JPH03165489A - Re-heating of continuous feed induction heating device - Google Patents
Re-heating of continuous feed induction heating deviceInfo
- Publication number
- JPH03165489A JPH03165489A JP30536989A JP30536989A JPH03165489A JP H03165489 A JPH03165489 A JP H03165489A JP 30536989 A JP30536989 A JP 30536989A JP 30536989 A JP30536989 A JP 30536989A JP H03165489 A JPH03165489 A JP H03165489A
- Authority
- JP
- Japan
- Prior art keywords
- speed
- temperature
- stage
- heating
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 48
- 230000006698 induction Effects 0.000 title claims description 17
- 238000013459 approach Methods 0.000 claims abstract description 6
- 238000003303 reheating Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 abstract description 20
- 230000007423 decrease Effects 0.000 abstract description 3
- 241000252233 Cyprinus carpio Species 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002791 soaking Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- General Induction Heating (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、鍛造用に主として用いられる連続送部式誘
導加熱装置のトラブルが起った後の再立上げ時に、焼ざ
まし材の発生を極カ減らす様にし、その再立上げ時の立
上げ時間の短縮化を図った連続送り式誘導加熱装置の再
加熱方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] This invention solves the problem of the generation of burnt material when restarting a continuous feed type induction heating device mainly used for forging after a trouble occurs. The present invention relates to a reheating method for a continuous feed type induction heating apparatus, which minimizes the power of the continuous feed induction heating apparatus and shortens the start-up time when restarting the apparatus.
従来の連続送り式誘導加熱装置は特公昭63−1087
5号公報に示されているように完全停止保温が木蝋なた
め、微速送り保温を採用していた。The conventional continuous feed induction heating device was developed by the Japanese Patent Publication No. 63-1087.
As shown in Publication No. 5, since the complete stop heat insulation was made of wax, slow-speed feed heat retention was adopted.
微速送り保温とは、所定の搬送速度に対して、50〜6
0%の搬送速度にする。つまり、昇温パターンが維持で
きるぎシぎシまで低速にして、待機時の捨材を少なくし
ようとするものである。Slow feed heat retention means 50 to 6
Set the transport speed to 0%. In other words, the aim is to reduce the waste material during standby by reducing the speed to a point where the temperature increase pattern can be maintained.
(、l’uBE+;&JQbI?AL−ナー1tll−
j)従来連続送り式誘導加熱装置の再加熱方法は、微速
送り保温をしていたため、保温時間が長時間に亘ったり
、大型装置でコイル長が長い場合、捨材が大量に発生し
、バイパスされた捨材の処理に困っていた。本発明は再
加熱する事により、捨材の発生を低減した連続送り式誘
導加熱装置の再加熱方法を提供する。(, l'uBE+;&JQbI?AL-ner1tll-
j) Conventional reheating methods for continuous feed induction heating equipment used slow feed heat retention, which resulted in a large amount of waste material and bypass if the heat retention time was long or the coil length was long in a large device. They were having trouble disposing of the waste materials. The present invention provides a method for reheating a continuous feed type induction heating device in which the generation of waste material is reduced by reheating.
この発明に係る連続送り式誘導加熱装置の再加熱方法は
誘導加熱装冒以外の原因で誘導加熱装置の運転を停止し
た場合に、再運転時に少く共定常速度SO以下の速度S
lでスタートさせて、入口に近い前段の出力は速度81
に見合った出力電力に調整し、出口に近い後段の出力電
力は運転停止中に熱放散によシ低下した温度を初期温度
として速度SLで搬送された時に、その後段の出口で所
定の温度に加熱する出力に調整し、再運転後の影響で除
々に被加熱物の温度が回復したら、それに応じて速度S
Lを定常速度S0に近づけ、前段の出力はその速度に応
じて大きくして行き、後段の入口での被加熱物温度が定
常温度に限りなく近づいた時点で、送り速度、前段出力
電力、後段出力電力を定常値に復帰させ、再加熱時前段
のフィル内の被加熱物を後段のコイルで定常温度迄再加
熱する。The reheating method for a continuous feed type induction heating device according to the present invention is such that when the operation of the induction heating device is stopped due to reasons other than induction heating equipment, the speed S is reduced to less than the co-steady speed SO at the time of restarting the induction heating device.
Start with l, the output of the front stage near the entrance is speed 81
The output power of the downstream stage near the exit is adjusted to a predetermined temperature at the exit of the downstream stage when the output power is conveyed at speed SL with the initial temperature being the temperature that decreased due to heat dissipation during the shutdown. Adjust the output to heat, and when the temperature of the heated object gradually recovers due to the effects of restarting the operation, adjust the speed S accordingly.
L approaches the steady speed S0, the output of the front stage increases in accordance with the speed, and when the temperature of the heated object at the inlet of the rear stage approaches the steady temperature, the feed speed, output power of the front stage, and output power of the rear stage increase. The output power is returned to a steady value, and during reheating, the object to be heated in the former stage fill is reheated to a steady temperature by the latter stage coil.
この発明においては、再加熱時に通常より遅い速度で搬
送し、前段で再加熱しながら不足分を後段で再加熱して
、少なくとも前段にある被加熱材を所定の温度に加熱す
る。In this invention, during reheating, the material to be heated is conveyed at a slower speed than usual, and while being reheated in the first stage, the insufficient amount is reheated in the second stage, so that at least the material to be heated in the first stage is heated to a predetermined temperature.
第1図はこの発明の一実施例を実施するための構成図で
ある。図において、(la)(lb)は加熱フィi’s
(2)はピンチローラ、(3)はスキッドレール、(
4a ) (4b )はインバータからなる電源、(5
)は7リーローラ、(6)は近接スイッチ、(7)は近
はスイッチ(6)と対向した金属羽根、(8)は差入コ
ンベア、(9)はヒータ本体、110は被加熱物である
。FIG. 1 is a block diagram for implementing an embodiment of the present invention. In the figure, (la) and (lb) are heating fi's
(2) is a pinch roller, (3) is a skid rail, (
4a) (4b) is a power supply consisting of an inverter, (5
) is the 7 Lee roller, (6) is the proximity switch, (7) is the metal blade facing the switch (6), (8) is the insertion conveyor, (9) is the heater body, and 110 is the object to be heated. .
再加熱方法の一実施例を第2図で示した。第1図で示す
様に被加熱物αOはピンチローラ(2)で搬送されてい
る。その速度は第2図では定常時の場合S0である。被
加熱物αOに接触した7リーローラ(5)は被加熱物α
Oの移動と共に回転するため、その軸に取付けられた金
属羽根(7)も回転する。その金属羽根(7)が接近す
ると検出する近接スイッチ(6)を配置しておくとワー
クGOの移動につれて、定期的にパルスが発生する0従
って、そのパルスをカウントすれば被加熱物αOの進ん
だ距離が把握できる。An example of the reheating method is shown in FIG. As shown in FIG. 1, the object to be heated αO is conveyed by pinch rollers (2). In FIG. 2, the speed is S0 in the steady state. The 7-ree roller (5) in contact with the object to be heated αO
Since it rotates as O moves, the metal blade (7) attached to its shaft also rotates. If a proximity switch (6) is installed to detect when the metal blade (7) approaches, pulses will be generated periodically as the workpiece GO moves. Therefore, by counting the pulses, the progress of the object to be heated αO can be determined. distance can be determined.
今、プレスの故障等の原因でヒータを停止させたとする
。第2図(d)でタイマが動作し始め、停止時間を把握
し始める。被加熱物anの温度は加熱コイ/l/ (1
)の全長に亘って温度低下を始める。そして、その温度
変化は放冷時間にもよるが、例えば第3図のカーブ(2
)となる。そこで、ライン再開信号が入ると、後段電源
(4b)のみパワーが印加され、送シは再開されずに静
止加熱期間となる。これは、後段の加熱フイ7s/(l
b)内の被加熱物αOを少しでも所定の温度に近づける
ためと後段の加熱コイル(1b)の被加熱物α0が77
0°C以下となっている場合に、過電流が慟らき、後段
電源(4b)の出力を上げられないケースを防ぐためで
ある。さて、運転再開であるが、まず、停止時間がタイ
マ等により把握できるので、ステファン・ボルツマンの
熱放tt損失と熱伝達損で決まるエネルギーの損失から
その時の材料温度が求められる。第4図にφ70の場合
の計算例を示した0この値は、変化する場合に合わせた
比熱、熱伝導率等下表の定数例を用いて計算した一例で
ある
(表)放冷曲線を求める定数
その低下温度を後段電源(4b)で補償するわけである
が、後段電源(4b)の容量及び後段加熱コイ〃(lb
)のコイy長及び再加熱に必要な昇温値によって、第2
図に示した再運転時の送り速度STJが決められる。S
I、は通常、定常時送り速度S0より低下している。前
段の電源(4a)はsLで送られた時、前段出口で定常
温度による電力vTJに調整される。後段電源(4b)
の出力電力vR2は、当初、再運転時に、後段の加熱コ
イ/L/(4b)入口の温度を所定の温度に回復する電
力としている0後段の加熱コイ/L/(1b)の材料は
、当然温度不足で出てくるが、徐々に立上り、後段の加
熱コイ/I/(lb)入口にあった材料が取り出される
時には、所定の温度になっている0例えば、後段の電源
(4b)をOffとしたままとすると、前段の加熱コイ
A/(11))にあった材料は徐々に温度を回復するた
め第3図のカーブ(3)に示す様になる。従って、電源
(4b)の出力室カバターンを徐々に所定の電力に近づ
く様に低下させる必要がある。しかし、再立上げ時は少
しでも早く定常状態に復帰させる事が要求される0従っ
て、本発明では後段の電力を絞るのではなくて、その分
、送抄速度を徐々に回復させて後段での温度補償分を減
らしつつ、所定の速度に近づける。前段では、その速度
変化に応じて電力調整を行ない、前段コイルの昇温値は
常に、定常状態の昇温値を保つ。ここで、具体的な設計
例を示す。被加熱物αOの材料径をφツ0.加熱温度を
1200”Cとする。送り速度を1m/miユとすると
、時間当りの処理重量は1812Kg/Byとなる。常
温から1200℃迄昇温するための正味電力は、各温度
での必要エネルギーを求めて電力量に換算すると、Q、
23 KWH/Kgとなる。前段テ1200°C迄昇温
し、後段で保温する第3図カーブ(1)の場合には、前
段電力は181!2Kg/Hr X O,23Kwa/
Kg ”417!:wで求められる。加熱コイ/L/(
1!L)の平均フィル効率をQ、6 とすると、電源(
4&)の必要電力は695 Kw となる。後段は1
200″Cの放熱分をカバーするだけでも良いから、コ
イ#(lb)を今、仮に5QOmm で設計すると、
熱放散エネルギーは約25にW、コイ/I/(より)の
コイル効率を0.5とすると、(材料が完全に非磁性領
域となっているため前段より悪くなる)電源(4b)に
必要とする電力は50Kvとなる。今、10分間停止し
たとすると、昇温カーブは第3図カーブ(2)となって
いる。仮に前段の定常特電圧を10007で695に’
W出力し、後段を5007で50KW出力する設計とし
ておくと、各設定電圧は次の算式で求める事ができる。Now, assume that the heater has been stopped due to a malfunction of the press or the like. In FIG. 2(d), the timer starts operating and starts to keep track of the stop time. The temperature of the heated object an is heating coil/l/ (1
) begins to decrease in temperature along its entire length. The temperature change depends on the cooling time, but for example, the curve (2
). Therefore, when the line restart signal is input, power is applied only to the latter stage power supply (4b), and the feeding is not restarted, resulting in a static heating period. This is because the heating pipe in the latter stage is 7s/(l
b) In order to bring the heated object α0 in the heating coil (1b) as close to the predetermined temperature as possible, the heated object α0 in the latter heating coil (1b) is
This is to prevent a case where the output of the subsequent stage power supply (4b) cannot be increased due to overcurrent when the temperature is below 0°C. Now, regarding the restart of operation, first, since the stop time can be determined by a timer or the like, the material temperature at that time can be determined from the energy loss determined by the Stefan-Boltzmann heat radiation tt loss and the heat transfer loss. Figure 4 shows an example of calculation for φ70.0 This value is an example of calculation using the example constants in the table below, such as specific heat, thermal conductivity, etc. according to the case of change. (Table) Cooling curve The constant to be determined The temperature drop is compensated for by the downstream power source (4b), and the capacity of the downstream power source (4b) and the downstream heating coil (lb
) depending on the carp y length and the temperature increase value required for reheating, the second
The feed rate STJ at the time of restart shown in the figure is determined. S
Normally, I is lower than the steady state feed rate S0. When the power source (4a) at the front stage is sent at sL, it is adjusted to the power vTJ at the front stage outlet based on the steady temperature. Post-stage power supply (4b)
Initially, the output power vR2 is the power to restore the temperature at the inlet of the heating coil/L/(4b) to a predetermined temperature at the time of restarting the heating coil/L/(1b). Naturally, it comes out due to insufficient temperature, but it gradually rises and by the time the material at the inlet of the heating coil/I/(lb) in the latter stage is taken out, it has reached the specified temperature. If it is left off, the material in the heating coil A/(11)) in the previous stage gradually recovers its temperature, so that it becomes as shown in curve (3) in FIG. 3. Therefore, it is necessary to gradually lower the output chamber cover turn of the power source (4b) so that it approaches a predetermined power. However, when restarting, it is required to return to a steady state as quickly as possible.Therefore, in the present invention, rather than reducing the power in the latter stage, the paper feed speed is gradually restored to compensate for this. While reducing the temperature compensation amount, the speed can be brought close to the specified speed. In the first stage, the power is adjusted according to the speed change, and the temperature increase value of the first stage coil always maintains the temperature increase value in the steady state. Here, a specific design example will be shown. The material diameter of the object to be heated αO is φ 0. The heating temperature is 1200"C.If the feed speed is 1m/mil, the processing weight per hour is 1812Kg/By.The net power required to raise the temperature from room temperature to 1200"C is the required amount at each temperature. When calculating energy and converting it into electric power, Q,
23 KWH/Kg. In the case of curve (1) in Figure 3, where the temperature is raised to 1200°C in the first stage and kept warm in the second stage, the power in the first stage is 181!2Kg/Hr X O, 23Kwa/
Kg “417!: Obtained by w.Heating carp /L/(
1! If the average fill efficiency of the power supply (L) is Q,6, then the power supply (
The required power for 4&) is 695 Kw. The second stage is 1
It is enough to cover the heat dissipation of 200"C, so if we design carp # (lb) with 5QOmm,
The heat dissipation energy is approximately 25 W, and the coil efficiency of Coil/I/(more) is 0.5, which is necessary for the power supply (4b) (worse than the previous stage because the material is completely non-magnetic). The electric power will be 50Kv. Assuming that the system is stopped for 10 minutes, the temperature increase curve becomes curve (2) in Figure 3. Suppose that the steady-state special voltage of the previous stage is 10007 and set to 695.
If the design is such that the output is W and the subsequent stage is 5007 which outputs 50KW, each set voltage can be calculated using the following formula.
コイル(1b)の材料は15、l Kg 、 ’100
’Cの材料を非磁性領域7フO″C以上に昇温するた
めには、比熱をQ、 15 KO&l/Kg″C,コイ
ル効率を0.1とする(磁性領域のため効率は良くなっ
ている)。今、第2図(g)の静止加熱電圧vR1を7
0フVとすると、出力は100Kvとなり、材料にはフ
OKWが投入される。コイ/I/(1b)の材料は約9
.5秒でマフQ″Cに昇温できる0さて、再加熱である
が前段フィル出口の材料’10O’Cのものを後段コイ
〃出口で1200°Cに昇温するには、昇温値500°
C9正味電力量を比熱0.15 Kcal/Kg ’C
とすると、0.0872rvu/Kg となる。10
0°Cを1200°Cに立上げる均熱時間は約70秒か
かるので、送り速度はO,u8 m/winとする必要
がある。従って、第2図(&)の微速度が、定常時に1
m/manの送り速度で所定の温度に上げるのであるか
ら、送り速度BL時の前段電源(4&)の電圧vTJは
(1)式の通りである。The material of the coil (1b) is 15, l Kg, '100
In order to raise the temperature of the material 'C to more than 7 degrees C in the non-magnetic region, set the specific heat to Q, 15 KO&l/Kg"C, and the coil efficiency to 0.1 (the efficiency is better because it is in the magnetic region). ing). Now, set the static heating voltage vR1 in Fig. 2(g) to 7
When the voltage is 0, the output is 100 Kv, and the material is supplied with OKW. The material of Koi/I/(1b) is about 9
.. The temperature can be raised to muff Q''C in 5 seconds.0 Now, regarding reheating, in order to raise the temperature of the material at the front fill outlet of '10O'C to 1200°C at the rear stage fill outlet, the temperature increase value is 500. °
C9 net electric energy specific heat 0.15 Kcal/Kg 'C
Then, it becomes 0.0872rvu/Kg. 10
Since it takes about 70 seconds to soak the temperature from 0°C to 1200°C, the feeding speed needs to be 0.8 m/win. Therefore, the fine velocity in Fig. 2 (&) is 1 at steady state.
Since the temperature is raised to a predetermined temperature at a feed rate of m/man, the voltage vTJ of the front stage power supply (4&) at the feed rate BL is as shown in equation (1).
・・・・・・ (1)
voは今の例で10007と仮定しだので、vIlは6
54vでセットすれば、前段に入ってくる材料は所定の
昇温を確保する。今、後段に入ってくる材料温度は、前
段出口ではフ00°Cであるが、前段コイ〃に滞在した
分だけ温度が立上っており、前段入口点の材料が後段コ
イ!入口にくる時には所定の1200°Cに達している
。従って、送り速度を0.428 m/winから定常
速度1m/winに連続的に変えてゆけば、昇温値が連
続的に減って行くため、後段コイル出口の温度は所定の
温度を確保できる0例えば、コイ/l/(1&)の定常
時100″Cの点は10分後では約550℃になってい
る。今、再立上げ時に通常のパターンで推移すると、通
常は500°C昇濡させるのであの電力であるが、まず
、フoO′Cのものを1200°Cにするには0.42
8m/m工n で500″C立上げるのであるから、処
理量は175 Kg/Hr を正味電力量はo、08フ
2!cwH/Kg から、正味6フ、6Kv 効率
o5とすると約1351ff と熱放散分501Cw
を考慮して185Kv印加すれば、1200°Cに加熱
できる。先程の定常時700°C点の材料では後段コイ
〃入口で1050℃のため、昇温値は150℃、正味電
力量は0,0262 KwH/Kgのため、そのまま1
85Kw印加していると、ワークに投入される電力は6
フ、5 KWのため、2,5フ6Kg/Hrの処理が可
能である。つまり、1.42m/winにしても、後段
で昇温値をカバーできる。従って、前段の加熱が寄与す
ればする程、再立上げ時の速度は遅くする必要はなく、
定常速度に戻せることがわかる。再立上げ時の速度を上
ける事が可能である事がわかったが、無闇に早くすると
、前段の電源(41)の能力が不足する。従って、可能
な限り早く定格速度S0に近づける。定格速度になった
段階で、後段の電源(4b)を絞って打き、定常状態に
戻す方式となる。...... (1) Since vo is assumed to be 10007 in the current example, vIl is 6
If set at 54v, the material entering the previous stage will ensure a predetermined temperature rise. Now, the temperature of the material entering the latter stage is 00°C at the exit of the former stage, but the temperature has risen by the amount of time it has stayed in the former stage carp, and the material at the entrance point of the former stage is now at the rear stage carp! By the time it reaches the entrance, it has reached the predetermined temperature of 1200°C. Therefore, if the feed speed is continuously changed from 0.428 m/win to a steady speed of 1 m/win, the temperature increase value will decrease continuously, so the temperature at the outlet of the subsequent coil can be maintained at the specified temperature. 0 For example, the steady state 100"C point of carp/l/(1&) becomes approximately 550°C after 10 minutes. If the normal pattern is followed when restarting, the temperature will normally rise by 500°C. First of all, to get the FoO'C to 1200°C, it requires 0.42
Since 500"C is raised at 8 m/m workn, the throughput is 175 Kg/Hr, and the net electric energy is o, 08fu2!cwH/Kg, so if the net 6fu, 6Kv efficiency is o5, it is about 1351ff. Heat dissipation amount 501Cw
If 185 Kv is applied in consideration of the above, it can be heated to 1200°C. In the case of the material at the 700°C point during steady state, it is 1050°C at the inlet of the latter stage coil, so the temperature rise value is 150°C, and the net power consumption is 0,0262 KwH/Kg, so it is 1 as it is.
When 85Kw is applied, the power input to the workpiece is 6
Since it is 5KW, it is possible to process 2.5F and 6Kg/Hr. In other words, even if the speed is 1.42 m/win, the temperature increase value can be covered in the latter stage. Therefore, the more the heating in the previous stage contributes, the less it is necessary to slow down the restart speed.
It can be seen that the speed can be returned to steady state. It was found that it is possible to increase the speed when restarting, but if you speed it up too fast, the capacity of the power source (41) in the previous stage will be insufficient. Therefore, the rated speed S0 can be approached as quickly as possible. When the rated speed is reached, the power source (4b) in the latter stage is turned on to return to a steady state.
上述の様に再立上げ時、速度を変えて行くわけであるが
、前段の電力はその速度に応じて常に定常昇温値が得ら
れる電力を印加しておく必要がある。As mentioned above, when restarting, the speed is changed, and it is necessary to always apply power to the previous stage so that a steady temperature increase value can be obtained according to the speed.
これは、通常y制御と呼ばれる方式が採用されている。For this purpose, a method called y control is usually adopted.
基準速度例えば、再立上げ時の電圧vI。Reference speed, for example, voltage vI at restart.
を0.428 a/minとすると、実際の速度信号と
基準電圧の関係を平方根に近い形で補正する事で、連続
的に補正電圧を出力できる。例えば、任意の速度Vx、
その時の必要電圧V工とすると、(2)式が得られる0
αは印加電圧によってフィルの定数が変化しない領域で
あればQ、5 となり、変化する領域であれば0.5〜
1.oの間となる事が知られている。その他の例として
、後段の電源(4b)を2分割しておくと、再立上げ時
間が更に短縮できる。再立上げ時の速度Spはコイル(
1b)で均熱できる時間を設定しているわけで、電源(
4b)が通常の加熱装置の様に昇濡部と均熱部に分割さ
れていれば更に速度Szを早くできる。If it is set to 0.428 a/min, the correction voltage can be output continuously by correcting the relationship between the actual speed signal and the reference voltage in a form close to the square root. For example, any speed Vx,
If the required voltage at that time is V, then equation (2) is obtained. 0 α is Q, 5 if the fill constant does not change depending on the applied voltage, and 0.5 to 5 if it changes.
1. It is known that it is between o. As another example, if the power supply (4b) at the latter stage is divided into two parts, the restart time can be further shortened. The speed Sp at restart is the coil (
1b) sets the time for soaking, so the power supply (
If 4b) is divided into a wetting section and a soaking section like a normal heating device, the speed Sz can be further increased.
以上の様に本発明によれば、連続送シ式の誘導加熱装置
でも、−時運転停止後の焼ざまし材を減らす事が可能と
なり、更に再立上げ時、序々に温度が回復するのに合わ
せて送り速度を早めたため、再立上げ時間の短縮が可能
となった。As described above, according to the present invention, even in a continuous feed type induction heating device, it is possible to reduce the amount of material that is burnt out after the operation is stopped, and furthermore, when restarting, the temperature can be gradually recovered. By increasing the feed speed in accordance with the above, it became possible to shorten the restart time.
第1図は本発明を実施する誘導加熱装置の構成図、第2
図は本発明による運転方法の一実施例を示す説明図、第
3図はコイル内ワークの温度変化を示す説明図、第4図
は放冷曲線計算例を示す説明図である。
図において、(1m)(lb)は加熱フィル、(4a)
(4b)は電源である。
なお、各図中、同一符号は同一、又は相当部分を示す。Fig. 1 is a configuration diagram of an induction heating device implementing the present invention, Fig. 2
FIG. 3 is an explanatory diagram showing an embodiment of the operating method according to the present invention, FIG. 3 is an explanatory diagram showing a temperature change of a workpiece in a coil, and FIG. 4 is an explanatory diagram showing an example of calculation of a cooling curve. In the figure, (1m) (lb) is a heating filter, (4a)
(4b) is a power source. In each figure, the same reference numerals indicate the same or equivalent parts.
Claims (1)
源を備えた連続送り式誘導加熱装置の再加熱方法におい
て、誘導加熱装置以外の原因で上記誘導加熱装置の運転
を停止した場合に、再運転時に少く共定常速度S_O以
下の速度S_Lでスタートさせて、入口に近い前段の出
力は速度S_Lに見合つた出力電力に調整し、出口に近
い後段の出力電力は運転停止中に熱放散により低下した
温度を初期温度として、速度S_Lで搬送された時に、
その後段の出口で所定の温度に加熱する出力に調整し、
再運転後の影響で徐々に被加熱物の温度が回復したら、
それに応じて速度S_Lを定常速度S_Oに近づけ、前
段の出力はその速度に応じた電力に連続的に変化させ、
後段の入口での被加熱物温度が定常温度に限りなく近づ
いた時点で、送り速度、前段出力電力、後段出力電力を
定常値に復帰させ、再加熱時前段の上記加熱コイルの上
記被加熱物を後段の上記加熱コイルで定常温度まで再加
熱可能とした連続送り式誘導加熱装置の再加熱方法。(1) In the reheating method for a continuous feed type induction heating device equipped with a first heating coil, a second heating coil, and a heating power source, when the operation of the induction heating device is stopped due to a cause other than the induction heating device, When restarting the operation, start at a speed S_L that is slightly below the co-steady speed S_O, adjust the output of the front stage near the entrance to the output power commensurate with the speed S_L, and the output power of the rear stage near the exit dissipate heat while the operation is stopped. When transported at speed S_L with the temperature lowered by as the initial temperature,
Adjust the output to heat to the specified temperature at the outlet of the subsequent stage,
When the temperature of the heated object gradually recovers after restarting,
Accordingly, the speed S_L is brought closer to the steady speed S_O, and the output of the previous stage is continuously changed to the power according to the speed,
When the temperature of the object to be heated at the inlet of the latter stage approaches the steady temperature, the feed rate, the output power of the first stage, and the output power of the second stage are returned to the steady values, and the temperature of the object to be heated in the heating coil of the former stage is increased during reheating. A reheating method using a continuous feed induction heating device that enables reheating to a steady temperature using the heating coil in the latter stage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30536989A JPH0693380B2 (en) | 1989-11-22 | 1989-11-22 | Reheating method of continuous feed type induction heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30536989A JPH0693380B2 (en) | 1989-11-22 | 1989-11-22 | Reheating method of continuous feed type induction heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03165489A true JPH03165489A (en) | 1991-07-17 |
JPH0693380B2 JPH0693380B2 (en) | 1994-11-16 |
Family
ID=17944283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30536989A Expired - Lifetime JPH0693380B2 (en) | 1989-11-22 | 1989-11-22 | Reheating method of continuous feed type induction heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0693380B2 (en) |
-
1989
- 1989-11-22 JP JP30536989A patent/JPH0693380B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0693380B2 (en) | 1994-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2845377A (en) | Method for the inductive hardening of elongated workpieces | |
JPS60755B2 (en) | induction heating device | |
JPH03165489A (en) | Re-heating of continuous feed induction heating device | |
JP3125510B2 (en) | Induction heating device | |
JPH0527479Y2 (en) | ||
JPH0647405A (en) | Rolling device | |
GB605776A (en) | Improvements in or relating to apparatus for the heat-treatment of metal strip or other elongated metal member | |
JPH02301984A (en) | Waiting operation method of induction heating device | |
JPH01286284A (en) | Heating method of heated material by induction heating | |
JPH0379728A (en) | Apparatus for heating steel wire rod | |
JPS6017025B2 (en) | Drying oven after applying magnesium oxide to silicon steel strip | |
JP3350443B2 (en) | Heating control method for strip edge induction heating device | |
JPH03152895A (en) | Reheating method for continuously supplying type induction heater | |
JP3294773B2 (en) | Induction heating device and control method thereof | |
JP2001023762A (en) | Inductive heating device | |
JPS55147654A (en) | Heat source control unit in copying machine or the like | |
JPS6323636B2 (en) | ||
JP2846178B2 (en) | DC power supply | |
JPH04356314A (en) | Rolling equipment for metal sheet | |
JPS61267654A (en) | Time pitch control in continuous manufacturing line | |
JPH09140135A (en) | Load power controller | |
JPS5836837B2 (en) | Temperature control method for tunnel type induction heating equipment | |
JPH054712Y2 (en) | ||
JPH08253822A (en) | Method of operating continuous annealing and pickling equipment for stainless steel strip | |
JPS58221224A (en) | Heat treatment of iron and steel material |