JPH11121154A - Induction heating device - Google Patents

Induction heating device

Info

Publication number
JPH11121154A
JPH11121154A JP28380397A JP28380397A JPH11121154A JP H11121154 A JPH11121154 A JP H11121154A JP 28380397 A JP28380397 A JP 28380397A JP 28380397 A JP28380397 A JP 28380397A JP H11121154 A JPH11121154 A JP H11121154A
Authority
JP
Japan
Prior art keywords
heated
temperature
heating coil
heating
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28380397A
Other languages
Japanese (ja)
Inventor
Yukinobu Nakamura
行延 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28380397A priority Critical patent/JPH11121154A/en
Publication of JPH11121154A publication Critical patent/JPH11121154A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating device that controls output voltage of an inverter device by detecting the temperature of a heated material by means of a resonance frequency. SOLUTION: In an induction heating device that heats multiple heated materials 23 continuously transferred by a transferring means 22 at a predetermined speed in a normal operation by means of heating coils 9, 10 by supplying high frequency power from an inverter devices 15, 16 to which the heating coils 9, 10 and capacitors 11,12 are connected, after the transferring means 22 is stopped and the transfer of frequency power is also stopped, when the transfer of the heated materials 23 is started by the transferring means 22 and the high frequency power from the inverter devices 15, 16 is supplied again, resonant frequencies of the heating coils 9, 10 and the capacitors 11, 12 are detected by frequency detection means 13, 14 and the temperatures of the heated materials 23 are detected from the resonance frequencies by means of a control means 17 and hence, the output voltages of the inverter devices 15, 16 are controlled according to the temperatures of the heated materials 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、搬送手段により
被加熱材が連続搬送される誘導加熱装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating apparatus in which a material to be heated is continuously conveyed by conveying means.

【0002】[0002]

【従来の技術】図5は特公平6−93379号公報に記
載された従来の誘導加熱装置の構成図である。図5にお
いて、定常運転時について説明する。被加熱材1はモー
タ2により駆動される搬送手段3によって、低温域用加
熱コイル4と高温域用加熱コイル5との中を定常運転時
の所定の速度で連続して搬送される。そして、被加熱材
1は徐々に加熱されて後段の加熱コイル5の出口では所
定の温度、例えば1200°C前後に昇温されて排出さ
れ、後工程のプレス装置(図示せず)に送られる。定常
運転時においては、加熱コイル4、5内の各被加熱材1
は搬送されるに従って図6の曲線Aに示すように、常温
から所定の温度(例えば、1200°C)にまで徐々に
上昇する昇温パターンとなる。これは、各加熱コイル
4、5に高周波電力を供給する各インバータ装置6、7
の出力電圧を、被加熱材1の温度が図6の曲線Aの昇温
パターンに合うように制御手段8により制御が行われて
いる。
2. Description of the Related Art FIG. 5 is a block diagram of a conventional induction heating apparatus described in Japanese Patent Publication No. Hei 6-93379. In FIG. 5, the case of the steady operation will be described. The material to be heated 1 is continuously conveyed through a low-temperature heating coil 4 and a high-temperature heating coil 5 at a predetermined speed during a steady operation by a conveying means 3 driven by a motor 2. Then, the material 1 to be heated is gradually heated, heated to a predetermined temperature, for example, about 1200 ° C. at the outlet of the heating coil 5 at the subsequent stage, discharged, and sent to a pressing device (not shown) in a subsequent process. . At the time of steady operation, each material 1 to be heated in the heating coils 4 and 5 is
As shown in a curve A in FIG. 6, the temperature gradually rises from the normal temperature to a predetermined temperature (for example, 1200 ° C.) as the paper is transported. This means that each of the inverter devices 6, 7 for supplying high-frequency power to each of the heating coils 4, 5
Is controlled by the control means 8 so that the temperature of the material to be heated 1 matches the temperature rising pattern of the curve A in FIG.

【0003】次に、再起動運転時について説明する。図
5において、後工程のプレス装置(図示せず)が故障等
で停止した場合には、被加熱材1の後工程への送り込み
を停止する必要があるので、被加熱材1の搬送が停止さ
れる。これに伴ってインバータ装置6、7が停止され、
加熱コイル4、5への高周波電力の供給が停止される。
この結果、プレス装置(図示せず)が運転を再開すると
きには、加熱コイル4、5内の各被加熱材1は図6の曲
線Bに示すように温度が低下している。運転再開信号が
入ると後段の加熱コイル5のみにインバータ装置7から
高周波電力が供給され、被加熱材1の搬送が行われない
状態で静止加熱が行われる。この静止加熱を開始する時
点の被加熱材1の温度は、加熱コイル4、5の停止時間
と、被加熱材1の熱放射損失と、空気との熱伝達とによ
り計算する。そして、計算又は事前の実験によって昇温
値を推定して、定常温度に近づいた時点を判断すること
により静止加熱期間を終了させる。
Next, a description will be given of a restart operation. In FIG. 5, when the pressing device (not shown) in the post-process is stopped due to a failure or the like, it is necessary to stop the feeding of the material to be heated 1 to the post-process. Is done. Accordingly, the inverter devices 6 and 7 are stopped,
The supply of the high-frequency power to the heating coils 4 and 5 is stopped.
As a result, when the press device (not shown) resumes operation, the temperature of each of the materials 1 to be heated in the heating coils 4 and 5 is decreased as shown by a curve B in FIG. When the operation restart signal is input, only the heating coil 5 at the subsequent stage is supplied with high-frequency power from the inverter device 7 and stationary heating is performed in a state where the material to be heated 1 is not conveyed. The temperature of the material 1 to be heated at the time of starting the stationary heating is calculated based on the stop time of the heating coils 4 and 5, the heat radiation loss of the material 1 to be heated, and the heat transfer to the air. Then, the heating value is estimated by calculation or a preliminary experiment, and the stationary heating period is ended by judging the time when the temperature approaches the steady temperature.

【0004】静止加熱期間が終了すると、被加熱材1を
定常速度SO より低い速度SL で搬送する低速送り期間
が始まる。このとき、低温域用のインバータ装置6の出
力電力PL は定常運転時の出力電力PO にSL /SO を
乗じた値とする。これにより、インバータ装置6の出力
電圧VL は出力電力の平方根に比例するので、定常運転
時の出力電圧VLOにSL /SO の平方根を乗じた値とな
る。また、高温域用のインバータ装置7から加熱コイル
5へ供給される電力は、所定の加熱温度TS と低速送り
開始時点の被加熱材1の温度TL との差(TS −TL
)、被加熱材1の加熱コイル5の時間あたりの通過重
量をMとしたとき、(TS −TL )・(被加熱材1の比
熱)・M/(加熱効率)により計算される。
[0004] When the stationary heating period ends, a low-speed feeding period in which the material 1 to be heated is conveyed at a speed SL lower than the steady speed SO starts. At this time, the output power PL of the inverter device 6 for the low-temperature range is a value obtained by multiplying the output power PO during the steady operation by SL / SO. As a result, the output voltage VL of the inverter device 6 is proportional to the square root of the output power, and is a value obtained by multiplying the output voltage VLO during steady operation by the square root of SL / SO. The electric power supplied from the high-temperature inverter 7 to the heating coil 5 is equal to the difference (TS-TL) between the predetermined heating temperature TS and the temperature TL of the material 1 to be heated at the start of the low-speed feeding.
), Assuming that the weight of the material 1 to be passed through the heating coil 5 per time is M, it is calculated by (TS-TL) · (specific heat of the material 1 to be heated) · M / (heating efficiency).

【0005】そして、後段の加熱コイル5内の被加熱材
1の温度は徐々に立ち上がり、低速送り期間の開始時点
で後段の加熱コイル5の入口にあった被加熱材1が排出
される頃には、温度上昇カーブとなり、被加熱材1の温
度が所定の温度(例えば、1200°C)になる。
[0005] The temperature of the material to be heated 1 in the heating coil 5 in the subsequent stage gradually rises, and when the material to be heated 1 at the entrance of the heating coil 5 in the subsequent stage is discharged at the start of the low-speed feeding period. Becomes a temperature rise curve, and the temperature of the material to be heated 1 becomes a predetermined temperature (for example, 1200 ° C.).

【0006】[0006]

【発明が解決しようとする課題】従来の誘導加熱装置は
以上のように構成されているので、静止加熱を開始する
時点の被加熱材1の温度を、加熱コイル4、5の停止時
間と、被加熱材1の熱放射損失と、空気の熱伝達とから
計算して求めるため、加熱コイル4、5内の被加熱材1
の温度を精度よく把握することが困難であり、加熱コイ
ル5の出口における被加熱材1を所定の温度に加熱する
のが困難であるという問題点があった。
Since the conventional induction heating apparatus is configured as described above, the temperature of the material 1 to be heated at the time of starting the stationary heating is determined by the time during which the heating coils 4 and 5 are stopped, and Since the heat radiation loss of the material to be heated 1 and the heat transfer of the air are calculated and determined, the material 1 to be heated in the heating coils 4 and 5 is calculated.
However, there is a problem that it is difficult to accurately grasp the temperature of the heating target 1 at the outlet of the heating coil 5 to a predetermined temperature.

【0007】この発明は、以上のような問題点を解消す
るためになされたもので、共振周波数により被加熱材の
温度を検出して、インバータ装置の出力電圧を制御する
ようにした誘導加熱装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an induction heating apparatus in which the temperature of a material to be heated is detected based on a resonance frequency and the output voltage of an inverter device is controlled. The purpose is to provide.

【0008】さらに、インバータ装置の出力電圧を制御
すると共に、被加熱材の搬送速度を定常運転時の所定の
速度より低速度になるように制御する誘導加熱装置を提
供することを目的とする。
It is still another object of the present invention to provide an induction heating device that controls the output voltage of the inverter device and controls the conveying speed of the material to be heated so as to be lower than a predetermined speed during steady operation.

【0009】[0009]

【課題を解決するための手段】請求項1の発明に係わる
誘導加熱装置は、加熱コイルとコンデンサとを接続して
インバータ装置から高周波電力を供給し、搬送手段によ
り定常運転における所定の速度で連続的に搬送される複
数の被加熱材を、加熱コイルにより加熱するようにした
誘導加熱装置において、搬送手段が停止して被加熱材の
搬送が加熱コイル内で停止されると共に、インバータ装
置からの高周波電力の供給が停止された後、再度搬送手
段による被加熱材の搬送が開始されると共に、インバー
タ装置から高周波電力が供給されたとき、加熱コイルと
コンデンサとの共振周波数を周波数検出手段により検出
して、制御手段により共振周波数から被加熱材の温度を
検出し、被加熱材の温度に応じてインバータ装置の出力
電圧を制御するようにしたものである。
An induction heating apparatus according to the first aspect of the present invention connects a heating coil and a capacitor to supply high-frequency power from an inverter apparatus, and continuously supplies the high-frequency power at a predetermined speed in a steady operation by a conveying means. In an induction heating device in which a plurality of materials to be conveyed are heated by a heating coil, the conveying means is stopped, and the conveyance of the material to be heated is stopped in the heating coil, and an inverter device is provided. After the supply of the high-frequency power is stopped, the transfer of the material to be heated by the transfer unit is started again, and when the high-frequency power is supplied from the inverter device, the resonance frequency of the heating coil and the capacitor is detected by the frequency detection unit. Then, the control means detects the temperature of the material to be heated from the resonance frequency, and controls the output voltage of the inverter device according to the temperature of the material to be heated. It is obtained by the.

【0010】請求項2の発明に係わる誘導加熱装置は、
搬送手段の再起動運転時の搬送速度が定常運転時より低
い低速運転になるように制御するものである。
[0010] An induction heating apparatus according to a second aspect of the present invention comprises:
The control is performed so that the transfer speed at the time of the restart operation of the transfer means is lower than the steady operation.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は実施の形態1の構成図である。図
1において、9は低温域用の加熱コイル、10は高温域
用の加熱コイル、11は加熱コイル9に接続された整合
用コンデンサ、12は加熱コイル10に接続された整合
用コンデンサ、13は共振周波数検出手段で、加熱コイ
ル9とコンデンサ11との共振周波数を検出する。14
は共振周波数検出手段で、加熱コイル10とコンデンサ
12との共振周波数を検出する。15、16はインバー
タ装置で、それぞれ加熱コイル9及び加熱コイル10に
高周波電力を供給する。
Embodiment 1 FIG. FIG. 1 is a configuration diagram of the first embodiment. In FIG. 1, reference numeral 9 denotes a heating coil for a low temperature region, 10 denotes a heating coil for a high temperature region, 11 denotes a matching capacitor connected to the heating coil 9, 12 denotes a matching capacitor connected to the heating coil 10, and 13 denotes a matching capacitor. The resonance frequency of the heating coil 9 and the capacitor 11 is detected by the resonance frequency detection means. 14
Is a resonance frequency detecting means for detecting a resonance frequency of the heating coil 10 and the capacitor 12. Inverter devices 15 and 16 supply high-frequency power to the heating coil 9 and the heating coil 10, respectively.

【0012】17は各共振周波数検出手段13、14が
検出した共振周波数から後述の被加熱材22の温度を検
出して各インバータ装置15、16の電圧を内蔵したプ
ログラムにより制御する制御手段で、後述の被加熱材2
3の種類によって共振周波数の値、低速運転時の電圧値
等の最適値を記憶している。18は運転条件入力手段
で、後述の被加熱材23の種類、加熱温度等を制御手段
17へ入力する。19はモータで、速度制御手段20に
より回転制御される。20は速度制御手段で、制御手段
17の指令によりモータ19を制御する。21はモータ
19により駆動されるピンチローラで、後述の被加熱材
23を加熱コイル9、10内に連続的に搬送する。な
お、19〜21で搬送手段22を構成している。23は
被加熱材で、搬送手段22により加熱コイル9、10内
に搬送される。
Reference numeral 17 denotes control means for detecting the temperature of the material to be heated 22 described later from the resonance frequencies detected by the resonance frequency detection means 13 and 14, and controlling the voltage of each of the inverter devices 15 and 16 by a built-in program. Heated material 2 described later
Optimum values such as a resonance frequency value and a voltage value at the time of low-speed operation are stored for three types. Reference numeral 18 denotes an operation condition input means for inputting the type of the material to be heated 23, the heating temperature and the like to be described later to the control means 17. Reference numeral 19 denotes a motor whose rotation is controlled by a speed control means 20. Reference numeral 20 denotes a speed control unit which controls the motor 19 according to a command from the control unit 17. Reference numeral 21 denotes a pinch roller driven by a motor 19, which continuously conveys a material 23 to be described later into the heating coils 9, 10. The transfer means 22 is constituted by 19 to 21. Reference numeral 23 denotes a material to be heated, which is conveyed into the heating coils 9 and 10 by the conveying means 22.

【0013】次に動作について説明する。図1から図3
において、搬送手段22により定常速度で被加熱材23
が搬送されて、加熱コイル9、10により加熱されてい
る。この場合、昇温パターンは図2の曲線Aに示すよう
に低温域用の加熱コイル9の出口で例えば約1,000
°C、高温域用の加熱コイル10の出口で1,200°
Cの条件が運転条件入力手段18から制御手段17に入
力される(ステップS1 )。そして、制御手段17から
は低温域用のインバータ装置15及び高温域用のインバ
ータ装置16に対して、それぞれ定常運転時の出力電圧
VLO、VHOが指令される。
Next, the operation will be described. 1 to 3
, The material 23 to be heated
Is heated by the heating coils 9 and 10. In this case, the temperature rising pattern is, for example, about 1,000 at the outlet of the heating coil 9 for the low temperature region as shown by the curve A in FIG.
1,200 ° C. at the outlet of the heating coil 10 for high temperature range
The condition C is input from the operating condition input means 18 to the control means 17 (step S 1 ). Then, the control means 17 instructs the inverter devices 15 for the low-temperature region and the inverter device 16 for the high-temperature region to output the output voltages VLO and VHO during the steady operation, respectively.

【0014】このように被加熱材23が図2の曲線Aの
昇温パターンで加熱されているとき、後工程のプレス装
置(図示せず)が停止すると、搬送手段22が停止され
ると共にインバータ装置15、16も停止される。これ
により、加熱コイル9、10内の被加熱材23の温度が
低下し、図2の曲線B又は曲線Cに示す温度パターンと
なり、曲線Aの昇温パターンに対して停止時間が長いほ
ど差が大きくなる。
When the material to be heated 23 is heated in accordance with the temperature rising pattern shown by the curve A in FIG. 2 and the pressing device (not shown) in the subsequent process is stopped, the conveying means 22 is stopped and the inverter is stopped. The devices 15, 16 are also shut down. As a result, the temperature of the material 23 to be heated in the heating coils 9 and 10 decreases, and the temperature pattern becomes a curve B or a curve C shown in FIG. growing.

【0015】後工程のプレス装置(図示せず)が復帰し
て定常運転に戻る運転再開について説明する。まず、運
転再開時における運転の条件となる低速度S1 、及びイ
ンバータ装置15、16の出力電圧VL1、VH1の指令を
読み出す(ステップS2 ) 。そして、制御手段17から
運転再開指令が出されて(ステップS3 )、速度制御手
段20に対して例えば定常運転時における定常速度の1
/2である低速度S1 の低速運転指令が出される。同時
に、各インバータ装置15、16に対しては、式(1)
及び式(2)に示す低速運転時の電圧VL1、VH1が指令
される。
A description will now be given of a restart of operation in which a press device (not shown) in a post-process returns to return to a normal operation. First reads the command output voltage VL1, VH1 low speed S1, and the inverter device 15, 16 as a condition of the driver at the time of restarting operation (step S 2). Then, an operation restart instruction is issued from the control means 17 (step S 3 ), and the speed control means 20 receives, for example, one of the steady speeds during the steady operation.
A low speed operation command of a low speed S1 of / 2 is issued. At the same time, for each of the inverter devices 15 and 16, equation (1)
And the voltages VL1 and VH1 at the time of the low-speed operation shown in the equation (2).

【0016】[0016]

【数1】 (Equation 1)

【0017】なお、VL0、VH0は定常運転時に各インバ
ータ装置15、16から出力される定常電圧、S0 は定
常速度である。被加熱材23は搬送手段22により低速
度S1 で搬送されながら、インバータ装置15、16の
低速運転時の出力電圧VL1、VH1が供給された加熱コイ
ル9、10により加熱される。
VL0 and VH0 are steady voltages output from the inverters 15 and 16 during steady operation, and S0 is a steady speed. The material 23 to be heated is heated by the heating coils 9 and 10 to which the output voltages VL1 and VH1 are supplied during the low-speed operation of the inverter devices 15 and 16 while being conveyed at low speed S1 by the conveying means 22.

【0018】図4は被加熱材23の温度に対する加熱コ
イル9、10のインダクタンス及び加熱コイル9、10
とコンデンサ11、12との共振周波数の関係を示す説
明図である。加熱コイル9、10は例えば銅管を円筒形
状に複数回巻いた構造で、インダクタンスが一定であ
る。しかし、加熱コイル23のインダクタンスLは被加
熱材23が内部に存在する状態では、次のような関係に
なる。 (1)被加熱材23が常温に近い磁性を有する状態で
は、インダクタンスLが大きい。 (2)被加熱材23が高温になると、磁性が消失する変
態点(約770°C)までは増大する。しかし、変態点
を越えて磁性が消失すると、インダクタンスLが小さく
なる。
FIG. 4 shows the inductance of the heating coils 9 and 10 and the heating coils 9 and 10 with respect to the temperature of the material 23 to be heated.
FIG. 3 is an explanatory diagram showing a relationship between resonance frequencies of the capacitors 11 and 12. The heating coils 9 and 10 have, for example, a structure in which a copper tube is wound a plurality of times in a cylindrical shape, and have a constant inductance. However, the inductance L of the heating coil 23 has the following relationship in a state where the material 23 to be heated exists inside. (1) The inductance L is large when the material to be heated 23 has magnetism close to room temperature. (2) When the temperature of the material to be heated 23 rises, the temperature increases to a transformation point (about 770 ° C.) at which the magnetism disappears. However, when the magnetism disappears beyond the transformation point, the inductance L decreases.

【0019】コンデンサ11、12は加熱コイル9、1
0の整合用で、キャパシタンスCは一定に維持されてい
る。誘導加熱装置においては、インダクタンスLとキャ
パシタンスCとの共振によって誘導電流の周波数Fが式
(3)により決定される。したがって、インバータ装置
15、16は共振周波数に追従した周波数を有する高周
波電力を加熱コイル9、10に供給する。また、加熱コ
イル9内には低温から高温までの被加熱材23が混在す
るので、インダクタンスL及び共振周波数Fは総合的な
値となる。しかし、図4に示すように被加熱材23の温
度が低い状態では共振周波数Fが小さく、被加熱材23
の温度が高い状態では共振周波数Fが大きくなる。
The condensers 11 and 12 include heating coils 9 and 1
For zero matching, the capacitance C is kept constant. In the induction heating device, the frequency F of the induced current is determined by Expression (3) by the resonance between the inductance L and the capacitance C. Therefore, the inverter devices 15 and 16 supply high-frequency power having a frequency following the resonance frequency to the heating coils 9 and 10. In addition, since the material 23 to be heated from a low temperature to a high temperature is mixed in the heating coil 9, the inductance L and the resonance frequency F are total values. However, as shown in FIG. 4, when the temperature of the heated material 23 is low, the resonance frequency F is small,
When the temperature is high, the resonance frequency F increases.

【0020】[0020]

【数2】 (Equation 2)

【0021】加熱コイル9、10に高周波電力が供給さ
れた状態で共振周波数検出手段13、14により、低温
域の加熱コイル9とコンデンサ11との共振周波数、及
び高温域の加熱コイル10とコンデンサ12との共振周
波数が検出される(ステップS4 、S6 )。次に、制
御手段17において各共振周波数から低温域及び高温域
の被加熱材23の温度を検出し、温度に応じて各インバ
ータ装置15、16の出力電圧が制御される(ステップ
5 、S7 )。即ち、停止時間が長くなって被加熱材2
3の温度が図2の曲線Bのように低い場合には、インバ
ータ装置15、16の出力電圧を高くする。また、図2
の曲線Cのように停止時間が短く温度の低下が少ない場
合には、インバータ装置15、16の出力電圧を低くす
る。
When high-frequency power is supplied to the heating coils 9 and 10, the resonance frequencies of the heating coil 9 and the capacitor 11 in the low temperature range and the heating coil 10 and the capacitor 12 in the high temperature range are detected by the resonance frequency detecting means 13 and 14. Are detected (steps S 4 and S 6 ). Next, the control means 17 detects the temperature of the material to be heated 23 in the low temperature range and the high temperature range from each resonance frequency, and controls the output voltages of the inverter devices 15 and 16 according to the temperatures (steps S 5 and S 5) . 7 ). That is, the stop time becomes longer and the material to be heated 2
When the temperature of the inverter 3 is low as shown by the curve B in FIG. 2, the output voltages of the inverter devices 15 and 16 are increased. FIG.
In the case where the stop time is short and the temperature does not decrease much as indicated by the curve C, the output voltages of the inverter devices 15 and 16 are reduced.

【0022】以上のように、被加熱材23の温度が図2
の曲線Bに示すように低い場合にはインバータ装置1
5、16の出力電圧を高くすることにより、被加熱材2
3の温度が急速に上昇するので、定常状態への復帰を促
進させることができる。また、被加熱材23の温度が図
2の曲線Cのように高い場合にはインバータ装置15、
16の出力電圧を低くすることにより、被加熱材23の
温度が緩やかに増大するので、過度の昇温を防止するこ
とができる。
As described above, as shown in FIG.
In the case where the temperature is low as shown by the curve B in FIG.
By increasing the output voltage of the heating target materials 5 and 16,
Since the temperature of No. 3 rises rapidly, the return to the steady state can be promoted. When the temperature of the material to be heated 23 is high as shown by the curve C in FIG.
By lowering the output voltage of 16, the temperature of the material to be heated 23 gradually increases, so that an excessive rise in temperature can be prevented.

【0023】例えば、直径50mmの鋼材の被加熱材を
1,200°Cまで昇温させる場合に、共振周波数と被
加熱材の温度との関係から次のように判断する。 (1)共振周波数が2.6kHz以下の場合(図4に示
す変態点以下)、加熱コイル9の出口における被加熱材
23の温度は約700°C以下である。したがって、定
常状態における1,000°Cまでの温度差が大きい。 (2)共振周波数が2.9kHz以上の場合(図4に示
す変態点以上)、加熱コイル9の出口における被加熱材
23の温度は約900°C以上である。したがって、定
常状態までの温度差が小さい。なお、高温域用加熱コイ
ル10の出口における被加熱材23の温度は、従来と同
様に温度計(図示せず)により検出する。
For example, when the temperature of a steel material to be heated having a diameter of 50 mm is increased to 1,200 ° C., the following judgment is made from the relationship between the resonance frequency and the temperature of the material to be heated. (1) When the resonance frequency is 2.6 kHz or less (below the transformation point shown in FIG. 4), the temperature of the material 23 to be heated at the outlet of the heating coil 9 is about 700 ° C. or less. Therefore, the temperature difference up to 1,000 ° C. in the steady state is large. (2) When the resonance frequency is 2.9 kHz or more (the transformation point shown in FIG. 4 or more), the temperature of the material 23 to be heated at the outlet of the heating coil 9 is about 900 ° C. or more. Therefore, the temperature difference up to the steady state is small. The temperature of the material 23 to be heated at the outlet of the high-temperature region heating coil 10 is detected by a thermometer (not shown) as in the conventional case.

【0024】次に、低速運転から定常運転に復帰させる
タイミングの決定について説明する。低温域用セクショ
ン(加熱コイル9、コンデンサ11)及び高温域用セク
ション(加熱コイル10、コンデンサ12)の共振周波
数は、各周波数検出手段13、14によって常時検出さ
れている。例えば、低温域用セクションの共振周波数検
出手段13が図4のA点に示す定常状態の共振周波数を
検出した場合、制御手段17では加熱コイル9の出口に
おける被加熱材23の温度が定常状態に近づいたことを
検出して(ステップS8 )、低速運転指令を終了させる
と共に定常運転への復帰を指令する(ステップS9)。
Next, the determination of the timing for returning from low-speed operation to steady-state operation will be described. The resonance frequencies of the low-temperature section (heating coil 9 and capacitor 11) and the high-temperature section (heating coil 10 and capacitor 12) are constantly detected by the respective frequency detecting means 13 and 14. For example, when the resonance frequency detecting means 13 of the low-temperature section detects the resonance frequency in the steady state shown at point A in FIG. 4, the control means 17 sets the temperature of the material 23 to be heated at the outlet of the heating coil 9 to the steady state. it is detected that approached (step S 8), an instruction to return to normal operation with to end the low-speed operation command (step S 9).

【0025】定常運転においては、低温域用セクション
の加熱コイル9には定常電圧VLO、高温域用セクション
の加熱コイル10には定常電圧VHOがそれぞれ供給され
る。上記において、低温域用セクションの共振周波数検
出手段13で検出された共振周波数により、定常運転へ
の復帰を指令する場合について説明したが、高温域用セ
クションの共振周波数検出手段14で検出された共振周
波数により、定常運転への復帰を指令するようにしても
同様の効果が期待される。
In the steady operation, a steady voltage VLO is supplied to the heating coil 9 in the low temperature section, and a steady voltage VHO is supplied to the heating coil 10 in the high temperature section. In the above, the case where the return to the steady operation is commanded by the resonance frequency detected by the resonance frequency detecting means 13 of the low temperature section has been described, but the resonance frequency detected by the resonance frequency detecting means 14 of the high temperature section has been described. The same effect can be expected even if the return to the steady operation is commanded by the frequency.

【0026】また、運転再開時に被加熱材23の温度を
検出してインバータ装置15、16の出力電圧を制御す
ると共に、被加熱材23の搬送を低速度にするものにつ
いて説明したが、停止時間が短く被加熱材23の温度の
低下が少ない場合には、インバータ装置15、16の出
力電圧を制御するのみでも同様の効果が期待される。
In addition, while the temperature of the material 23 to be heated is detected when the operation is resumed, the output voltages of the inverters 15 and 16 are controlled, and the speed at which the material 23 is transported is reduced. When the temperature of the material to be heated 23 is small and the temperature of the material to be heated 23 is small, the same effect can be expected only by controlling the output voltages of the inverter devices 15 and 16.

【0027】また、運転再開時に被加熱材23の送りを
行わずに静止加熱により、後段の加熱コイル10内の被
加熱材23の温度を所定の温度に近づけるように加熱し
てから低速運転に切り替えることにより、所定の温度に
達しない捨て材を減らすことができる。
Also, when the operation is resumed, the material to be heated 23 in the subsequent heating coil 10 is heated so as to approach a predetermined temperature by stationary heating without feeding the material to be heated 23, and then the operation is started at a low speed. By switching, waste materials that do not reach the predetermined temperature can be reduced.

【0028】以上のように、運転再開時に被加熱材23
の搬送が開始されると共に、インバータ装置15、16
からの高周波電力が被加熱材23へ供給されたとき、共
振周波数検出手段13、14で共振周波数を検出し被加
熱材23の温度を検出して、インバータ装置15、16
の出力電圧を制御することにより、被加熱材23を所定
の温度に加熱することができる。
As described above, when the operation is resumed,
Is started, and the inverter devices 15, 16
When the high-frequency power from is supplied to the material 23 to be heated, the resonance frequencies are detected by the resonance frequency detecting means 13 and 14 and the temperature of the material 23 to be heated is detected.
By controlling the output voltage, the material to be heated 23 can be heated to a predetermined temperature.

【0029】また、運転再開時に被加熱材23の搬送速
度を定常運転時の定常速度より低い低速度にすることに
より、被加熱材23の加熱温度を所定の温度に加熱する
ことができる。
Further, the heating temperature of the material 23 to be heated can be heated to a predetermined temperature by setting the conveying speed of the material 23 to be heated at the time of resuming the operation to a lower speed than the steady speed in the steady operation.

【0030】実施の形態1においては、低温域セクショ
ン及び高温域セクションの2つのセクションで構成され
たものについて説明したが、1つ又は3つ以上のセクシ
ョンで構成されたものについても、各セクション毎に共
振周波数検出手段を設けて各セクション内の被加熱材の
温度を検出することにより、運転再開時のインバータ装
置の出力電圧を決定することができる。そして、いずれ
かのセクションの被加熱材の温度が定常状態に近づいた
ことを検出して定常運転に復帰させることができる。
In the first embodiment, the description has been given of the structure composed of the two sections of the low-temperature section and the high-temperature section. Provided with a resonance frequency detecting means for detecting the temperature of the material to be heated in each section, it is possible to determine the output voltage of the inverter device when the operation is resumed. Then, it is possible to detect that the temperature of the material to be heated in any of the sections approaches the steady state, and to return to the steady operation.

【0031】[0031]

【発明の効果】請求項1の発明によれば、運転再開時に
被加熱材の搬送が開始されると共に、インバータ装置か
ら被加熱材の高周波電力が供給されたとき、共振周波数
検出手段で共振周波数を検出して被加熱材の温度を検出
し、被加熱材の温度に応じてインバータ装置の出力電圧
を制御することにより、被加熱材の温度が過度に上昇す
るのを防止することができると共に、所定の温度に上昇
させる時間を短縮させることができる。
According to the first aspect of the present invention, the transfer of the material to be heated is started when the operation is resumed, and when the high frequency power of the material to be heated is supplied from the inverter device, the resonance frequency is detected by the resonance frequency detecting means. By detecting the temperature of the material to be heated and controlling the output voltage of the inverter device according to the temperature of the material to be heated, it is possible to prevent the temperature of the material to be heated from excessively increasing. The time required to raise the temperature to a predetermined temperature can be shortened.

【0032】請求項2の発明によれば、運転再開時に被
加熱材の搬送速度を定常運転時の定常速度より低速度に
することにより、被加熱材を所定の温度に加熱すること
ができると共に、定常運転への復帰を適切に指令するこ
とができる。
According to the second aspect of the present invention, the material to be heated can be heated to a predetermined temperature by setting the transport speed of the material to be heated at the time of restart of operation to be lower than the steady speed in the steady operation. Thus, it is possible to appropriately instruct the return to the steady operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】 図1における搬送方向と被加熱材の温度との
関係を示す説明図である。
FIG. 2 is an explanatory diagram illustrating a relationship between a transport direction and a temperature of a material to be heated in FIG.

【図3】 図1の動作を示すフローチャートである。FIG. 3 is a flowchart showing the operation of FIG.

【図4】 図1における被加熱材の温度と加熱コイルの
インダクタンス及び共振周波数との関係を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing a relationship between a temperature of a material to be heated and an inductance and a resonance frequency of a heating coil in FIG. 1;

【図5】 従来の誘導加熱装置を示す構成図である。FIG. 5 is a configuration diagram showing a conventional induction heating device.

【図6】 図5における搬送方向と被加熱材の温度との
関係を示す説明図である。
FIG. 6 is an explanatory diagram showing a relationship between a transport direction and a temperature of a material to be heated in FIG. 5;

【符号の説明】[Explanation of symbols]

9,10 加熱コイル、11,12 コンデンサ、1
3,14 共振周波数検出手段、15,16 インバー
タ装置、17 制御手段、22 搬送手段、23 被加
熱材。
9,10 heating coil, 11,12 condenser, 1
3, 14 resonance frequency detecting means, 15, 16 inverter device, 17 control means, 22 conveying means, 23 material to be heated.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱コイルとコンデンサとを接続してイ
ンバータ装置から高周波電力を供給し、搬送手段により
定常運転における所定の速度で連続的に搬送される複数
の被加熱材を、上記加熱コイルにより加熱するようにし
た誘導加熱装置において、上記搬送手段が停止して上記
被加熱材の搬送が上記加熱コイル内で停止されると共
に、上記インバータ装置からの高周波電力の供給が停止
された後、再度上記搬送手段による上記被加熱材の搬送
が開始されると共に、上記インバータ装置から高周波電
力が供給されたとき、上記加熱コイルと上記コンデンサ
との共振周波数を周波数検出手段により検出して、制御
手段により上記共振周波数から上記被加熱材の温度を検
出し、上記被加熱材の温度に応じて上記インバータ装置
の出力電圧を制御するようにしたことを特徴とする誘導
加熱装置。
1. A heating coil is connected to a condenser to supply high-frequency power from an inverter device, and a plurality of materials to be continuously conveyed by a conveying means at a predetermined speed in a steady operation are controlled by the heating coil. In the induction heating device configured to heat, while the conveyance means is stopped and the conveyance of the material to be heated is stopped in the heating coil, and the supply of the high-frequency power from the inverter device is stopped, The transfer of the material to be heated by the transfer means is started, and when high-frequency power is supplied from the inverter device, the resonance frequency of the heating coil and the capacitor is detected by frequency detection means, and the control means The temperature of the material to be heated is detected from the resonance frequency, and the output voltage of the inverter device is controlled according to the temperature of the material to be heated. An induction heating device characterized in that:
【請求項2】 制御手段は、搬送手段の搬送速度が定常
運転時より低い低速運転になるように制御することを特
徴とする請求項1に記載の誘導加熱装置。
2. The induction heating apparatus according to claim 1, wherein the control unit controls the transport speed of the transport unit to be lower than the normal operation.
JP28380397A 1997-10-16 1997-10-16 Induction heating device Pending JPH11121154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28380397A JPH11121154A (en) 1997-10-16 1997-10-16 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28380397A JPH11121154A (en) 1997-10-16 1997-10-16 Induction heating device

Publications (1)

Publication Number Publication Date
JPH11121154A true JPH11121154A (en) 1999-04-30

Family

ID=17670352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28380397A Pending JPH11121154A (en) 1997-10-16 1997-10-16 Induction heating device

Country Status (1)

Country Link
JP (1) JPH11121154A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251440A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Induction heating method, and induction heating device
JP2012199157A (en) * 2011-03-23 2012-10-18 Mitsui Eng & Shipbuild Co Ltd Induction heating apparatus, control method and control program for induction heating apparatus
JP2015517715A (en) * 2012-05-10 2015-06-22 ベール−ヘラ サモコントロール ゲーエムベーハー Device for induction heating of a heating element
GB2582930A (en) * 2019-04-08 2020-10-14 Edwards Ltd Induction heating method and apparatus
JP2020196220A (en) * 2019-06-04 2020-12-10 三菱重工業株式会社 Magnetic field thermoforming system and magnetic field thermoforming method
CN112702929A (en) * 2018-08-31 2021-04-23 尼科创业贸易有限公司 Device for an aerosol-generating apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251440A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Induction heating method, and induction heating device
JP2012199157A (en) * 2011-03-23 2012-10-18 Mitsui Eng & Shipbuild Co Ltd Induction heating apparatus, control method and control program for induction heating apparatus
JP2015517715A (en) * 2012-05-10 2015-06-22 ベール−ヘラ サモコントロール ゲーエムベーハー Device for induction heating of a heating element
CN112702929A (en) * 2018-08-31 2021-04-23 尼科创业贸易有限公司 Device for an aerosol-generating apparatus
KR20210044877A (en) * 2018-08-31 2021-04-23 니코벤처스 트레이딩 리미티드 Apparatus for aerosol-generating devices
JP2021534772A (en) * 2018-08-31 2021-12-16 ニコベンチャーズ トレーディング リミテッド Equipment for aerosol generation devices
GB2582930A (en) * 2019-04-08 2020-10-14 Edwards Ltd Induction heating method and apparatus
GB2582930B (en) * 2019-04-08 2023-01-11 Edwards Ltd Induction heating method and apparatus
JP2020196220A (en) * 2019-06-04 2020-12-10 三菱重工業株式会社 Magnetic field thermoforming system and magnetic field thermoforming method

Similar Documents

Publication Publication Date Title
JP3398172B2 (en) Heating temperature control method and high frequency induction heating temperature control device in high frequency induction heating
JP3902937B2 (en) Image heating device
JPH11121154A (en) Induction heating device
JPS60755B2 (en) induction heating device
JP2002367763A (en) High frequency induction heating device and heating method using the same
JP3125510B2 (en) Induction heating device
KR20020088643A (en) Method for compress pre-heating control
JPH03190082A (en) Control of inverter for induction heating
JPH10274901A (en) Power controller
JP3922616B2 (en) Induction heating device
JPH1063352A (en) Power controller
JP2001023762A (en) Inductive heating device
JP2000040580A (en) Induction heating device
US6093916A (en) Control device with first and second power control elements to control heater drive apparatus
JP2019049654A (en) Image forming apparatus
JPH07249478A (en) Billet heating device
WO2022143476A1 (en) Electromagnetic heating device, noise suppression method, heating control system and storage medium
JP2003308960A (en) High frequency heating cooker
JP2002151246A (en) Induction heating device
JPH0833569A (en) Induction heater
JPH0666151B2 (en) High frequency heating device
JP2004077674A (en) Image forming apparatus
JP2002151242A (en) Electromagnetic induction heating control device
JPH11194648A (en) Image forming device and image forming method
JPH04215287A (en) High frequency heating apparatus