JP3125510B2 - Induction heating device - Google Patents

Induction heating device

Info

Publication number
JP3125510B2
JP3125510B2 JP05081026A JP8102693A JP3125510B2 JP 3125510 B2 JP3125510 B2 JP 3125510B2 JP 05081026 A JP05081026 A JP 05081026A JP 8102693 A JP8102693 A JP 8102693A JP 3125510 B2 JP3125510 B2 JP 3125510B2
Authority
JP
Japan
Prior art keywords
speed
steady
voltage
induction heating
conveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05081026A
Other languages
Japanese (ja)
Other versions
JPH06285577A (en
Inventor
卓史 野口
行延 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP05081026A priority Critical patent/JP3125510B2/en
Publication of JPH06285577A publication Critical patent/JPH06285577A/en
Application granted granted Critical
Publication of JP3125510B2 publication Critical patent/JP3125510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、鍛造用の誘導加熱装
置に係り、特に後工程のプレス装置が停止している間の
捨て材を少なくすることができる誘導加熱装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating device for forging, and more particularly to an induction heating device capable of reducing the amount of discarded material while a post-stage press device is stopped.

【0002】[0002]

【従来の技術】図5は例えば「工業加熱」第27巻第4
号(平成2年・社団法人・日本工業炉協会発行)に記載
された従来の誘導加熱装置の構成を示すブロック図、図
6は図5に示す従来の誘導加熱装置の昇温特性を示す曲
線図である。図において、1は低温領域用の第1の加熱
コイル、2は高温領域用の第2の加熱コイル、3は第1
の加熱コイル1に高周波電力を供給する低温領域用の第
1の高周波インバータ装置、4は第2の加熱コイル2に
高周波電力を供給する高温領域用の第2の高周波インバ
ータ装置、5は第1および第2の加熱コイル1、2内を
ピンチローラ6を介して搬送される鋼材等の被加熱材、
7はピンチローラ6を駆動回転させるモータ、8はこの
モータ7の回転速度を制御する速度制御装置、9はこの
速度制御装置8および両高周波インバータ装置3、4を
それぞれ制御する制御装置である。
2. Description of the Related Art FIG.
FIG. 6 is a block diagram showing the configuration of a conventional induction heating device described in Japanese Patent Application Publication No. 2000 (issued by the Japan Industrial Furnace Association). FIG. 6 is a curve showing the temperature rise characteristics of the conventional induction heating device shown in FIG. FIG. In the figure, 1 is a first heating coil for a low temperature region, 2 is a second heating coil for a high temperature region, and 3 is a first heating coil.
A first high-frequency inverter device for a low-temperature region that supplies high-frequency power to the heating coil 1, a second high-frequency inverter device for a high-temperature region that supplies high-frequency power to the second heating coil 2, and a first high-frequency inverter device 5. And a material to be heated such as a steel material conveyed through the pinch rollers 6 in the second heating coils 1 and 2,
Reference numeral 7 denotes a motor for driving and rotating the pinch roller 6, reference numeral 8 denotes a speed control device for controlling the rotation speed of the motor 7, and reference numeral 9 denotes a control device for controlling the speed control device 8 and the high-frequency inverter devices 3 and 4, respectively.

【0003】以下、上記のように構成された従来の誘導
加熱装置の動作について説明する。まず、定常運転時の
場合、被加熱材5はピンチローラ6によって連続的に第
1の加熱コイル1、第2の加熱コイル2内を搬送され
て、所定の温度(通常は1200℃前後)に昇温させら
れた後装置外に排出され、図示しない後工程(プレス装
置)に送られる。そして、この定常運転時における第1
および第2の加熱コイル1、2内の被加熱材5の昇温過
程は、図6中の曲線aで示すように常温から所定の温度
に漸次上昇して行く。又、この間、第1および第2のイ
ンバータ装置3、4から出力される電力は、制御装置9
により曲線aに沿うように制御されている。
Hereinafter, the operation of the conventional induction heating apparatus configured as described above will be described. First, in the case of a steady operation, the material 5 to be heated is continuously conveyed in the first heating coil 1 and the second heating coil 2 by the pinch roller 6 and reaches a predetermined temperature (usually around 1200 ° C.). After the temperature is raised, it is discharged out of the apparatus and sent to a post-process (press apparatus) not shown. The first operation during the steady operation
In the process of raising the temperature of the material 5 to be heated in the second heating coils 1 and 2, the temperature gradually increases from room temperature to a predetermined temperature as shown by a curve a in FIG. During this time, the power output from the first and second inverter devices 3 and 4 is controlled by the control device 9.
Is controlled so as to follow the curve a.

【0004】次に、保温運転の場合について説明する。
まず、誘導加熱装置が連続運転中に、後工程であるプレ
ス装置が例えば故障等で停止した場合、速度制御装置8
から停止指令が出されてモータ7が停止し、ピンチロー
ラ6が回転を停止することにより被加熱材5の搬送も停
止する。そして、これと同時に制御装置9の制御により
第1および第2の高周波インバータ装置3、4が停止
し、第1および第2の加熱コイル1、2への電力供給も
停止する。
[0004] Next, a description will be given of the case of the warming operation.
First, during the continuous operation of the induction heating device, when the press device in the subsequent process is stopped due to, for example, a failure, the speed control device 8
, A stop command is issued, the motor 7 stops, and the pinch roller 6 stops rotating, so that the conveyance of the heated material 5 also stops. At the same time, the first and second high-frequency inverter devices 3 and 4 are stopped under the control of the control device 9, and the power supply to the first and second heating coils 1 and 2 is also stopped.

【0005】次いでプレス装置が運転を再開する時に
は、両加熱コイル1、2内の被加熱材5の昇温過程は、
定常運転時の昇温過程を示す図6中の曲線aと比較し全
体に低下している。この低下の度合いは停止時間が長い
程大きくなる。したがって、誘導加熱装置の運転を再開
しても、第2の加熱コイル2の出口に位置する被加熱材
5、すなわち誘導加熱装置より排出される被加熱材5の
温度は、正規の昇温過程を経たものではないため所定の
温度には到達していない。このような状態には、誘導加
熱装置の停止時に両加熱コイル1、2内に存在する全て
の被加熱材5がなっており、これらの被加熱材5はプレ
ス装置で正規のプレスができないため、プレス装置の手
前でバイパス装置(図示せず)によりライン外に排出さ
れる。
[0005] Next, when the press device resumes operation, the process of raising the temperature of the material 5 to be heated in both heating coils 1 and 2 is as follows.
Compared with the curve a in FIG. 6 showing the temperature rise process during the steady operation, the temperature has decreased as a whole. The degree of this decrease increases as the stop time increases. Therefore, even if the operation of the induction heating device is restarted, the temperature of the material to be heated 5 located at the outlet of the second heating coil 2, that is, the temperature of the material to be heated 5 discharged from the induction heating device, is maintained in the normal temperature rising process. Therefore, the temperature has not reached the predetermined temperature. In such a state, all the materials 5 to be heated existing in both the heating coils 1 and 2 when the induction heating device is stopped are present, and these materials 5 to be heated cannot be properly pressed by the press device. , And is discharged out of the line by a bypass device (not shown) before the press device.

【0006】保温運転は、このようにバイパス装置によ
ってライン外に排出される被加熱材5の数量を低減する
ためになされるもので、プレス装置が停止すると、制御
装置9から速度制御装置8へ保温速度指令が出され、速
度制御装置8はモータ7の回転速度を制御し、ピンチロ
ーラ6を介して被加熱材5の搬送速度を定常時の搬送速
度の約1/2に低下するとともに、制御装置9から両高
周波インバータ装置3、4へも保温速度に応じて、両高
周波インバータ装置3、4から両加熱コイル1、2に供
給される電力の値を、定常運転時の供給電力値の1/2
に低下させるよう指令が出される。なお、電力を1/2
に低下させた場合に、両高周波インバータ装置3、4か
ら出力される電圧値は、定常運転時に出力される電圧値
の約√1/2倍(約0.7倍)になる。
The heat keeping operation is performed to reduce the quantity of the material 5 to be heated discharged out of the line by the bypass device. When the press device stops, the control device 9 switches to the speed control device 8. A heat retention speed command is issued, the speed control device 8 controls the rotation speed of the motor 7, and reduces the transport speed of the material 5 to be heated via the pinch roller 6 to about の of the steady transport speed. The value of the power supplied to both heating coils 1 and 2 from both high-frequency inverter devices 3 and 4 from control device 9 to both high-frequency inverter devices 3 and 4 according to the heat retention rate is also calculated as the supply power value during steady operation. 1/2
A command is issued to lower it. In addition, the electric power is reduced by half.
In this case, the voltage values output from the high-frequency inverter devices 3 and 4 are approximately √ times (approximately 0.7 times) the voltage values output during the steady operation.

【0007】このように、従来装置では保温運転時にお
ける搬送速度を、定常運転時の搬送速度の1/2に低下
させることにより、ライン外に排出される被加熱材5の
数量を減少させ、又、両加熱コイル1、2に供給される
電力を完全に0にするのではなく、定常運転時の1/2
の電力を供給することにより、定常運転復帰後、比較的
速く所定の温度に到達できるようにしている。なお、プ
レス装置が運転を再開すると、搬送速度および両高周波
インバータ装置3、4から供給される電力を、それぞれ
定常運転時の値に復帰させ、誘導加熱装置は定常運転を
再開する。
As described above, in the conventional apparatus, the transport speed during the warming operation is reduced to の of the transport speed during the steady operation, thereby reducing the number of materials 5 to be discharged out of the line. Also, the electric power supplied to the heating coils 1 and 2 is not completely reduced to 0, but is reduced to の of that in the normal operation.
By supplying this power, it is possible to reach the predetermined temperature relatively quickly after returning to the normal operation. When the press restarts the operation, the transport speed and the power supplied from the high-frequency inverters 3 and 4 are respectively returned to the values at the time of steady operation, and the induction heating device resumes the steady operation.

【0008】[0008]

【発明が解決しようとする課題】従来の誘導加熱装置は
以上のように構成され、保温運転中にも加熱された被加
熱材5が捨て材としてライン外に排出されるので、被加
熱材5を再使用するためには一旦冷却する手間を要する
とともに、捨て材のためのスペース、その熱気等の対策
に大きな手間を要する等という問題点があった。したが
って、従来装置ではこの捨て材を少なくするために、保
温運転中の搬送速度を1/2に低下させているわけであ
るが、搬送速度を低下させると、図6中曲線bに示すよ
うに高温側で逆に低下する現象がある。
The conventional induction heating apparatus is configured as described above, and the heated material 5 is discharged as waste material out of the line even during the warming operation. In order to reuse this, there is a problem that it takes time to cool down once, and it takes a lot of time to take measures for measures such as a space for discarded materials and hot air. Therefore, in the conventional apparatus, in order to reduce this waste material, the transport speed during the warming operation is reduced to half. However, when the transport speed is reduced, as shown in a curve b in FIG. There is a phenomenon that the temperature decreases on the high temperature side.

【0009】これは、搬送速度を1/Nに低下させる場
合、両加熱コイル3、4に供給する電力も1/Nに低下
させて、図6中曲線cに示すような昇温過程を得るが、
被加熱材5から放出される放熱損失は被加熱材温度によ
ってほぼ一定のため、供給電力値の低い高温領域におい
ては放熱損失が供給電力を上回るのが原因である。この
ように高温側で温度が低下する現象を防止するために
は、供給電力を1/Nより大きくすればよいが、供給電
力が大きくなり過ぎると第2の加熱コイル4の途中で過
昇温となり、被加熱材5が溶融する恐れも生じる。な
お、搬送速度を定常運転時の搬送速度より低下できる限
界は、一般的に定常搬送速度の40%程度である。
This is because when the transport speed is reduced to 1 / N, the power supplied to the heating coils 3 and 4 is also reduced to 1 / N to obtain a temperature increasing process as shown by a curve c in FIG. But,
Since the heat radiation loss emitted from the material to be heated 5 is substantially constant depending on the temperature of the material to be heated, the heat radiation loss is higher than the power supply in a high temperature region where the power supply value is low. In order to prevent such a phenomenon that the temperature decreases on the high temperature side, the supply power may be increased to more than 1 / N. However, if the supply power becomes excessively large, the temperature rises excessively in the second heating coil 4. Thus, the material to be heated 5 may be melted. Note that the limit at which the transfer speed can be reduced from the transfer speed in the steady operation is generally about 40% of the steady transfer speed.

【0010】この発明は上記のような問題点を解消する
ためになされたもので、保温運転中における捨て材を最
小限に抑えることが可能な誘導加熱装置を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide an induction heating apparatus capable of minimizing the amount of waste material during a warming operation. is there.

【0011】[0011]

【課題を解決するための手段】この発明に係る請求項1
の誘導加熱装置は、複数の被加熱材を定常速度S0で連
続して搬送させる搬送手段と、連続して搬送される各被
加熱材を常温より所定の高温に誘導加熱する少なくとも
2以上のセクションに分割された加熱コイルと、これら
分割された各加熱コイルにそれぞれ高周波電力を供給す
る複数のインバータ装置と、保温指令により搬送手段の
搬送速度を定常速度S0より小さい値の第1の搬送速度
1にするとともに第1の所定時間経過後に第1の搬送
速度S1より小さい値の第2の搬送速度S2に制御し、保
温指令解除により搬送手段の搬送速度を定常速度S0
り小さく且つ第2の搬送速度S2より大きい値の第3の
搬送速度S3にするとともに第2の所定時間経過後に定
常速度S0に復帰させるように制御する搬送速度制御手
段と、各インバータ装置の各供給高周波電力の電圧を各
搬送速度S0、S1、S2、S3に応じた値の電圧V0
1、V2、V3にそれぞれ制御する電圧制御手段とを備
えたものである。
Means for Solving the Problems Claim 1 according to the present invention.
The induction heating device includes a conveying means for conveying in succession a plurality of material to be heated at a steady rate S 0, of at least 2 or more of induction heating to a predetermined temperature higher than the normal temperature the material to be heated is continuously conveyed A heating coil divided into sections, a plurality of inverter devices for supplying high-frequency power to each of the divided heating coils, and a first conveyance having a conveyance speed of a conveyance unit smaller than the steady speed S 0 by a heat retention command. first the first second and control the conveying speed S 2 of the conveying speed S 1 value less than predetermined time after as well as the speed S 1, than the steady speed S 0 the conveying speed of the conveying means by heat insulating command release small and a second conveying speed control means for controlling so as to return to a steady rate S 0 after a predetermined time has elapsed while the second third transport speed S 2 greater than the conveying speed S 3, each inverter instrumentation Each supply high-frequency power voltage speed each carry the S of 0, S 1, S 2, the voltage V 0 which value corresponding to S 3,
Voltage control means for controlling V 1 , V 2 , and V 3 respectively.

【0012】又、この発明に係る請求項2の誘導加熱装
置は、請求項1における電圧制御手段が、定常運転時の
電圧V0に対する保温運転時の各電圧V1、V2、V3の電
圧低下割合を高温領域のインバータ装置の方が低温領域
のインバータ装置より少なく制御するようにしたもので
ある。
In the induction heating apparatus according to a second aspect of the present invention, the voltage control means according to the first aspect is configured such that each of the voltages V 1 , V 2 , and V 3 during the warm-up operation with respect to the voltage V 0 during the steady-state operation. The voltage drop ratio is controlled to be smaller in the inverter device in the high temperature region than in the inverter device in the low temperature region.

【0013】[0013]

【作用】この発明における請求項1の誘導加熱装置の搬
送速度制御手段は、保温運転指令により被加熱材の搬送
速度を、定常運転速度から保温運転速度へ段階的に下降
させるとともに、保温運転指令解除により被加熱材の搬
送速度を、保温運転速度から定常運転速度へ段階的に上
昇させるように制御し、又、電圧制御手段は、搬送速度
制御手段により段階的に制御される各搬送速度に応じ
て、各高周波インバータ装置から各加熱コイルにそれぞ
れ供給される各高周波電力の電圧をそれぞれ制御する。
According to a first aspect of the present invention, the conveying speed control means of the induction heating apparatus decreases the conveying speed of the material to be heated from the steady operation speed to the warming operation speed in response to the warming operation command. The release speed is controlled so that the transport speed of the material to be heated is stepwise increased from the warming operation speed to the steady operation speed, and the voltage control means is controlled to each transport speed controlled stepwise by the transport speed control means. Accordingly, the voltage of each high-frequency power supplied from each high-frequency inverter device to each heating coil is controlled.

【0014】この発明における請求項2の誘導加熱装置
の電圧制御手段は、定常運転時の電圧V0に対する保温
運転時の各電圧V1、V2、V3の電圧低下割合を高温領
域のインバータ装置の方が低温領域のインバータ装置よ
り少なく制御する。
According to a second aspect of the present invention, the voltage control means of the induction heating apparatus is adapted to determine a voltage drop ratio of each of the voltages V 1 , V 2 , V 3 during the warm-up operation with respect to the voltage V 0 during the steady-state operation. The device controls less than the inverter device in the low temperature range.

【0015】[0015]

【実施例】【Example】

実施例1.以下、この発明の実施例を図について説明す
る。図1はこの発明の実施例1における誘導加熱装置の
構成を示すブロック図、図2は図1に示す誘導加熱装置
の昇温特性を示す曲線図、図3は図1に示す誘導加熱装
置の各運転状態における搬送速度の変化を示す図、図4
は一般的な誘導加熱装置の各運転状態における各供給電
力の大きさと放熱損失との関係を示す図である。図1に
おいて、第1および第2の加熱コイル1、2、第1およ
び第2の高周波インバータ装置3、4、被加熱材5、ピ
ンチローラ6、モータ7および速度制御装置8は図5に
示す従来装置のものと同様である。9はピンチローラ6
の回転数を検出するピンチローラ回転数検出器、10は
保温運転指令が出されると速度制御装置8を介してモー
タ7の回転数を変化させ、被加熱材5の搬送速度を図3
に示すように制御する搬送速度制御手段、11はこの搬
送速度制御手段10によって制御される各搬送速度に応
じた電力を、各加熱コイル1、2に供給すべく両高周波
インバータ装置3、4の電圧を制御する電圧制御手段で
ある。
Embodiment 1 FIG. Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an induction heating device according to a first embodiment of the present invention, FIG. 2 is a curve diagram showing a temperature rise characteristic of the induction heating device shown in FIG. 1, and FIG. FIG. 4 shows a change in the transport speed in each operation state.
FIG. 4 is a diagram showing a relationship between a magnitude of each supply power and a heat radiation loss in each operation state of a general induction heating device. 1, the first and second heating coils 1 and 2, the first and second high-frequency inverter devices 3 and 4, the material to be heated 5, the pinch roller 6, the motor 7, and the speed control device 8 are shown in FIG. It is the same as that of the conventional device. 9 is a pinch roller 6
The pinch roller rotation speed detector 10 detects the rotation speed of the motor 7, and changes the rotation speed of the motor 7 via the speed control device 8 when the warming operation command is issued, so that the conveying speed of the material 5 to be heated is changed as shown in FIG.
The transfer speed control means 11 for controlling as shown in FIG. 3 is provided with a power supply corresponding to each transfer speed controlled by the transfer speed control means 10 to each of the heating coils 1 and 2, This is voltage control means for controlling the voltage.

【0016】次に、上記のように構成される実施例1に
おける誘導加熱装置の動作について説明する。まず、定
常運転時における昇温過程は、図2中の曲線aで示すよ
うに図6中の曲線aの従来装置の場合と同様である。次
いで、後工程であるプレス装置が例えば故障等で停止し
て保温指令が出されると、搬送速度制御手段10は速度
制御装置8を介してモータ7の回転速度を変化させ、図
3に示すように被加熱材5の搬送速度を定常速度から移
行速度に移るように制御する。一方、電圧制御手段11
は両高周波インバータ装置3、4を制御して、両加熱コ
イル1、2に移行速度に応じた電力を供給する。
Next, the operation of the induction heating apparatus according to the first embodiment configured as described above will be described. First, as shown by the curve a in FIG. 2, the temperature rising process during the steady operation is the same as that of the conventional device of the curve a in FIG. Next, when the press device in the post-process is stopped due to, for example, a failure or the like and a heat retention command is issued, the transport speed control means 10 changes the rotation speed of the motor 7 via the speed control device 8 as shown in FIG. Then, the transport speed of the material 5 to be heated is controlled to shift from the steady speed to the transition speed. On the other hand, voltage control means 11
Controls the high frequency inverter devices 3 and 4 to supply power to both heating coils 1 and 2 according to the transition speed.

【0017】この移行速度を持続する期間、すなわち、
移行期間の長さはピンチローラ回転数検出器9によって
検出され、所定の長さの移行期間が終了すると、搬送速
度制御手段10および電圧制御手段11は、それぞれ移
行速度から保温速度へ、又、移行速度に対応する供給電
力から保温速度に対応する供給電力へそれぞれ移るよう
に、速度制御装置8および両高周波インバータ装置3、
4を制御し保温運転を開始する。そして、この保温運転
期間がある程度継続された後、プレス装置が再稼働して
保温指令解除が出されると、速度制御手段10および電
圧制御手段11は、搬送速度を保温速度から移行速度
に、又、供給電力を保温速度に対応する値から移行速度
に対応する値に復帰するようにそれぞれ制御を行って再
び移行運転に戻り、上記同様所定の長さの移行期間を経
た後、定常運転に復帰する。
The period during which the transition speed is maintained, that is,
The length of the transition period is detected by the pinch roller rotation speed detector 9, and when the transition period of the predetermined length ends, the transport speed control unit 10 and the voltage control unit 11 respectively change the transition speed to the heat retention speed, The speed control device 8 and the two high-frequency inverter devices 3, so as to shift from the supply power corresponding to the transition speed to the supply power corresponding to the heat retention speed, respectively.
4 to start the warming operation. Then, after the warming operation period has been continued to some extent, when the press device is restarted and the warming command is released, the speed control means 10 and the voltage control means 11 change the transport speed from the warming speed to the transition speed, and Then, control is performed so that the supply power returns from the value corresponding to the heat retention speed to the value corresponding to the transition speed, and the process returns to the transition operation again, and after a transition period of a predetermined length as described above, returns to the steady operation. I do.

【0018】ここで、上記のように所定の長さの移行期
間を経た後、保温運転期間に入らなければならない理由
を説明する。すなわち、移行期間を設けずに定常運転か
ら保温運転に入る場合、昇温過程は図2に示す曲線aの
状態から曲線bの状態に短時間で変わることになるが、
第1および第2の加熱コイル1、2内に存在する各被加
熱材5の温度は、定常運転における場合と保温運転にお
ける場合とでは異なっており、短時間に変化することは
できない。特に両運転の速度比が大きい場合には、昇温
過程の差も大きく瞬時の移行は困難である。そこで、定
常運転速度と保温運転速度との中間の速度で一旦運転
し、昇温過程も中間の値で調整することにより、定常運
転から保温運転にスムーズに移行することが可能になる
わけである。
Here, the reason why it is necessary to enter the warming operation period after the transition period of the predetermined length as described above will be described. That is, when the operation is shifted from the steady operation to the warming operation without providing the transition period, the heating process changes from the state of the curve a shown in FIG. 2 to the state of the curve b in a short time.
The temperature of each material to be heated 5 present in the first and second heating coils 1 and 2 is different between the case of the steady operation and the case of the heat keeping operation, and cannot be changed in a short time. In particular, when the speed ratio between the two operations is large, the difference between the heating processes is large, and instantaneous transition is difficult. Therefore, by temporarily operating at an intermediate speed between the steady operation speed and the warming operation speed and adjusting the heating process to an intermediate value, it is possible to smoothly shift from the steady operation to the warming operation. .

【0019】又、図2に示す両加熱コイル1、2内の昇
温過程と搬送速度および供給電力との関係は以下のよう
になる。すなわち、加熱に必要な電力は単位時間当たり
に、両加熱コイル1、2内を通過する被加熱材5の総重
量に一般的に比例するので、換言すると電力は搬送速度
に比例する。従って、両高周波インバータ装置3、4は
電圧制御手段11によって制御され、電圧を変化させる
ことによってそれぞれの搬送速度に応じた電力を、両加
熱コイル1、2に供給している。
The relationship between the heating process in the heating coils 1 and 2 shown in FIG. 2 and the conveying speed and the supplied power is as follows. That is, the power required for heating is generally proportional to the total weight of the material 5 to be heated passing through the two heating coils 1 and 2 per unit time. In other words, the power is proportional to the transport speed. Therefore, the high frequency inverter devices 3 and 4 are controlled by the voltage control means 11 and supply electric power corresponding to the respective transport speeds to the heating coils 1 and 2 by changing the voltage.

【0020】一方、被加熱材5の放熱損失は、ステファ
ン・ボルツマンの法則により被加熱材5の温度の4乗に
比例するので、図4に示すように高温領域になるほど放
熱損失は増大して供給電力に対する割合は大きくなり、
また、この放熱損失は搬送速度に関係しないため、搬送
速度の低下に伴って供給電力が減少すると、放熱損失の
供給電力に対する割合は大きくなるので、高温領域では
放熱損失が保温運転時の供給電力を越えることがある。
この場合は、従来の技術の項でも述べたように、高温領
域においては第2の加熱コイル2の出口側の温度が逆に
低下することになるので、高温領域における供給電力
は、搬送速度の低下に応じた低減率に比例した値よりも
大きな値が要求される。
On the other hand, since the heat radiation loss of the material 5 to be heated is proportional to the fourth power of the temperature of the material 5 to be heated according to Stefan-Boltzmann's law, as shown in FIG. The ratio to the power supply increases,
Also, since this heat dissipation loss is not related to the transfer speed, if the supply power decreases as the transfer speed decreases, the ratio of the heat dissipation loss to the supply power increases. May be exceeded.
In this case, as described in the section of the prior art, the temperature at the outlet side of the second heating coil 2 decreases in the high temperature region, so that the power supplied in the high temperature region is reduced by the conveyance speed. A value larger than a value proportional to the reduction rate corresponding to the reduction is required.

【0021】一例として、定格電力1,000kWの誘
導加熱装置を考えると、φ50の径の被加熱材5を1,
200℃に昇温させる場合、加熱コイルの全長は約3,
000mmとなるが、高温領域、すなわち、第2の加熱
コイル2(約1,100℃以上とする)の長さは約1,
000mmとなる。この場合の低温領域、すなわち、第
1の加熱コイル1内での放熱損失(加熱コイル電力に換
算)は約10kWにすぎないが、高温領域での放熱損失
は約50kWになる。定格電力を使用する搬送速度で
は、低温領域に供給される電力は約800kWなので、
たとえ搬送速度が1/5に低下しても供給電力は約16
0kWもあり、放熱損失よりはるかに大きいので、放熱
損失は無視してよい。一方、高温領域では供給電力は約
200kWなので、定格電力を使用する搬送速度では放
熱損失より大きいが、搬送速度が1/5に低下した場合
にそれに比例して供給電力を低下させると約40kWに
低下し、放熱損失より少なくなる。
As an example, assuming an induction heating device having a rated power of 1,000 kW, a material to be heated 5 having a diameter of
When the temperature is raised to 200 ° C., the total length of the heating coil is about 3,
2,000 mm, but the length of the high temperature region, that is, the length of the second heating coil 2 (about 1,100 ° C. or more) is about 1,
000 mm. In this case, the heat radiation loss (converted to the heating coil power) in the low temperature region, that is, in the first heating coil 1 is only about 10 kW, but the heat radiation loss in the high temperature region is about 50 kW. At the transfer speed using the rated power, the power supplied to the low temperature area is about 800 kW.
Even if the transport speed is reduced to 1/5, the supplied power is about 16
Since there is also 0 kW, which is much larger than the heat dissipation loss, the heat dissipation loss can be ignored. On the other hand, the supply power is about 200 kW in the high temperature region, so the heat dissipation is larger at the transfer speed using the rated power, but when the transfer speed is reduced to 1/5, the supply power is reduced to about 40 kW in proportion thereto. Lower than the heat dissipation loss.

【0022】以上のような観点から、移行期間および保
温運転期間の搬送速度は以下の式で決定される。 保温移行期間の搬送速度 S1=K1×S0 保温運転期間の搬送速度 S2=K2×S0 定常復帰移行期間の搬送速度 S3=K3×S0 但し、上記各式中、S0は定常運転期間の搬送速度、
1、K2、K3は速度低減係数をそれぞれ示す。
From the above viewpoints, the transport speed during the transition period and the warming operation period is determined by the following equation. The transport speed during the warming transition period S 1 = K 1 × S 0 The transport speed during the warming operation period S 2 = K 2 × S 0 The transport speed during the steady return transition period S 3 = K 3 × S 0 where, S 0 is the transport speed during the steady operation period,
K 1 , K 2 , and K 3 indicate speed reduction coefficients, respectively.

【0023】そして、これら各速度低減係数K1、K2
3は、保温運転期間の搬送速度を定常運転期間の搬送
速度の10%として設定(K2=0.1)する。また、
保温移行期間の搬送速度は定常運転期間の搬送速度と保
温運転期間の搬送速度とのほぼ中間に設定(K1=0.
5)するとともに、定常復帰移行期間の搬送速度はこれ
と同様に設定(K3=0.5)する。
The speed reduction coefficients K 1 , K 2 ,
K 3 sets the conveying speed of the maintenance operation period as 10% of the conveying speed of the steady operation period (K 2 = 0.1). Also,
The transfer speed during the heat transfer transition period is set to approximately the middle between the transfer speed during the steady operation period and the transfer speed during the heat retention operation period (K 1 = 0.
5) At the same time, the transport speed during the steady return transition period is set similarly (K 3 = 0.5).

【0024】又、移行期間および保温運転期間の供給電
力、すなわち、各高周波インバータ装置3、4の出力電
圧は以下の式で決定される。 (1)第1の高周波インバータ装置3(低温域用) 保温移行期間の出力電圧 VA1=√K1×VA0 保温運転期間の出力電圧 VA2=√K2×VA0 定常復帰移行期間の出力電圧 VA3=√K3×VA0 但し、上記各式中、VA0は定常運転期間の出力電圧を示
す。 (2)第2の高周波インバータ装置4(高温域用) 保温移行期間の出力電圧 VB1=√K1×VB0
×KB1 保温運転期間の出力電圧 VB2=√K2×VB0
×KB2 定常復帰移行期間の出力電圧 VB3=√K3×VB0
×KB3 但し、上記各式中、VB0は定常運転期間の出力電圧、K
B1、KB2、KB3は補正係数をそれぞれ示す。
The power supplied during the transition period and the warm-up operation period, that is, the output voltage of each of the high-frequency inverter devices 3 and 4 is determined by the following equation. (1) of the first high-frequency inverter unit 3 (for low temperature range) the output voltage V A2 = √K 2 × V A0 steady recovery transition period of the output voltage V A1 = √K 1 × V A0 maintenance operation period of warmth transition period Output voltage V A3 = √K 3 × V A0 where V A0 represents the output voltage during the steady operation period. (2) Second high-frequency inverter device 4 (for high-temperature region) Output voltage V B1 = √K 1 × V B0 during transition to heat retention
× K B1 Output voltage during warm-up operation period V B2 = √K 2 × V B0
× K B2 Output voltage in the transition period to steady return V B3 = √K 3 × V B0
× K B3 where V B0 is the output voltage during the steady operation period and K
B1 , KB2 , and KB3 indicate correction coefficients, respectively.

【0025】そして、上記のように低温域用としての第
1の高周波インバータ装置3の出力電圧は、速度の低減
率の平方根で設定されるのに対して、高温域用としての
第2の高周波インバータ装置4の出力電圧は、前述した
ように被加熱材5の放熱損失を補償するために、速度の
低減率の平方根より大きめの値に設定しなければならな
い。すなわち、速度が小さいほど供給電力に対する放熱
損失の割合が大きくなるので、補正係数はそれぞれほぼ
B1=1.2、KB2=1.5、KB3=1.2に設定され
る。
As described above, the output voltage of the first high-frequency inverter device 3 for the low-temperature region is set by the square root of the speed reduction rate, whereas the output voltage of the second high-frequency device for the high-temperature region is set. As described above, the output voltage of the inverter device 4 must be set to a value larger than the square root of the speed reduction rate in order to compensate for the heat dissipation loss of the material 5 to be heated. That is, since the ratio of the heat dissipation loss to the supplied power increases as the speed decreases, the correction coefficients are set to approximately K B1 = 1.2, K B2 = 1.5, and K B3 = 1.2, respectively.

【0026】このように、上記実施例1によれば、加熱
コイルを低温領域用の第1の加熱コイル1および高温領
域用の第2の加熱コイル2に分割するとともに、両高周
波インバータ装置3、4からそれぞれ異なる電力を供給
するようにしているので、搬送速度の低い範囲での保温
運転が可能となり、また、保温運転に移行するときに、
一旦搬送速度を定常運転の搬送速度と保温運転の搬送速
度との中間の値で運転させる移行期間を設けるととも
に、保温運転が解除されて定常運転に復帰するときに
も、同様の移行期間を設けるようにしたので、両加熱コ
イル1、2内の昇温過程を正常に維持することができ、
第2の加熱コイル2から被加熱材5を常に安定した温度
で排出することが可能になる。
As described above, according to the first embodiment, the heating coil is divided into the first heating coil 1 for the low-temperature region and the second heating coil 2 for the high-temperature region. 4, different powers are supplied, so that the warming operation can be performed in a range where the conveying speed is low, and when shifting to the warming operation,
Provide a transition period in which the transfer speed is once operated at an intermediate value between the transfer speed in the steady operation and the transfer speed in the warm-up operation, and provide the same transition period when the warm-up operation is canceled and the operation returns to the steady operation. As a result, the heating process in both heating coils 1 and 2 can be maintained normally,
The material 5 to be heated can be constantly discharged from the second heating coil 2 at a stable temperature.

【0027】さらに又、定常運転時における両高周波イ
ンバータ装置3、4の出力電圧VA0、VB0に対する、保
温運転時における各出力電圧VA2、VB2の電圧低下の割
合を、高温領域用としての第2の高周波インバータ装置
の出力電圧VB2の方が、低温領域用としての第1の高周
波インバータ装置の出力電圧VA2より少なくしているの
で、高温領域においても被加熱材5にその放熱損失を上
回る電力を常に供給することができるようになり、低速
の保温運転時にも適正な昇温過程を維持することがで
き、プレス装置が運転を再開した時にもただちに所定の
温度に昇温した被加熱材5をプレス装置に供給すること
ができる。
Further, the ratio of the voltage drop of each output voltage V A2 , V B2 during the warm-up operation to the output voltage V A0 , V B0 of both high-frequency inverter devices 3, 4 during the steady operation is defined as that for the high temperature region. The output voltage V B2 of the second high-frequency inverter device is lower than the output voltage V A2 of the first high-frequency inverter device for the low-temperature region. The power that exceeds the loss can be always supplied, the proper temperature rise process can be maintained even during the low-temperature heat-retention operation, and the temperature immediately rises to the predetermined temperature when the press device resumes operation. The material to be heated 5 can be supplied to the press device.

【0028】実施例2.尚、上記実施例1によれば、加
熱コイルを第1および第2の加熱コイル1、2に分割
し、この両コイル1、2に2台の第1および第2の高周
波インバータ3、4からそれぞれ電力を供給する場合に
ついて説明したが、大電力を要する誘導加熱装置ではこ
れを3台もしくはそれ以上の台数の高周波インバータ装
置により電力を供給するようにしても、上記実施例1と
同様の効果を得ることは言うまでもない。この場合は、
当然のことながら高温領域の高周波インバータ装置ほ
ど、低速運転時における電圧低下割合を少なくして放熱
損失を補償するように制御される。
Embodiment 2 FIG. According to the first embodiment, the heating coil is divided into the first and second heating coils 1 and 2, and both coils 1 and 2 are provided with two first and second high-frequency inverters 3 and 4. Although the description has been given of the case where the power is supplied, the same effect as that of the first embodiment can be obtained by supplying the electric power to three or more high-frequency inverter devices in the induction heating device requiring a large power. It goes without saying that you get in this case,
As a matter of course, the higher the frequency of the high-frequency inverter device in the high-temperature region, the smaller the rate of voltage drop during low-speed operation is controlled so as to compensate for heat dissipation loss.

【0029】[0029]

【発明の効果】以上のように、この発明の請求項1によ
れば、複数の被加熱材を定常速度S0で連続して搬送さ
せる搬送手段と、連続して搬送される各被加熱材を常温
より所定の高温に誘導加熱する少なくとも2以上のセク
ションに分割された加熱コイルと、これら分割された各
加熱コイルにそれぞれ高周波電力を供給する複数のイン
バータ装置と、保温指令により搬送手段の搬送速度を定
常速度S0より小さい値の第1の搬送速度S1にするとと
もに第1の所定時間経過後に第1の搬送速度S1より小
さい値の第2の搬送速度S2に制御し、保温指令解除に
より搬送手段の搬送速度を定常速度S0より小さく且つ
第2の搬送速度S2より大きい値の第3の搬送速度S3
するとともに第2の所定時間経過後に定常速度S0に復
帰させるように制御する搬送速度制御手段と、各インバ
ータ装置の各供給高周波電力の電圧を各搬送速度S0
1、S2、S3に応じた値の電圧V0、V1、V2、V3
それぞれ制御する電圧制御手段とを備え、
As evident from the foregoing description, according to the first aspect of the present invention, a conveying means for conveying in succession a plurality of material to be heated at a steady rate it S 0, the material to be heated is continuously conveyed Heating coil divided into at least two sections for inductively heating the heating coil to a predetermined high temperature from room temperature, a plurality of inverter devices for supplying high-frequency power to each of the divided heating coils, first second and control the conveying speed S 2 of the conveying speed S 1 value smaller than after the first predetermined time has elapsed while the speed to the first transport speed S 1 of the constant velocity S 0 value less than warmth returning to the steady speed S 0 after the lapse second predetermined time while the third conveying speed S 3 of the small and the second conveying speed S 2 greater than than the steady speed S 0 the conveying speed of the conveying means by a command released Control to let A conveying speed control means that, each conveying speed S 0 the voltage of each supply a high-frequency power of each inverter,
S 1, S 2, and a voltage control means for controlling each of the S voltage V 0 which value corresponding to 3, V 1, V 2, V 3,

【0030】又、この発明の請求項2によれば、請求項
1における電圧制御手段が、定常運転時の電圧V0に対
する保温運転時の各電圧V1、V2、V3の電圧低下割合
を高温領域のインバータ装置の方が低温領域のインバー
タ装置より少なく制御するようにしたので、後工程とし
てのプレス装置が停止した場合にも、きわめて低い搬送
速度で保温運転ができ、保温運転中における捨て材を最
小限に抑えることが可能な誘導加熱装置を提供すること
ができる。
According to a second aspect of the present invention, the voltage control means according to the first aspect is characterized in that a voltage drop ratio of each of the voltages V 1 , V 2 , V 3 during the warm-up operation to the voltage V 0 during the steady operation. Is controlled so that the inverter device in the high-temperature region is controlled to be less than the inverter device in the low-temperature region. An induction heating device capable of minimizing waste material can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1における誘導加熱装置の構
成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of an induction heating device according to a first embodiment of the present invention.

【図2】図1に示す誘導加熱装置の昇温特性を示す曲線
図である。
FIG. 2 is a curve diagram showing a temperature rise characteristic of the induction heating device shown in FIG.

【図3】図1に示す誘導加熱装置の各運転状態における
搬送速度の変化を示す図である。
FIG. 3 is a diagram showing a change in a conveying speed in each operation state of the induction heating device shown in FIG. 1;

【図4】一般的な誘導加熱装置の各運転状態における各
供給電力の大きさと放熱損失との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a magnitude of each supply power and a heat radiation loss in each operation state of a general induction heating device.

【図5】従来の誘導加熱装置の構成を示すブロック図で
ある。
FIG. 5 is a block diagram showing a configuration of a conventional induction heating device.

【図6】図5に示す誘導加熱装置の昇温特性を示す曲線
図である。
FIG. 6 is a curve diagram showing a temperature rise characteristic of the induction heating device shown in FIG.

【符号の説明】[Explanation of symbols]

1、2 第1および第2の加熱コイル 3、4 第1および第2の高周波インバータ装置 5 被加熱材 6 ピンチローラ 7 モータ 8 速度制御装置 9 ピンチローラ回転数検出器 10 搬送速度制御手段 11 電圧制御手段 DESCRIPTION OF SYMBOLS 1, 2 1st and 2nd heating coil 3, 4 1st and 2nd high frequency inverter device 5 Material to be heated 6 Pinch roller 7 Motor 8 Speed control device 9 Pinch roller rotation speed detector 10 Transport speed control means 11 Voltage Control means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B21J 17/02 B21K 27/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B21J 17/02 B21K 27/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の被加熱材を定常速度S0で連続し
て搬送させる搬送手段と、連続して搬送される上記各被
加熱材を常温より所定の高温に誘導加熱する少なくとも
2以上のセクションに分割された加熱コイルと、これら
分割された各加熱コイルにそれぞれ高周波電力を供給す
る複数のインバータ装置と、保温指令により上記搬送手
段の搬送速度を上記定常速度S0より小さい値の第1の
搬送速度S1にするとともに第1の所定時間経過後に上
記第1の搬送速度S1より小さい値の第2の搬送速度S2
に制御し、保温指令解除により上記搬送手段の搬送速度
を上記定常速度S0より小さく且つ上記第2の搬送速度
2より大きい値の第3の搬送速度S3にするとともに第
2の所定時間経過後に上記定常速度S0に復帰させるよ
うに制御する搬送速度制御手段と、上記各インバータ装
置の各供給高周波電力の電圧を上記各搬送速度S0
1、S2、S3に応じた値の電圧V0、V1、V2、V3
それぞれ制御する電圧制御手段とを備えたことを特徴と
する誘導加熱装置。
And conveying means according to claim 1] to convey multiple consecutive material to be heated at a steady rate S 0, of at least 2 or more of induction heating the respective material to be heated is continuously conveyed to a predetermined temperature higher than room temperature A heating coil divided into sections, a plurality of inverter devices for supplying high-frequency power to each of the divided heating coils, and a transfer speed of the transfer means set to a first value smaller than the steady speed S 0 by a heat retention command. conveying speed S 2 transport speed to the first after a predetermined time has elapsed while the S 1 the first second transport speed S 1 value less than the
Controlling the second predetermined time with the conveying speed of the conveying means by heat insulating command released to third conveying speed S 3 of the small and the second conveying speed S 2 greater than than the steady rate S 0 A conveyance speed control means for controlling to return to the steady speed S 0 after the lapse of time, and a voltage of each supply high-frequency power of each inverter device to each of the conveyance speeds S 0 ,
An induction heating device comprising: voltage control means for controlling voltages V 0 , V 1 , V 2 , and V 3 having values corresponding to S 1 , S 2 , and S 3 , respectively.
【請求項2】 電圧制御手段は、定常運転時の電圧V0
に対する保温運転時の各電圧V1、V2、V3の電圧低下
割合を高温領域のインバータ装置の方が低温領域のイン
バータ装置より少なく制御することを特徴とする請求項
1記載の誘導加熱装置。
2. The voltage control means according to claim 1, wherein the voltage V 0 at the time of steady operation is provided.
2. The induction heating device according to claim 1 , wherein the voltage reduction ratio of each of the voltages V 1 , V 2 , V 3 during the heat retention operation is controlled to be smaller in the high temperature region inverter device than in the low temperature region inverter device. .
JP05081026A 1993-04-08 1993-04-08 Induction heating device Expired - Fee Related JP3125510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05081026A JP3125510B2 (en) 1993-04-08 1993-04-08 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05081026A JP3125510B2 (en) 1993-04-08 1993-04-08 Induction heating device

Publications (2)

Publication Number Publication Date
JPH06285577A JPH06285577A (en) 1994-10-11
JP3125510B2 true JP3125510B2 (en) 2001-01-22

Family

ID=13734970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05081026A Expired - Fee Related JP3125510B2 (en) 1993-04-08 1993-04-08 Induction heating device

Country Status (1)

Country Link
JP (1) JP3125510B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518113U (en) * 1991-08-09 1993-03-05 東光株式会社 Micro strip antenna

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797736B2 (en) * 2006-03-24 2011-10-19 日産自動車株式会社 Billet heating apparatus and heating method
CN102941306B (en) * 2012-11-15 2016-06-08 天津市天锻压力机有限公司 Isothermal Hot molding forging press attemperator
CN105499476B (en) * 2015-12-24 2018-06-05 湖南力方轧辊有限公司 One kind is forged with vacuum heat-preserving induction heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518113U (en) * 1991-08-09 1993-03-05 東光株式会社 Micro strip antenna

Also Published As

Publication number Publication date
JPH06285577A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
JP3125510B2 (en) Induction heating device
US20070238061A1 (en) Method for heating a metal material
JP2004009099A (en) Heating device
CN111286598B (en) Method, device and system for controlling temperature of preheating section of annealing furnace
JP6611194B2 (en) Cooling system for motor variable speed drive
JP4485616B2 (en) Cogeneration equipment
JPH11121154A (en) Induction heating device
JP3790185B2 (en) Temperature control method and apparatus
JP3602810B2 (en) Temperature control method and its control device
JP2007129879A (en) Method for driving furnace roll at time of power failure
JPH0530776A (en) Operating method of inverter controller for layer-driving motor of glass-manufacturing equipment
SU1001511A1 (en) Induction continuous heating installation
JP3294773B2 (en) Induction heating device and control method thereof
JPH0538545A (en) Induction heating apparatus
JPH076000B2 (en) Material temperature control method for different plate joints in continuous strip processing line
JPH11337049A (en) Control method and apparatus for controlling mill primary air damper of a pulverized coal fired boiler
JP2000036328A (en) Temperature control device for secondary battery
KR20060010055A (en) Material temperature control system in continuous strip material treatment line
JPS5822591A (en) Speed controlling device for motor
JPS636212Y2 (en)
JPH03165489A (en) Re-heating of continuous feed induction heating device
JP3607169B2 (en) Fixing device for image forming apparatus
JPH0331765B2 (en)
JPH0643804B2 (en) Lubrication temperature control device
JPS61267654A (en) Time pitch control in continuous manufacturing line

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees