JP3373880B2 - How to measure assembly accuracy - Google Patents

How to measure assembly accuracy

Info

Publication number
JP3373880B2
JP3373880B2 JP03973993A JP3973993A JP3373880B2 JP 3373880 B2 JP3373880 B2 JP 3373880B2 JP 03973993 A JP03973993 A JP 03973993A JP 3973993 A JP3973993 A JP 3973993A JP 3373880 B2 JP3373880 B2 JP 3373880B2
Authority
JP
Japan
Prior art keywords
members
point
surface difference
approximate circle
door
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03973993A
Other languages
Japanese (ja)
Other versions
JPH06246592A (en
Inventor
直樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP03973993A priority Critical patent/JP3373880B2/en
Publication of JPH06246592A publication Critical patent/JPH06246592A/en
Application granted granted Critical
Publication of JP3373880B2 publication Critical patent/JP3373880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建付部材等の整合性を
測定する組付精度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembling accuracy measuring method for measuring the consistency of building members and the like.

【0002】[0002]

【従来の技術】例えば自動車製造工場において、フロン
トフード、トランクリッド、フロントドア、リヤドア等
の建付部材を車体本体に組付けるには、これら建付部材
と車体本体を構成するフロントフェンダ、リヤクォー
タ、リヤスカート等の車体本体部材との隙間である分割
及び相互部材間の段差となる面差や、フロントドアとリ
ヤドア等隣接する建付部材相互間の分割及び面差を適切
な組付精度に保持することが車体の品質及び美観向上並
びに後工程での修正工数の削減を図る上からも望まれて
いる。
2. Description of the Related Art For example, in an automobile manufacturing plant, in order to assemble building members such as a front hood, a trunk lid, a front door, and a rear door to a vehicle body, a front fender, a rear quarter, Maintains proper assembly accuracy for the surface difference that is the gap between the body parts such as the rear skirt and the level difference between the mutual members, and between the adjacent building members such as the front and rear doors. It is desired to improve the quality and aesthetics of the vehicle body and reduce the number of man-hours for correction in the post process.

【0003】このため、車体本体にフロントフードやト
ランクリッド等の建付部材を取付けた後、これら隣接す
る部材間の各分割及び面差をテーパゲージ、ノギス等の
計測器を用いた作業員による抜き取り計測が行われてい
る。
Therefore, after mounting members such as a front hood and a trunk lid are attached to the vehicle body, the division and surface difference between these adjacent members are extracted by a worker using a measuring instrument such as a taper gauge or a caliper. Measurements are being made.

【0004】また一方では特開昭61−98683号公
報に開示され、かつ図8及び図8の要部平面図を示す図
9に示すように、ドア組付装置に支持されたドアを、そ
のドア組付装置の位置決め動作に基づいて車体本体のド
ア開口部に位置決めして自動的に組み付けるようにした
ドア組付方法において、ドア20側のアクセントライン
21と車体本体22側のアクセントライン23との連続
部においてこれら両者の上下方向のずれをドア組付装置
24に設けたセンサー25にて検出し、このセンサー出
力に基づいてドア組付装置24に支持されているドア2
0の向きを修正してドア20側のアクセントライン21
と車体本体22側のアクセントライン23とを一直線状
に整合させる自動車のドア組付方法が提案されている。
On the other hand, as shown in FIG. 9 disclosed in Japanese Patent Laid-Open No. 61-98683 and showing a plan view of the essential parts of FIGS. 8 and 8, a door supported by a door assembling device is provided. A door assembling method in which the door assembling device is positioned at a door opening of a vehicle body based on a positioning operation of a door assembling apparatus and is automatically assembled, wherein an accent line 21 on a door 20 side and an accent line 23 on a vehicle body 22 side are provided. In the continuous portion of the door, the sensor 25 provided in the door assembling device 24 detects the vertical shift between the two and the door 2 supported by the door assembling device 24 based on the sensor output.
Correct the direction of 0 and accent line 21 on the door 20 side
There has been proposed a vehicle door assembling method for aligning the accent line 23 on the vehicle body 22 side with the vehicle body 22 side by side.

【0005】更に特開平4−76409号公報に示され
るように所定方向に走査しつつ測定対象物に光ビームを
照射し、対象物からの反射光を受光してその反射光に係
る情報に基づいて段差を検知する段差検知方法が開発さ
れている。
Further, as shown in Japanese Patent Application Laid-Open No. 4-76409, a measuring object is irradiated with a light beam while scanning in a predetermined direction, the reflected light from the object is received, and based on the information on the reflected light. A step detection method for detecting a step has been developed.

【0006】[0006]

【発明が解決しようとする課題】上記計測器を用いた作
業員による計測にあっては、各種建付部材等の隣接する
各部材間について各々の面差を逐一作業員が計測する測
定作業が厄介であり、製造される全製品に亘って計測す
るには膨大な工数を要し、抜き打ち的な計測に依存しな
ければならず、かつ計測器の接触により部材に傷を付け
る虞れがある等の不具合がある。
In the measurement by the worker using the above-mentioned measuring instrument, the measurement work in which the worker individually measures the surface difference between adjacent members such as various building members is required. It is cumbersome and requires a huge number of man-hours to measure over all manufactured products, and must rely on unannounced measurements, and there is a risk of damage to parts due to contact with the measuring instrument. There are problems such as.

【0007】また特開昭61−98683号公報に開示
された自動車のドア組付方法にあっては、ドア及び車体
本体との各々のアクセントラインの上下方向のずれをセ
ンサーにて検出してドアの向きを修正することから、ド
ア及び車体本体の形状が制限され、かつフロントフード
やトランクリッド等への適用は困難である。またセンサ
ーが車体に当接することから車体に傷を発生させ、品質
の低下を招く虞れがある。
Further, in the method of assembling an automobile door disclosed in Japanese Patent Laid-Open No. 61-98683, a sensor detects a vertical shift of each accent line between the door and the vehicle body to detect the door. Since the orientation of the door is corrected, the shapes of the door and the vehicle body are limited, and it is difficult to apply the same to the front hood and the trunk lid. Further, since the sensor comes into contact with the vehicle body, the vehicle body may be damaged and the quality may be deteriorated.

【0008】更に特開平4−76409号公報に開示さ
れる段差検知方法は、対象物に光ビームを照射し、対象
物からの反射光を受光して、その情報に基づき段差を検
知することから、非接触により対象物の段差が検出さ
れ、傷の発生を誘発することなく、段差を測定すること
が可能である。しかし、測定すべき部位に分割、即ち隣
接する部材間に間隙があり、特に部材が曲面を有する場
合には高精度の測定結果が得られ難い等の不具合があ
る。
Further, in the step detecting method disclosed in Japanese Patent Laid-Open No. 4-76409, an object is irradiated with a light beam, reflected light from the object is received, and the step is detected based on the information. The step of the object can be detected by non-contact, and the step can be measured without inducing the occurrence of scratches. However, there is a problem such that it is difficult to obtain a highly accurate measurement result when there is a gap between the members to be measured, that is, there is a gap between adjacent members, and especially when the member has a curved surface.

【0009】従って本発明の目的は、本体部材と建付部
材及び隣接する建付部材相互間等互いに隣接する部材間
の面差の測定が効率的に可能で、部材の形状に制限され
ることなく、更に傷の発生する虞れのない高品質の製品
が得られる組付精度測定方法を提供することである。
Therefore, an object of the present invention is to efficiently measure a surface difference between adjacent members such as a main body member, a building member, and adjacent building members, and to limit the shape of the members. It is an object of the present invention to provide a method for measuring the assembling accuracy that can obtain a high-quality product without the risk of scratches.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明による組付精度の測定方法は、測定すべき互い
に隣接する部材の整合個所を一次元状のレーザ光によっ
て横断照射して、CCDカメラにより両部材上の照射上
の点を基準点として検出し、この検出信号に基づいて両
部材間の面差を演算する組付精度測定方法において、一
方の部材におけるレーザ光照射上の2つの基準点及びこ
れらの基準点間に存在する部材上のその他の基準点によ
って形成される点列を円弧とする近似円の中心及び近似
円の半径を求め、かつ他方の部材におけるレーザ光照射
上の基準点と上記近似円の中心との間の距離を求め、こ
の距離と上記半径との差を両部材間の面差とするもので
ある。
In order to achieve the above object, a method of measuring the assembling accuracy according to the present invention is to irradiate the matching points of adjacent members to be measured with a one-dimensional laser beam in a transverse direction, In an assembling accuracy measuring method in which a CCD camera detects a point on both members as a reference point and a surface difference between the two members is calculated based on the detection signal, a method for measuring a laser beam irradiation on one member is performed. One reference point and other reference points on the member existing between these reference points are used to obtain the center of the approximate circle and the radius of the approximate circle having an arc of a point sequence formed on the member, and to irradiate the laser beam on the other member. The distance between the reference point and the center of the approximate circle is obtained, and the difference between this distance and the radius is used as the surface difference between the two members.

【0011】[0011]

【実施例】以下、本発明による組付精度測定方法の一実
施例を自動車車体の組付精度測定を行う場合を例に図に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an assembly accuracy measuring method according to the present invention will be described below with reference to the drawings, taking as an example the case where the assembly accuracy of an automobile body is measured.

【0012】図1は本実施例における組付精度測定方法
を実施する際に用いられる組付精度測定装置11の使用
状態を示す説明斜視図であり、図2はその平面図であっ
て、符号1は車体2を搬送する組立ラインである。組立
ライン1によって搬送される車体2は車体本体3を構成
するフロントフェンダ4、リヤクォータ5、リヤスカー
ト6等の車体本体部材及び建付部材であるフロントフー
ド7、フロントドア8、リヤドア9、トランクリッド1
0等を有している。
FIG. 1 is an explanatory perspective view showing a usage state of an assembling accuracy measuring device 11 used for carrying out the assembling accuracy measuring method in the present embodiment, and FIG. 2 is a plan view of the same. 1 is an assembly line for transporting the vehicle body 2. A vehicle body 2 conveyed by the assembly line 1 is a vehicle body body member such as a front fender 4, a rear quarter 5, a rear skirt 6 and the like, which constitutes a vehicle body 3, and a building member such as a front hood 7, a front door 8, a rear door 9, a trunk lid. 1
It has 0 and so on.

【0013】測定ステーションIとなる組立ライン1の
側方には組付精度測定装置11が配設されている。組付
精度測定装置11は組立ライン1を隔てて組立ライン1
に沿って配設された一対のガイドレール12、ガイドレ
ール12上を往復移動するロボット13、ロボット13
のアーム先端13aに設けられた測定装置14、組立ラ
イン1の側方の適宜個所に設けられ、組立ライン1に沿
って搬送されて来る車体2の車種等の組立仕様及び車体
2の停止位置等を読み取る読取装置15、読取装置15
からの検出信号により各装置を作動させる制御ユニット
16及び制御ユニット16からの信号によりロボット1
3に制御指示を与えるロボットコントローラ17を主な
構成装置としている。
An assembling accuracy measuring device 11 is arranged on the side of the assembly line 1 serving as the measuring station I. The assembling accuracy measuring device 11 is separated from the assembly line 1 by the assembly line 1
A pair of guide rails 12 arranged along the guide rails, a robot 13 that reciprocates on the guide rails 12, and a robot 13.
Measuring device 14 provided at the arm tip 13a of the vehicle, assembly specifications such as a vehicle type of the vehicle body 2 that is provided at an appropriate position on the side of the assembly line 1, and is conveyed along the assembly line 1 and a stop position of the vehicle body 2 Reading device 15 for reading an image, reading device 15
The control unit 16 for operating each device according to the detection signal from the robot 1 and the robot 1 according to the signal from the control unit 16
The robot controller 17 which gives a control instruction to 3 is the main constituent device.

【0014】組立ライン1によって搬送されて来る車体
2は、組付精度測定装置11が配設された測定ステーシ
ョンIで停止せしめられ、読取装置15によって車体2
の組立仕様及び正確な停止位置を検出し、その検出信号
が制御ユニット16へ発信される。制御ユニット16に
は予め各組立仕様における測定個所等の測定条件が入力
されていて、読取装置15からの検出信号に基づいて搬
送されて来る車体2の組立仕様に相応する測定個所に測
定装置14が移動するようロボットコントローラ17に
指示し、ロボットコントローラ17の指示によりガイド
レール12に沿ったロボット13の移動及びロボットア
ームの揺動を行わせる。
The vehicle body 2 conveyed by the assembly line 1 is stopped at the measuring station I in which the assembling accuracy measuring device 11 is installed, and the vehicle body 2 is read by the reading device 15.
The assembly specification and the accurate stop position of the device are detected, and the detection signal is transmitted to the control unit 16. Measurement conditions such as measurement points in each assembly specification are input to the control unit 16 in advance, and the measurement apparatus 14 is installed at the measurement location corresponding to the assembly specification of the vehicle body 2 conveyed based on the detection signal from the reader 15. The robot controller 17 is instructed to move, and the robot controller 17 causes the robot 13 to move along the guide rails 12 and to swing the robot arm.

【0015】測定装置14による分割及び面差の測定個
所は、例えばハッチングで示すフロントフェンダ4とフ
ロントフード7、フロントフェンダ4とフロントドア
8、フロントドア8とリヤドア9、リヤドア9とリヤク
ォータ5、リヤクォータ5とトランクリッド10及びト
ランクリッド10とリヤスカート6等の整合個所A,
B,…Fである。
The points of division and surface differences measured by the measuring device 14 are, for example, hatched front fender 4 and front hood 7, front fender 4 and front door 8, front door 8 and rear door 9, rear door 9 and rear quarter 5, rear quarter. 5 and the trunk lid 10, and the matching points A such as the trunk lid 10 and the rear skirt 6,
B, ... F.

【0016】ロボット13のアーム先端13aに設けら
れる測定装置14は、図3に要部斜視図を示すように、
レーザ発光体14a及びCCDカメラ14bを有し、レ
ーザ発光体14aによって測定個所、例えばフロントフ
ェンダ4とフロントドア8との整合個所Bに一次元ライ
ン状のレーザ光を照射し、その照射された状態をCCD
カメラ14bにて読み取り照射された部分における照射
の中断したフロントフェンダ4とフロントドア8上の端
点間をフロントフェンダ4とフロントドア8との分割D
Aとみなし、その情報に基づいて測定装置14に付随し
た演算ユニット14cか別に配設した制御ユニット16
によって端点の座標を求め、座標に基づく数値データを
演算処理することによって分割DAを、また両端点から
所定距離離間した照射上の点の座標を求め、この座標に
基づく数値データを演算処理することによりフロントフ
ェンダ4とフロントドア8との面差を得る。これらの分
割DA及び面差DBの組付精度の適否を判定表示する。
The measuring device 14 provided on the arm tip 13a of the robot 13 has a perspective view as shown in FIG.
The laser light emitter 14a and the CCD camera 14b are provided, and the laser light emitter 14a irradiates a measurement point, for example, a matching point B between the front fender 4 and the front door 8 with a one-dimensional linear laser beam, and the irradiated state. CCD
A division D between the front fender 4 and the front door 8 is provided between the end points on the front fender 4 and the front door 8 where the irradiation is interrupted in the portion read and irradiated by the camera 14b.
Assumed to be A, an arithmetic unit 14c attached to the measuring device 14 or a control unit 16 separately arranged based on the information.
The coordinate of the end point is obtained by calculating the division DA by calculating the numerical data based on the coordinate, and the coordinate of the point on the irradiation separated from the both end points by a predetermined distance, and calculating the numerical data based on this coordinate. Thus, the surface difference between the front fender 4 and the front door 8 is obtained. The suitability of the assembling accuracy of these divided DA and surface difference DB is determined and displayed.

【0017】このような測定方法により他の整合個所
A,C…Fを測定して各々の分割及び面差の組立精度の
適否を判定表示する。
The other matching points A, C ... F are measured by such a measuring method, and the suitability of the assembling accuracy of each division and surface difference is judged and displayed.

【0018】次にこのように構成された組付精度測定装
置による測定方法を図4に示すフローチャート及び図
1、2に示す説明図を参照して詳細に説明する。
Next, the measuring method by the assembling accuracy measuring apparatus thus constructed will be described in detail with reference to the flow chart shown in FIG. 4 and the explanatory views shown in FIGS.

【0019】フロントフェンダ4、リヤクォータ5、リ
ヤスカート6及び他の部材から構成される車体本体3に
建付部材であるフロントフード7、フロントドア8、リ
ヤドア9及びトランクリッド10を取り付けた被測定物
となる車体2を組立ライン1によって測定ステーション
Iへ搬入し、所定位置に停止せしめられる(ステップ
1)。
An object to be measured in which a front hood 7, a front door 8, a rear door 9 and a trunk lid 10 which are building members are attached to a vehicle body 3 composed of a front fender 4, a rear quarter 5, a rear skirt 6 and other members. The vehicle body 2 to be described is carried into the measuring station I by the assembly line 1 and stopped at a predetermined position (step 1).

【0020】ステップ1によって測定ステーションIの
所定位置へ搬入された車体2は制御ユニット16の指示
に従って読取装置15によって管理No.車種、組立仕
様及び正確な停止位置等測定に必要な情報が読み取られ
(ステップ2)、その検出信号が制御ユニット16へ入
力される。
The vehicle body 2 carried into the predetermined position of the measuring station I in step 1 is managed by the reading device 15 according to the instruction of the control unit 16. Information necessary for measurement such as vehicle type, assembly specifications, and accurate stop position is read (step 2), and the detection signal is input to the control unit 16.

【0021】搬入された車体2に相応した検出信号が入
力された制御ユニット16は、予め入力されている各種
の測定条件からその車体に相応した測定条件を選択し
て、車体の組立仕様に応じて作動するようロボツト13
に指示を与える。この指示によりロボット13はガイド
レール12に沿って移動及びアームの揺動によりアーム
先端13aに設けた測定装置14によって測定すべき整
合個所、例えば整合個所Bに移動せしめられ(ステップ
3)、整合個所Bの分割DA及び面差DBの測定及びこ
れら測定結果と予め定められた基準値とを対比して測定
結果の適否判定をする(ステップ4)。
The control unit 16 to which the detection signal corresponding to the carried-in vehicle body 2 is input selects a measuring condition corresponding to the vehicle body from various measurement conditions inputted in advance, according to the assembly specification of the vehicle body. Robot 13 to operate
Give instructions to. In response to this instruction, the robot 13 is moved along the guide rail 12 and the arm is swung to move to the alignment point to be measured, for example, the alignment point B by the measuring device 14 provided at the arm tip 13a (step 3), and the alignment point. The divided DA of B and the surface difference DB are measured, and these measurement results are compared with a predetermined reference value to determine the suitability of the measurement results (step 4).

【0022】ステップ4における整合個所Bの分割の測
定及び適否判定を図3における一次元ライン状レーザ光
に沿うV−V断面図である図5及び図6に示すフローチ
ャートによって説明する。本発明においてレーザ発光体
14aはレーザ光によって車体2の前後方向に伸びる一
次元ライン状にフロントフェンダ4及びフロントドア8
を照射し、この照射状態をCCDカメラ14bにより読
み取り、制御ユニット16によって画像処理される。こ
の説明において画像処理上の座標系を車体前後方向をY
軸、車幅方向をZ軸とし、フロントドア8がフロントフ
ェンダ4に対して外方へ面差DBだけ突出していると仮
定する。
The measurement of the division of the matching point B in step 4 and the determination of suitability will be described with reference to the flow charts shown in FIGS. 5 and 6 which are sectional views taken along line VV of FIG. In the present invention, the laser light emitter 14a is a one-dimensional line extending in the front-rear direction of the vehicle body 2 by the laser light, and has a front fender 4 and a front door 8.
The CCD camera 14b reads the irradiation state, and the control unit 16 performs image processing. In this description, the coordinate system for image processing is defined as Y in the vehicle longitudinal direction.
It is assumed that the axis and the vehicle width direction are the Z axis and the front door 8 projects outward from the front fender 4 by the surface difference DB.

【0023】ステップaにてフロントドア8側の照射ラ
インの中断した端点をフロントドア8の先端とみなし、
CCDカメラで読み取り、その先端を分割基準点G1
して座標(Ya,Za)を求め、同様に続くステップb
によってフロントフェンダ4の後端側の照射ラインの中
断した端点を分割基準点G2 として座標(Yb,Zb)
を求める。次にステップcにおいて分割基準点G1 とG
2 とのY座標の差(Ya−Yb)を求め分割DAとす
る。このY座標の差(Ya−Yb)を次のステップdに
よって予め設定入力されている基準値と対比して適否を
判定し、かつ表示し、その結果を格納(ステップe)し
て整合個所Bの分割DAの測定及び判定を完了する。
At step a, the interrupted end point of the irradiation line on the front door 8 side is regarded as the front end of the front door 8,
The coordinates are read by the CCD camera and the coordinates (Ya, Za) are obtained with the tip as the division reference point G 1.
By using the divided end point of the irradiation line on the rear end side of the front fender 4 as the division reference point G 2 , the coordinates (Yb, Zb)
Ask for. Next, in step c, the division reference points G 1 and G
The difference (Ya-Yb) in the Y coordinate from 2 is obtained and used as the division DA. This Y coordinate difference (Ya-Yb) is compared with a reference value preset and input in the next step d to determine whether or not it is appropriate and displayed, and the result is stored (step e) and the matching point B is stored. Complete the measurement and determination of the divided DA.

【0024】同じく、ステップ4における整合個所Bの
面差測定及び適否判定について図5及び図7に示すフロ
ーチャートによって説明する。
Similarly, the surface difference measurement and suitability determination of the matching point B in step 4 will be described with reference to the flowcharts shown in FIGS. 5 and 7.

【0025】先ずステップfにおいてフロントドア8の
先端が折り返し湾曲していることから、正確な値を求め
るためこの湾曲部を除いた前記分割基準点G1 からY軸
方向へ所定距離a1 離間したフロントドア8上の照射上
の点を面差基準点Pa1 とし、その座標(Ya+a1
Za1)を求める。
First, at step f, since the front end of the front door 8 is bent back, in order to obtain an accurate value, the divided reference point G 1 excluding this curved portion is separated by a predetermined distance a 1 in the Y-axis direction. An irradiation point on the front door 8 is defined as a plane difference reference point Pa 1 and its coordinates (Ya + a 1 ,
Za 1 ) is calculated.

【0026】次に続くステップgにおいてフロントドア
8の前記分割基準G1 からY軸方向へ所定寸法a2 離れ
たフロントドア8上の点を面差基準点Pa2 と定め、そ
の座標(Ya+a2,Za2)及びこれら面差基準点Pa
1,Pa2間に存在するフロントドア8上の1つの点、例
えば分割基準G1からY軸方向へ所定寸法a3離れた点を
面差基点Pa3としてその座標(Ya+a3,Za3)を
求める。
The subsequent set said division criterion G 1 plane difference reference point Pa 2 points on a predetermined dimension a 2 away front door 8 in the Y-axis direction from the front door 8 in step g, the coordinate (Ya + a 2 , Za 2 ) and these surface difference reference points Pa
One point on the front door 8 existing between 1 and Pa 2 , for example, a point distant from the division reference G 1 by a predetermined dimension a 3 in the Y-axis direction is defined as a plane difference base point Pa 3 and its coordinates (Ya + a 3 , Za 3 ) Ask for.

【0027】次のステップhにて、フロントフェンダ4
の先端の折り返された湾曲部を回避するため前記分割基
準点G2 からY軸方向へ所定寸法b1 離間したフロント
フェンダ4上の点を面差基準点Pb1 と定め、その座標
(Yb−b1,Zb1)を求める。
At the next step h, the front fender 4
A point on the front fender 4 which is separated from the dividing reference point G 2 by a predetermined dimension b 1 in the Y-axis direction in order to avoid the bent back portion of the front end is defined as a surface difference reference point Pb 1 and its coordinates (Yb- b 1 , Zb 1 ) is obtained.

【0028】次のステップiにおいて、面差基準点Pa
1 、Pa2 、Pa3 の各座標(Ya+a1 、Za1 )、
(Ya+a2 、Za2 )、(Ya+a3 、Za3 )によ
って形成される座標データ列を円弧aとする近似円の中
心Oの座標(Yc1 、Zc1)及びこの近似円の半径R
Oを求め、かつこの円弧aをフロントドア8の基準面と
仮定する。
In the next step i, the surface difference reference point Pa
1 , Pa 2 and Pa 3 coordinates (Ya + a 1 , Za 1 ),
The coordinates (Yc 1 , Zc 1 ) of the center O of the approximate circle having the coordinate data string formed by (Ya + a 2 , Za 2 ) and (Ya + a 3 , Za 3 ) as the arc a and the radius R of this approximate circle
O is obtained, and this arc a is assumed to be the reference surface of the front door 8.

【0029】続くステップjにおいてステップiで求め
た近似円の中心Oの座標(Yc1 、Zc1 )とフロント
フェンダ4上の面差基準点Pb1 の座標(Yb−b1
Zb1 )に基づいて、近似円の中心Oからフロントフェ
ンダ4上の面差基準点Pb1の距離Rbを求め、次いで
次のステップkにて前記近似円の半径ROと中心からフ
ロントフェンダ4上の面差基準点Pb1 の距離Rbとの
差を演算して面差DBを得る。
In the subsequent step j, the coordinates (Yc 1 , Zc 1 ) of the center O of the approximate circle obtained in step i and the coordinates (Yb-b 1 , of the surface difference reference point Pb 1 on the front fender 4).
Zb 1 ), the distance Rb of the surface difference reference point Pb 1 on the front fender 4 from the center O of the approximate circle is calculated, and then in the next step k, the radius RO of the approximate circle and the center of the front fender 4 are measured. The surface difference DB is obtained by calculating the difference between the surface difference reference point Pb 1 and the distance Rb.

【0030】この面差DBを次のステップlにて予め設
定入力されている基準値と対比して面差DBの適否を判
定し、かつ表示し、その結果をステップmによって格納
して整合個所Bの面差DBの測定及び判定完了する。
This surface difference DB is compared with the reference value preset and input in the next step l to judge and display the suitability of the surface difference DB, and the result is stored in step m to store the matching point. The measurement and determination of the surface difference DB of B are completed.

【0031】上記説明では、フロントドア8の分割基準
点G1 からY軸方向へ所定距離a1、a2 、a3 離間し
たレーザ光照射上の3点を面差基準点Pa1 、Pa2
Pa3 として、これら面差基準点Pa1 、Pa2 、Pa
3 によって決定される近似円の円弧aをフロントドア8
の基準面と仮定してフロントドア8とフロントフェンダ
4の面差DBを求めたが、2つの面差基準点Pa1 とP
1 及びこれら面差基準点Pa1 、Pa2 間に連続的に
存在するレーザ光照射されるフロントドア8上の複数の
点を面差基準点として各座標を各々求め、これらの座標
によって形成される座標データ列に基づく最小二乗法に
よる円近似等により近似円を求め、この近似円によって
決定される円弧aをフロントドア8の基準面と仮定して
上記同様、その中心Oの座標(Yc1 、Zc1 )及び、
半径ROを求め、更にフロントフェンダ4上の面差基準
点Pb1 の座標(Yb−b1 、Zb1 )及び中心Oの座
標(Yc1 、Zc1 )によって中心Oからのフロントフ
ェンダ4上の面差基準点Pb1 までの距離Rbを求め、
半径ROと距離Rbとの差を演算して面差DBを得るこ
とも可能であり、この場合より精度向上が可能となる。
In the above description, three points on the laser light irradiation, which are separated by a predetermined distance a 1 , a 2 , a 3 from the division reference point G 1 of the front door 8 in the Y-axis direction, are plane difference reference points Pa 1 , Pa 2. ,
As Pa 3 , these surface difference reference points Pa 1 , Pa 2 , Pa
The arc a of the approximate circle determined by 3 is used as the front door 8
Of was determined plane difference DB front door 8 and the front fender 4 on the assumption that the reference surface, the two surfaces difference reference points Pa 1 and P
a 1 and a plurality of points on the front door 8 which are continuously irradiated between the surface difference reference points Pa 1 and Pa 2 and are irradiated with laser light, are used as the surface difference reference points, and the respective coordinates are obtained. The approximate circle is obtained by a circle approximation method or the like based on the least squares method based on the coordinate data sequence described above, and the arc a determined by the approximate circle is assumed to be the reference plane of the front door 8 and the coordinates of the center O (Yc 1 , Zc 1 ), and
The radius RO is obtained, and the coordinates (Yb-b 1 , Zb 1 ) of the surface difference reference point Pb 1 on the front fender 4 and the coordinates (Yc 1 , Zc 1 ) of the center O on the front fender 4 are used. Find the distance Rb to the surface difference reference point Pb 1 ,
It is also possible to calculate the difference between the radius RO and the distance Rb to obtain the surface difference DB, and in this case, the accuracy can be improved.

【0032】このような方法により予め設定された各整
合個所A〜Fにおける分割及び面差の組付精度測定及び
適否判定を実行する。
By such a method, the assembling accuracy measurement and suitability determination of the division and the surface difference at the preset matching points A to F are executed.

【0033】ステップ4にて各整合個所A〜Fの分割及
び面差の測定及び適否判定を完了した後、続くステップ
5にてロボット13を元の状態に復帰せしめ、ステップ
6にて測定の終了した車体2を搬出して次に搬送されて
来る車体の測定に備え待機して作業を完了する。
After the division of the matching points A to F and the measurement of the surface difference and the determination of suitability are completed in step 4, the robot 13 is returned to the original state in step 5, and the measurement is completed in step 6. The completed vehicle body 2 is unloaded, and the operation is completed by waiting for the measurement of the next transported vehicle body.

【0034】[0034]

【発明の効果】以上のように本発明によれば、隣接する
一方の部材上の基準点に基づいてその部材の曲面に即し
た円弧状の基準面と他方の部材との面差が得られること
から形状に合致した高精度の面差が得られ、更に被接触
状態で互いに隣接する部材の整合個所における部材間の
面差の組付精度測定が効率的に実施可能であり、製品の
美観及び品質の向上はもちろん、製品に発生する接触傷
を未然に防止でき、更に後工程での修正工数を削減でき
る等の効果を有する。
As described above, according to the present invention, a surface difference between an arc-shaped reference surface conforming to the curved surface of one adjacent member and the other member can be obtained based on the reference points on the adjacent one member. As a result, it is possible to obtain a highly accurate surface difference that matches the shape, and it is possible to efficiently measure the assembly accuracy of the surface difference between the members at the matching point of the members that are adjacent to each other in the contacted state. In addition to improving the quality, contact scratches that occur on the product can be prevented, and the number of repair steps in the subsequent steps can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の自動車車体における組付精度測定方法
及び組付精度測定装置の一実施例を説明する説明斜視図
である。
FIG. 1 is an explanatory perspective view illustrating an embodiment of an assembly accuracy measuring method and an assembly accuracy measuring apparatus for an automobile body of the present invention.

【図2】同じく、図1の平面図である。FIG. 2 is likewise a plan view of FIG.

【図3】同じく、組付精度測定方法及び組付精度測定装
置の要部説明図である。
FIG. 3 is likewise an explanatory view of a main part of the assembling accuracy measuring method and the assembling accuracy measuring device.

【図4】同じく、測定方法を説明するフローチャートで
ある。
FIG. 4 is likewise a flowchart illustrating a measuring method.

【図5】同じく、図3におけるV−V線に沿う断面説明
図である。
FIG. 5 is likewise a cross-sectional explanatory view taken along the line VV in FIG.

【図6】同じく、測定方法を説明するフローチャートで
ある。
FIG. 6 is likewise a flowchart illustrating a measuring method.

【図7】同じく、測定方法を説明するフローチャートで
ある。
FIG. 7 is likewise a flowchart illustrating a measuring method.

【図8】従来の方法を説明する説明図である。FIG. 8 is an explanatory diagram illustrating a conventional method.

【図9】同じく、従来の方法を説明する説明図である。FIG. 9 is an explanatory diagram similarly illustrating a conventional method.

【符号の説明】[Explanation of symbols]

1…組立ライン 2…車体 3…車体本体 4…フロントフェンダ 5…リヤクォータ 6…リヤスカート 7…フロントフード 8…フロンドドア 9…リヤドア 10…トランクリッド 11…組付精度測定装置 13…ロボット 13a…アーム先端 14…測定装置 14a…レーザ発光体 14b…CCDカメラ 14c…演算ユニット 15…読取装置 16…制御ユニット A…測定すべき整合個所 B…測定すべき整合個所 C…測定すべき整合個所 D…測定すべき整合個所 E…測定すべき整合個所 F…測定すべき整合個所 DB‥‥面差 Pa1 …面差基準点 Pa2 …面差基準点 Pa3 …面差基準点 Pb1 …面差基準点 a‥‥円弧 O‥‥‥中心 RO‥‥半径 Rb‥‥中心から面差基準点Pb1 までの距離1 ... Assembly line 2 ... Car body 3 ... Car body 4 ... Front fender 5 ... Rear quarter 6 ... Rear skirt 7 ... Front hood 8 ... Front door 9 ... Rear door 10 ... Trunk lid 11 ... Assembly accuracy measuring device 13 ... Robot 13a ... Arm tip 14 ... Measuring device 14a ... Laser emitter 14b ... CCD camera 14c ... Calculation unit 15 ... Reader 16 ... Control unit A ... Alignment point to be measured B ... Alignment point to be measured C ... Alignment point to be measured D ... Measurement position Alignment point to be measured E ... Alignment point to be measured F ... Alignment point to be measured DB ... Surface difference Pa 1 ... Surface difference reference point Pa 2 ... Surface difference reference point Pa 3 ... Surface difference reference point Pb 1 ... Surface difference reference point a ... Arc O ... Center RO ... Radius Rb ... Distance from center to surface difference reference point Pb 1

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23Q 17/00 - 23/00 B62D 65/00 B23P 19/00 - 21/00 G01B 11/00 - 11/30 G01B 21/00 - 21/32 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B23Q 17/00-23/00 B62D 65/00 B23P 19/00-21/00 G01B 11/00-11 / 30 G01B 21/00-21/32

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定すべき互いに隣接する部材の整合個
所を一次元状のレーザ光によって横断照射して、CCD
カメラにより両部材上の照射上の点を基準点として検出
し、この検出信号に基づいて両部材間の面差を演算する
組付精度測定方法において、一方の部材におけるレーザ
光照射上の2つの基準点及びこれらの基準点間に存在す
る部材上のその他の基準点によって形成される点列を円
弧とする近似円の中心及び近似円の半径を求め、かつ他
方の部材におけるレーザ光照射上の基準点と上記近似円
の中心との間の距離を求め、この距離と上記半径との差
を両部材間の面差とすることを特徴とする組付精度の測
定方法。
1. A CCD irradiates the alignment points of adjacent members to be measured with a one-dimensional laser beam in a transverse direction to obtain a CCD.
In an assembly accuracy measuring method for detecting a point on the both members irradiated by the camera as a reference point, and calculating a surface difference between the two members based on the detection signal, in the assembling accuracy measuring method, two members on the laser beam irradiation for one member are detected. Obtain the center of the approximate circle and the radius of the approximate circle having the point sequence formed by the reference point and the other reference points on the member existing between these reference points as an arc, and on the laser beam irradiation on the other member. A method for measuring assembly accuracy, characterized in that a distance between a reference point and a center of the approximate circle is obtained, and a difference between the distance and the radius is used as a surface difference between both members.
【請求項2】 測定すべき互いに隣接する部材の整合個
所を一次元状のレーザ光によって横断照射して、CCD
カメラにより両部材上の照射上の点を基準点として検出
し、この検出信号に基づいて両部材間の面差を演算する
組付精度測定方法において、一方の部材におけるレーザ
光照射上の2つの基準点及びこれらの基準点間に存在す
る部材上のその他の基準点の座標を求め、これらの座標
によって形成される座標データ列を円弧とする近似円の
中心座標及び近似円の半径を求め、かつ他方の部材にお
けるレーザ光照射上の基準点の座標を求め、この座標と
上記近似円の中心座標との間の距離と上記近似円の半径
とから両部材間の面差を演算することを特徴とする組付
精度の測定方法。
2. A CCD is irradiated with a one-dimensional laser beam in a transverse direction at alignment points of adjacent members to be measured, and a CCD
In an assembly accuracy measuring method for detecting a point on the both members irradiated by the camera as a reference point, and calculating a surface difference between the two members based on the detection signal, in the assembling accuracy measuring method, two members on the laser beam irradiation for one member are detected. The coordinates of the reference points and other reference points on the member existing between these reference points are obtained, and the center coordinates of the approximate circle and the radius of the approximate circle having the coordinate data string formed by these coordinates as an arc are obtained, And the coordinates of the reference point on the laser beam irradiation in the other member is obtained, and the surface difference between both members is calculated from the distance between this coordinate and the center coordinate of the approximate circle and the radius of the approximate circle. A characteristic method of measuring assembly accuracy.
JP03973993A 1993-03-01 1993-03-01 How to measure assembly accuracy Expired - Fee Related JP3373880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03973993A JP3373880B2 (en) 1993-03-01 1993-03-01 How to measure assembly accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03973993A JP3373880B2 (en) 1993-03-01 1993-03-01 How to measure assembly accuracy

Publications (2)

Publication Number Publication Date
JPH06246592A JPH06246592A (en) 1994-09-06
JP3373880B2 true JP3373880B2 (en) 2003-02-04

Family

ID=12561339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03973993A Expired - Fee Related JP3373880B2 (en) 1993-03-01 1993-03-01 How to measure assembly accuracy

Country Status (1)

Country Link
JP (1) JP3373880B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193879B2 (en) * 2006-11-30 2013-05-08 本田技研工業株式会社 Automotive door closing inspection device and inspection method
JP2010237054A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Assembly accuracy measuring method and measuring device
KR101438625B1 (en) 2013-03-26 2014-09-11 현대자동차 주식회사 Gap and differ hight inspection system for vehicle and control method in the same
KR101405227B1 (en) 2013-04-02 2014-06-10 현대자동차 주식회사 Speed measurement device of conveyor line

Also Published As

Publication number Publication date
JPH06246592A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
JP3602199B2 (en) Material dimension measuring device
US5812256A (en) Vision system for wheel alignment
JP2000250626A (en) Method and device for correcting position of automated guided vehicle
JPH0618224A (en) Method and apparatus for measuring accuracy in assemblage
JP3373880B2 (en) How to measure assembly accuracy
EP1570236A1 (en) Apparatus and method for detecting twist in articles
JP3126288B2 (en) Method of measuring rail rail shape
JPH06229741A (en) Method and apparatus for inspecting transparent planar item
JP3417708B2 (en) Cross-sectional shape measuring method and measuring device
JP3312468B2 (en) Body mounting posture measuring device and vehicle body gap step measuring device using the same
JP3442171B2 (en) Railway surveying equipment
JP2624557B2 (en) Angle measuring device for bending machine
JPS5847209A (en) Device for measuring surface configuration
JP2630844B2 (en) 3D shape and size measurement device
RU2655012C2 (en) Method for measuring geometrical parameters of electric-welded pipes of various diameters and system for implementation thereof
JPH0621767B2 (en) Curved surface shape measuring method and apparatus
JP2682773B2 (en) Inspection device for transparent plate
JP2001004362A (en) Method and device for measuring shape of metal plate
JPH0755438A (en) Shape measuring method
KR102639910B1 (en) Measuring methods and measuring tunnels for gaps and flushes of vehicle parts
JPH07332927A (en) Work-position detector
JPH06185988A (en) Measuring method for dimension of section steel
JPH0647540A (en) Method and device for detecting welding groove shape
JPS62214869A (en) Automatic welding method
JP2694504B2 (en) Position measurement method of stepped work

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees