JPH08261742A - Measuring method for the shape of rail for railway - Google Patents

Measuring method for the shape of rail for railway

Info

Publication number
JPH08261742A
JPH08261742A JP6740195A JP6740195A JPH08261742A JP H08261742 A JPH08261742 A JP H08261742A JP 6740195 A JP6740195 A JP 6740195A JP 6740195 A JP6740195 A JP 6740195A JP H08261742 A JPH08261742 A JP H08261742A
Authority
JP
Japan
Prior art keywords
rail
height
data
unevenness
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6740195A
Other languages
Japanese (ja)
Other versions
JP3126288B2 (en
Inventor
Yoichi Kuboyama
保 山 洋 一 久
Tomoyuki Hironaka
中 知 行 弘
Kazuhiko Saeki
伯 和 彦 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6740195A priority Critical patent/JP3126288B2/en
Publication of JPH08261742A publication Critical patent/JPH08261742A/en
Application granted granted Critical
Publication of JP3126288B2 publication Critical patent/JP3126288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE: To judge quality in unevenness of a rail by extracting extreme values of all individual unevenness existing on rail upper surface from rail upper surface profile data in the length direction of a rail for railway and calculating each wavelength and wave height. CONSTITUTION: Scanning type distance meters 1a and 1b measure the height (y direction) of a rail by the light reception width at reception part for the reduction owing to shielding of the rail in the scanning width of a floodlight. A distance meter controller 4 converts the measured signal (height signal) of the distance meters 1a and 1b into digital data (height data) at every set number of pulse generation of a rotary encoder 7, that is, at every specific length of movement of the rail 2, and transmits to a computer 6. The computer 6 writes in turn the given height data in a memory (profile table). The computer 6 calculates the unevenness of the rail upper surface based on the height data of the memory and judges the quality of the rail.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄道用レ−ル製造ライ
ンで、搬送中のレ−ル上面の長手方向の個々の凹凸量全
ておよび曲がり量を測定し、形状の合否判定するための
方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a rail rail manufacturing line for measuring the total amount of unevenness and the amount of bending in the longitudinal direction of the top surface of a rail during transportation to determine whether the shape is acceptable or unacceptable. Regarding the method.

【0002】[0002]

【従来技術】鉄道用レ−ルはレ−ル上面に凹凸がある
と、車両走行中に輪重変動が発生し車両が振動するた
め、乗り心地に悪影響を及ぼす。その影響は車両速度が
高速になればなるほど大きく、レ−ル上面の波1つ1つ
の凹凸の波長は2000mm以上及び波高は0.2mm以下に、微
小な凹凸は波長200mm以上及び波高0.13mm以下に抑える
ことが要求されている。更に端部に曲がりが生じると、
レ−ル敷設時のレ−ル間接続に矯正作業が発生するた
め、鋼種によって異なるが、上曲がりで約1500mmに対し
て0.5mm以下及び下曲がり0mmにすることが要求されてい
る。レ−ル上部上面長さ方向の凹凸量測定方法は、従来
人手によりストレ−トエッジとテ−パ−ゲ−ジにより測
定されていた。また機械による自動測定では特開平5−
196457号公報の「鉄道用レ−ル頭部上面の曲がり
測定方法及び装置」がある。この方法では図7のごと
く、3台の距離計44a,44b,44cをそれぞれL
a/2間隔で配置し、レ−ル上面の凹凸状の曲がりをS
in波、周期をλと仮定することで、3台の距離計出力
ha,hb,hcよりレ−ル上面長さ方向の凹凸状の曲
がり量Δhを算出するものである。
2. Description of the Related Art In a railroad rail, if the rail top surface has irregularities, wheel load fluctuations occur during vehicle travel and the vehicle vibrates, which adversely affects riding comfort. The higher the vehicle speed, the greater the effect. The wavelength of each wave on the rail surface is 2000 mm or more and the wave height is 0.2 mm or less. It is required to suppress it. If there is a bend at the end,
Since straightening work is required to connect the rails when laying the rails, it is required that the upper bend be about 0.5 mm or less and the lower bend be 0 mm, although it depends on the steel type. The method of measuring the amount of unevenness in the length direction of the upper surface of the rail has conventionally been performed manually by a straight edge and a tape gauge. Moreover, in automatic measurement by a machine, Japanese Patent Application Laid-Open No. 5-
There is a "Method and apparatus for measuring the bending of the upper surface of the rail head for railways" in Japanese Patent Laid-Open No. 196457. In this method, as shown in FIG. 7, the three rangefinders 44a, 44b and 44c are respectively set to L
Placed at a / 2 intervals and the uneven bend on the top surface of the rail is S
By assuming that the in-wave and the period are λ, the uneven amount Δh in the length direction of the rail is calculated from the outputs ha, hb, and hc of the three distance meters.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
5−196457号公報による方法では、レ−ル上面に
存在する凹凸をSin波と仮定しているが、実際にオフ
ラインでレ−ル上面の凹凸を測定するとSin波になる
ことはあり得ない。それ故、算出された振幅及び周期は
信頼性に欠けているという問題点があった。また、レ−
ルの全長に対する波長及び振幅を測定するものであり、
レ−ル上面に存在する個々の凹凸に対する評価ができな
いことから、要求されている品質保証に対応ができない
という問題があった。
However, in the method disclosed in Japanese Patent Laid-Open No. 5-196457, the unevenness present on the upper surface of the rail is assumed to be a Sin wave, but the unevenness on the upper surface of the rail is actually offline. Is not possible to be a Sin wave. Therefore, there is a problem that the calculated amplitude and period are lacking in reliability. In addition,
Is to measure the wavelength and amplitude for the entire length of the
Since it is not possible to evaluate individual irregularities present on the upper surface of the rail, there is a problem that the required quality assurance cannot be met.

【0004】本発明はかかる課題を解決するためになさ
れたものであり、個々の凹凸状の波全てに対し、波長及
び波高を算出可能とし、さらに端部の曲がり量も算出で
きるといった機能も付加した方法を提供することを目的
とする。
The present invention has been made in order to solve the above problems, and it is possible to calculate the wavelength and the wave height for each of the waves having an uneven shape, and to add the function of calculating the bending amount of the end portion. The purpose is to provide a method.

【0005】[0005]

【課題を解決するための手段】第1の発明は、オンライ
ンで測定された鉄道用レ−ルの長手方向のレ−ル上面プ
ロフィ−ルデ−タから、レ−ル上面に存在する個々の凹
凸全ての極値を抽出し、それぞれの波長及び波高を算出
し、その算出結果から、凹凸に対するレ−ルの品質合否
判定を行うことを特徴とする。
SUMMARY OF THE INVENTION A first aspect of the present invention is based on the rail top surface profile data in the longitudinal direction of a railroad rail measured on-line to obtain individual irregularities on the top surface of the rail. It is characterized in that all extreme values are extracted, respective wavelengths and wave heights are calculated, and based on the calculation results, quality judgment of rails with respect to unevenness is performed.

【0006】第2の発明は、オンラインで測定された鉄
道用レ−ルの長手方向のプロフィ−ルデ−タから、レ−
ル端部に存在する曲がり量を算出し、その算出結果か
ら、曲がり量に対するレ−ルの品質合否判定を行うこと
及び端部基準長さを品種別に任意に変更できることを特
徴とする。
A second aspect of the present invention is based on the profile data in the longitudinal direction of the railroad rail measured on-line.
The present invention is characterized in that the amount of bending present at the end of the reel is calculated, and based on the result of the calculation, the quality of the rail is checked for the amount of bending, and the end reference length can be arbitrarily changed for each product type.

【0007】[0007]

【作用】レ−ル上面の長手方向のプロフィ−ル(測定値
分布)は、図1のごとく、2台の距離計1a,1bを、
レ−ル2の長手方向xに間隔Lで配置し、レ−ル2上面
の高さyを一定時間毎に測定した測定値と、レ−ルの搬
送速度を測定する速度計の測定値から測定できる。この
時、図2のごとく長手方向の位置をX、プロフィ−ルを
F(X)とすると、F(X)は多数のノイズを含んでい
るため、それを解決するために移動平均処理を施す。そ
れにより、滑らかな凹凸曲線が得られることになり、後
の極値抽出の事前処理が出来ることになる。移動平均処
理を施したプロフィ−ルデ−タをG(X)とすると、次
に、極値を抽出するために、G(X)に一次微分を施
す。一次微分値G(X)’は、x方向で必ずプラスから
マイナス及びマイナスからプラス(0も含む)となるこ
とから、符号が逆転する位置が凹凸の極値となる。その
極値から極小値及び極大値を判別し、それぞれの値を図
3のごとくおくと、各凹凸の波長及び波高が算出できる
ことになる。その値とあらかじめ設定した基準値との比
較により、レ−ルの凹凸に対する品質合否判定が行える
ことになる。一方、レ−ル端部の曲がり量に関しては、
移動平均処理されたプロフィ−ルデ−タG(X)より算
出する。図4のごとく、まずレ−ル端部デ−タG(0)
を0に合わせるための平行移動をプロフィ−ルデ−タ全
てに施こす。次に、曲がりの判定を行う長手方向の距離
TのG(T)を0に合わせるために、G(0)を基準に
垂直方向yに等比移動処理を施す。このデ−タの最大曲
がり量とあらかじめ設定した基準値との比較により、レ
−ルの端部の曲がりに対する品質の合否判定が行えるこ
とになる。さらに曲がり判定を行う長手方向の距離Tは
レ−ルの品種毎に異なるが、本方法は、その品種毎に任
意設定できるため、品種に対応した曲がり量合否判定が
行えることになる。
The longitudinal profile (measurement value distribution) on the upper surface of the rail is as shown in FIG. 1 by the two distance meters 1a and 1b.
Based on the measured values of the height y of the upper surface of the rail 2 measured at regular intervals and the measured values of the speedometer for measuring the rail transport speed, the rails 2 are arranged at intervals L in the longitudinal direction x of the rail 2. Can be measured. At this time, assuming that the position in the longitudinal direction is X and the profile is F (X) as shown in FIG. 2, F (X) contains a lot of noise, so moving average processing is performed to solve it. . As a result, a smooth uneven curve can be obtained, which makes it possible to perform preprocessing for the subsequent extreme value extraction. If the profile data subjected to the moving average processing is G (X), then G (X) is subjected to a first derivative in order to extract the extreme value. Since the first-order differential value G (X) ′ is always positive to negative and negative to positive (including 0) in the x direction, the position at which the sign reverses becomes the extreme value of the unevenness. If the minimum value and the maximum value are discriminated from the extreme values and the respective values are set as shown in FIG. 3, the wavelength and the wave height of each unevenness can be calculated. By comparing the value with a preset reference value, it is possible to perform quality pass / fail judgment for unevenness of the rail. On the other hand, regarding the amount of bending at the end of the rail,
It is calculated from the profile data G (X) subjected to the moving average. First, as shown in FIG. 4, the rail end data G (0)
A parallel movement is applied to all the profile data in order to adjust the value to zero. Next, in order to adjust G (T) of the distance T in the longitudinal direction for determining the bend to 0, a geometrical ratio moving process is performed in the vertical direction y with G (0) as a reference. By comparing the maximum bending amount of the data with a preset reference value, it is possible to determine whether the quality of the bending of the end portion of the rail is acceptable or not. Further, the length T in the longitudinal direction for making the bend determination differs depending on the type of rail, but since this method can be arbitrarily set for each type, it is possible to make a pass / fail determination for the amount of bend corresponding to the type.

【0008】[0008]

【実施例】本発明の実施例を図面を参照しながら説明す
る。図1において、1a,1bはレ−ルの変位測定に使
用するスキャン式距離計、2は搬送レ−ル、3a,3b
は搬送ロ−ル、4は距離計コントロ−ラ、5はA/D変
換器、6は演算装置、7はロ−タリエンコ−ダである。
2台のスキャン式距離計1a,1bは、レ−ル搬送ライ
ン(x軸)にLの間隔で配置されている。スキャン式距
離計1a,1bは投光器のスキャン幅に対して、レ−ル
の遮蔽による減少分の受光部での受光幅により、レ−ル
の高さ(y方向)を測定するものである。距離計コント
ロ−ラ4は、ロ−タリエンコ−ダ7が設定数のパルスを
発生する毎に、すなわちレ−ル2の所定量の移動毎に、
スキャン式距離計1a,1bの測定信号(高さ信号)を
デジタルデ−タ(高さデ−タ)に変換して、計算機6に
与える。計算機6は与えられる高さデ−タをメモリ(プ
ロフィ−ルテ−ブル)に順次に書込む。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. In FIG. 1, 1a and 1b are scanning rangefinders used to measure rail displacement, 2 is a transport rail, and 3a and 3b.
Is a carrier roll, 4 is a range finder controller, 5 is an A / D converter, 6 is an arithmetic unit, and 7 is a rotary encoder.
The two scanning rangefinders 1a and 1b are arranged on the rail transport line (x axis) at an interval of L. The scanning type rangefinders 1a and 1b measure the height of the rail (y direction) by the light receiving width in the light receiving portion that is reduced by the shielding of the rail with respect to the scan width of the projector. The range finder controller 4 is arranged so that each time the rotary encoder 7 generates a set number of pulses, that is, every time the rail 2 moves by a predetermined amount.
The measurement signals (height signals) of the scanning rangefinders 1a and 1b are converted into digital data (height data) and given to the computer 6. The computer 6 sequentially writes the given height data in the memory (profile table).

【0009】計算機6は、メモリの高さデ−タに基づい
てレ−ル上面の凹凸量を算出してレ−ルの品質合否判定
を行う。この処理を、図5のS2〜S6に示す。
The computer 6 calculates the amount of unevenness on the upper surface of the rail based on the height data of the memory and judges the quality of the rail. This process is shown in S2 to S6 of FIG.

【0010】上述の距離計1a,1bによる測定(図5
のS1)により、メモリ(プロフィ−ルテ−ブル)に
は、図2にしめすような高さ分布(レ−ルプロフィ−
ル)を示すデ−タが格納されている。計算機6は、これ
らのデ−タに対してノイズを除去するために移動平均処
理を行う(S2)。得られた移動平均処理デ−タG
(X)から極値を抽出するために、G(X)に1階微分
を施す(S3)。その処理の内容は G’(X)=G(X+1)−G(X) ・・・(1) である。G’(X)がプラスからマイナス及びマイナス
からプラスになるXより、図3のごとく極小値・極大値
を抽出し(S4)、個々の凹凸の波長及び波高を算出す
る(S5)。その際、極大値から極小値同士を結ぶ直線
に垂線をおろし、その交点の座標を(X”,Y”)とす
ると、それを求めるための算出式は
Measurement by the above rangefinders 1a and 1b (see FIG. 5)
S1), the height distribution (rail profile) shown in FIG. 2 is stored in the memory (profile table).
Is stored. The computer 6 performs a moving average process on these data in order to remove noise (S2). Obtained moving average processing data G
In order to extract the extreme value from (X), G (X) is subjected to first-order differentiation (S3). The content of the processing is G ′ (X) = G (X + 1) −G (X) (1). From X that G ′ (X) changes from plus to minus and from minus to plus, the minimum and maximum values are extracted as shown in FIG. 3 (S4), and the wavelength and wave height of each unevenness are calculated (S5). At that time, if a perpendicular is drawn on the straight line connecting the local maxima to the local minima and the coordinates of the intersection are (X ", Y"), the calculation formula to find it is

【0011】[0011]

【数2】 [Equation 2]

【0012】である。(3)式より算出された(X”,
Y”)から、凹凸の波長及び波高の算出式は
[0012] (X ”, which is calculated from the equation (3),
Y ”), the formulas for calculating the wavelength and wave height of unevenness are

【0013】[0013]

【数4】 [Equation 4]

【0014】となり、これを全ての極値に対して行うこ
とにより、個々の凹凸の波長及び波高を算出する。その
算出結果と合否判定基準値を比較して、レ−ルの形状品
質を合否判定する(S6)。
By performing this for all extreme values, the wavelength and wave height of each unevenness are calculated. The result of the calculation is compared with the acceptance / rejection determination reference value to determine the acceptance / rejection of the rail shape quality (S6).

【0015】次に、レ−ル端部の曲がり量を算出してレ
−ルの品質合否判定を行う計算機6による処理を、図6
に示すフロ−チャ−トにしたがって説明する。曲がり量
判定の場合には上記と同様、プロフィ−ルデ−タに移動
平均処理を施し、図3のごとくG(0)を0になるよ
う、0から鋼種別に定められた基準長さTまでG(X)
にΔG(0)を加算する(S7)。その計算式は H(X)=G(X)+ΔG(0) ・・・(6) である。そして判定基準長さTにおけるH(T)を0に
なるよう、H(0)を基準に垂直方向に等比移動する
(S8)。その計算式は I(X)=H(X)−〔H(T)/T〕・X ・・・(7) となる。なお、本来であれば回転移動を施さなければな
らないが、基準距離Tに対する曲がり量は小さいため、
本移動方法で実質上問題はない。そして、算出されたI
(X)を0からTの範囲で比較することで、基準長さに
おける最大曲がり量を算出する(S9)。この処理をレ
−ル両端部に対して行い、算出結果と合否判定基準値を
比較することで、レ−ルの品質をオンラインで合否判定
する(S10)。なお、基準長さTは鋼種毎に計算機6
に入力して設定するものである。
Next, the processing by the computer 6 which calculates the amount of bending at the end of the rail and judges the quality of the rail will be described with reference to FIG.
A description will be given according to the flowchart shown in FIG. In the case of determining the amount of bending, similar to the above, the profile data is subjected to a moving average process, so that G (0) becomes 0 as shown in FIG. 3 from 0 to the reference length T determined by the steel type. G (X)
ΔG (0) is added to (S7). The calculation formula is H (X) = G (X) + ΔG (0) ... (6). Then, in order to make H (T) at the judgment reference length T 0, the ratio is moved in the vertical direction based on H (0) (S8). The calculation formula is I (X) = H (X)-[H (T) / T] · X (7). It should be noted that, although it is originally necessary to perform rotational movement, since the bending amount with respect to the reference distance T is small,
There is virtually no problem with this moving method. Then, the calculated I
The maximum bending amount in the reference length is calculated by comparing (X) in the range of 0 to T (S9). This process is performed on both ends of the rail, and the calculation result is compared with the pass / fail judgment reference value to judge the quality of the rail online (S10). The reference length T is calculated by the calculator 6 for each steel type.
It is set by inputting into.

【0016】[0016]

【発明の効果】第1の発明によれば、レ−ル製造ライン
で搬送ラインの頭部上面長さ方向の個々の凹凸量を全て
算出できる。したがって、正確で信頼性の高いオンライ
ンでの凹凸検査が可能となり、製造ラインの能率を低下
させることなく、全長、全数検査が容易となって、レ−
ル形状品質の向上が図れる。
According to the first aspect of the invention, it is possible to calculate all the individual unevenness amounts in the length direction of the upper surface of the head of the transport line in the rail manufacturing line. Therefore, accurate and reliable online unevenness inspection can be performed, and the total length and 100% inspection can be easily performed without reducing the efficiency of the manufacturing line.
The quality of the profile can be improved.

【0017】第2の発明によれば、鋼種毎に判定基準が
違う端部曲がり量を容易に算出できることから、正確で
信頼性の高いオンラインでの曲がり検査が可能となり、
製造ラインの能率を低下させることなく全数・全鋼種検
査が容易となって、レ−ルの品質向上を図ることができ
る。
According to the second aspect of the present invention, it is possible to easily calculate the amount of bending at the end portion, which has different judgment criteria for each steel type, so that accurate and reliable online bending inspection can be performed,
It is possible to easily inspect all and all steel types without lowering the efficiency of the production line, and to improve the quality of rails.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を一態様で実施する装置構成の概要を
示すブロック図である。
FIG. 1 is a block diagram showing an outline of a device configuration for implementing the present invention in one aspect.

【図2】 (a)は図1に示す距離計1a,1bにより
測定したレ−ル2の上面高さ分布を示すグラフであり、
(b)は(a)の高さデ−タを移動平均処理により平滑
化して得た高さ分布を示すグラフである。
2 (a) is a graph showing the height distribution of the upper surface of the rail 2 measured by the distance meters 1a and 1b shown in FIG.
(B) is a graph showing a height distribution obtained by smoothing the height data of (a) by a moving average process.

【図3】 図2の(b)に示すグラフの一部分を、レ−
ル上面高さ軸(縦軸)を拡大して示すグラフである。
FIG. 3 shows a part of the graph shown in FIG.
3 is a graph showing an enlarged upper surface height axis (vertical axis).

【図4】 (a)はレ−ルの端部領域の高さデ−タを移
動平均処理により平滑化して得た高さ分布を示すグラ
フ、(b)は(a)に示すグラフ上の曲線を高さ方向に
平行移動したグラフ、(c)は(b)に示す曲線を、レ
−ル端を基点に垂直等比移動処理したグラフである。
FIG. 4A is a graph showing a height distribution obtained by smoothing the height data of the end region of the rail by a moving average process, and FIG. 4B is a graph showing the height distribution on the graph shown in FIG. A curve obtained by moving the curve in parallel in the height direction is shown in (c), which is a graph obtained by subjecting the curve shown in (b) to vertical ratio conversion processing with the rail end as a base point.

【図5】 図1に示すコントロ−ラ4および計算機6の
形状測定処理の内容を示すフロ−チャ−トである。
5 is a flowchart showing the contents of the shape measuring process of the controller 4 and the computer 6 shown in FIG.

【図6】 図1に示すコントロ−ラ4および計算機6
の、レ−ル端部曲がり量判定のための設定処理の内容を
示すフロ−チャ−トである。
FIG. 6 is a controller 4 and a computer 6 shown in FIG.
3 is a flowchart showing the contents of the setting process for judging the amount of bend at the end of the rail.

【図7】 従来のレ−ル頭部上面の曲がり量測定におけ
る測定器の配置と測定値の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the arrangement of measuring instruments and measured values in the conventional measurement of the amount of bending of the upper surface of the rail head.

【符号の説明】[Explanation of symbols]

1a,1b:スキャン式レ−ザ距離計 2:レ−ル 3a,3b:搬送ロ−ル 4:レ−ザ
−距離計コントロ−ラ 5:A/D変換器 6:計算機 7:ロ−タリ−エンコ−ダ D:搬送方
向 44a,44b,44c:レ−ザ−距離計 ha,h
b,hc:距離計出力 Δh:曲がり量 A:曲がり
振幅 B:オフセット λ:曲がり
周期
1a, 1b: Scan type laser range finder 2: Rail 3a, 3b: Conveyor roll 4: Laser range finder controller 5: A / D converter 6: Calculator 7: Rotary -Encoder D: Transport direction 44a, 44b, 44c: Laser distance meter ha, h
b, hc: Rangefinder output Δh: Bending amount A: Bending amplitude B: Offset λ: Bending cycle

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01B 21/20 G01B 21/20 A Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display area G01B 21/20 G01B 21/20 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉄道用レ−ル上面の高さを該レ−ルの長
手方向に順次測定し、測定デ−タから、レ−ル上面に存
在する個々の凹凸全ての極値を抽出することによって、
それぞれの波長及び波高を算出し、その算出結果から、
凹凸に対するレ−ルの品質合否判定を行うことを特徴と
する鉄道用レ−ルの寸法形状測定方法。
1. The height of the upper surface of a railroad rail is sequentially measured in the longitudinal direction of the rail, and the extreme values of all the irregularities present on the upper surface of the rail are extracted from the measured data. By
Calculate each wavelength and wave height, and from the calculation results,
A method for measuring the size and shape of a railroad rail, which comprises determining the quality of the rail with respect to unevenness.
【請求項2】 鉄道用レ−ル上面の高さを該レ−ルの長
手方向に順次測定し、測定デ−タより、レ−ル端部のプ
ロフィ−ルデ−タを0にするための平行移動処理を行
い、その後、レ−ル端部のプロフィ−ルデ−タを固定
し、かつ端部基準長さ相当のプロフィ−ルデ−タを0に
するよう移動し、移動したデ−タの0軸に対する正負の
最大曲がり量をそれぞれ算出し、その結果から、レ−ル
の品質合否判定を行うことを特徴とするレ−ル端部曲が
り量測定方法。
2. The height of an upper surface of a railroad rail is sequentially measured in the longitudinal direction of the rail, and the profile data at the end of the rail is set to 0 from the measured data. A parallel movement process is performed, then the profile data at the end of the rail is fixed, and the profile data corresponding to the end reference length is moved to 0, and the moved data is moved. A method for measuring the amount of bending at the end of a rail, which comprises calculating the maximum positive and negative amounts of bending with respect to the 0 axis, and judging the quality of the rail from the results.
【請求項3】 端部基準長さを品種別に任意に変更でき
ることを特徴とする請求項2記載のレ−ル端部曲がり量
測定方法。
3. The rail end bend amount measuring method according to claim 2, wherein the end reference length can be arbitrarily changed for each product type.
JP6740195A 1995-03-27 1995-03-27 Method of measuring rail rail shape Expired - Fee Related JP3126288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6740195A JP3126288B2 (en) 1995-03-27 1995-03-27 Method of measuring rail rail shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6740195A JP3126288B2 (en) 1995-03-27 1995-03-27 Method of measuring rail rail shape

Publications (2)

Publication Number Publication Date
JPH08261742A true JPH08261742A (en) 1996-10-11
JP3126288B2 JP3126288B2 (en) 2001-01-22

Family

ID=13343897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6740195A Expired - Fee Related JP3126288B2 (en) 1995-03-27 1995-03-27 Method of measuring rail rail shape

Country Status (1)

Country Link
JP (1) JP3126288B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234540A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk H-section steel shape measuring method
JP2007114135A (en) * 2005-10-24 2007-05-10 Jfe Steel Kk Method and device for detecting slab longitudinal crack
KR100733996B1 (en) * 2005-11-14 2007-06-29 한국철도기술연구원 Method and apparatus for measuring contact position of wheel/rail in railroad car
JP2007253221A (en) * 2006-03-24 2007-10-04 Tokyu Car Corp Laser welding method
JP2008139268A (en) * 2006-12-05 2008-06-19 Toshiba Solutions Corp Surface topography measurement device
JP2009115512A (en) * 2007-11-02 2009-05-28 Sumitomo Rubber Ind Ltd Article inspection method
JP2014098667A (en) * 2012-11-15 2014-05-29 Canon Inc Measuring device, measuring method, and absolute encoder
JP2016118475A (en) * 2014-12-22 2016-06-30 国立研究開発法人産業技術総合研究所 Identification device and identification method
JP2016138814A (en) * 2015-01-28 2016-08-04 東レ株式会社 Periodic defect inspection method and periodic defect inspection device
JP2018105751A (en) * 2016-12-27 2018-07-05 公益財団法人鉄道総合技術研究所 Method for determining abnormal value of waveform data and abnormal value determination system using the method
CN112033299A (en) * 2020-07-24 2020-12-04 中铁物总技术有限公司 Intelligent profile on-line detection system for steel rail

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234540A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk H-section steel shape measuring method
JP2007114135A (en) * 2005-10-24 2007-05-10 Jfe Steel Kk Method and device for detecting slab longitudinal crack
KR100733996B1 (en) * 2005-11-14 2007-06-29 한국철도기술연구원 Method and apparatus for measuring contact position of wheel/rail in railroad car
JP2007253221A (en) * 2006-03-24 2007-10-04 Tokyu Car Corp Laser welding method
JP2008139268A (en) * 2006-12-05 2008-06-19 Toshiba Solutions Corp Surface topography measurement device
JP2009115512A (en) * 2007-11-02 2009-05-28 Sumitomo Rubber Ind Ltd Article inspection method
JP2014098667A (en) * 2012-11-15 2014-05-29 Canon Inc Measuring device, measuring method, and absolute encoder
JP2016118475A (en) * 2014-12-22 2016-06-30 国立研究開発法人産業技術総合研究所 Identification device and identification method
JP2016138814A (en) * 2015-01-28 2016-08-04 東レ株式会社 Periodic defect inspection method and periodic defect inspection device
JP2018105751A (en) * 2016-12-27 2018-07-05 公益財団法人鉄道総合技術研究所 Method for determining abnormal value of waveform data and abnormal value determination system using the method
CN112033299A (en) * 2020-07-24 2020-12-04 中铁物总技术有限公司 Intelligent profile on-line detection system for steel rail

Also Published As

Publication number Publication date
JP3126288B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
CN110954026B (en) On-line detection device for measuring geometric profile of steel rail
US4417466A (en) Measuring method and device for measuring at least one geometrical characteristic of the head of the rails of a railway track
CN111738985B (en) Visual detection method and system for weld joint contour
JP3126288B2 (en) Method of measuring rail rail shape
CN109653045A (en) Gauge measurement method and device
CN108819980B (en) Device and method for online dynamic measurement of geometric parameters of train wheels
JP3697015B2 (en) Method for determining the thickness of railroad rail columns
JP4523683B2 (en) Method and apparatus for measuring shape of metal plate
US4176462A (en) Apparatus for inspecting the geometry of dual roller tracks for continuous castings
JP3028686B2 (en) Method and apparatus for measuring bending of top surface of railroad rail
JPH0611331A (en) Instrument and method for measuring undulating wear of rail
CN112129217A (en) Accurate positioning system and method for slab edge
RU2261302C2 (en) Method of and device for determining spatial parameters of rail track
JPH1035493A (en) Irregularity of track calibration jig for simplified detection-measurement vehicle
CN112097586B (en) Method for processing rail irregularity data
JPS63238507A (en) Measuring method for cracking
CN116446227B (en) String measurement equipment, track line restoration method, device, equipment and system
CN118149727B (en) Method and system for detecting railway turnout track structure based on 3D point cloud
RU2162120C1 (en) Method for determining parameters of rolling surface of rail head
JPH0428416A (en) Method for detecting welded point in continuous rolling and method for welding material to be rolled
CN116242349A (en) Track line shape measurement method and measurement system
JP2000025613A (en) Curved line form control method of track
CN108571938B (en) Switch rail profile measuring device
JP2988645B2 (en) Measurement method of sheet material distortion shape
JP2527609B2 (en) Data processing method of flatness integration recording device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001017

LAPS Cancellation because of no payment of annual fees