-12-04 中铁物总技术有限公司 Intelligent profile on-line detection system for steel rail

Also Published As

Publication number Publication date
JPH08261742A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
JP3126288B2 (en) Method of measuring rail rail shape
JP4762851B2 (en) Cross-sectional shape detection method and apparatus
JP3697015B2 (en) Method for determining the thickness of railroad rail columns
CN115682956A (en) Dynamic compensation method and system for detection data of contact rail during vibration of vehicle body
US6212481B1 (en) Method and apparatus for automatic shape computing for contour shape determining machine
US5523842A (en) Method of interference fringe analysis for determining aspect of surface geometry
JP4523683B2 (en) Method and apparatus for measuring shape of metal plate
JP3373880B2 (en) How to measure assembly accuracy
JP3028686B2 (en) Method and apparatus for measuring bending of top surface of railroad rail
JPH0611331A (en) Instrument and method for measuring undulating wear of rail
CN112097586B (en) Method for processing rail irregularity data
JP4444531B2 (en) Simple inspection vehicle and calibration method thereof
CN110458822B (en) Non-contact three-dimensional matching detection method for complex curved surface part
JPH1035493A (en) Irregularity of track calibration jig for simplified detection-measurement vehicle
RU2261302C2 (en) Method of and device for determining spatial parameters of rail track
JP2988645B2 (en) Measurement method of sheet material distortion shape
JP3945311B2 (en) Method and apparatus for evaluating dimensional accuracy of press-formed product
JPH06174436A (en) Size measuring method for shape steel
JP3072873B2 (en) Pattern processing equipment
JP2527609B2 (en) Data processing method of flatness integration recording device
JP3189721B2 (en) Estimation method of thickness of tapered steel plate
RU2162120C1 (en) Method for determining parameters of rolling surface of rail head
JPH06347257A (en) Shape processing method
JP3321451B2 (en) 3D shape processing method
CN116242349A (en) Track line shape measurement method and measurement system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001017

LAPS Cancellation because of no payment of annual fees