JP3046929B2 - Bridge seismic isolation structure - Google Patents

Bridge seismic isolation structure

Info

Publication number
JP3046929B2
JP3046929B2 JP7150443A JP15044395A JP3046929B2 JP 3046929 B2 JP3046929 B2 JP 3046929B2 JP 7150443 A JP7150443 A JP 7150443A JP 15044395 A JP15044395 A JP 15044395A JP 3046929 B2 JP3046929 B2 JP 3046929B2
Authority
JP
Japan
Prior art keywords
bridge
pier
girder
seismic isolation
bridge girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7150443A
Other languages
Japanese (ja)
Other versions
JPH093822A (en
Inventor
清 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7150443A priority Critical patent/JP3046929B2/en
Publication of JPH093822A publication Critical patent/JPH093822A/en
Application granted granted Critical
Publication of JP3046929B2 publication Critical patent/JP3046929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は橋梁製品の橋脚に加わる
地震力低減に係わる免震構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation structure for reducing seismic force applied to a pier of a bridge product.

【0002】[0002]

【従来の技術】図12は従来技術に係る橋梁の側面図、
図13は図12のF−F線矢視断面拡大図である。
FIG. 12 is a side view of a bridge according to the prior art.
FIG. 13 is an enlarged cross-sectional view taken along line FF of FIG.

【0003】両図に示すように、従来の橋梁の橋桁は、
床版3を支持する主桁1と橋脚4との間に介設された底
面が球面になっている沓5により支持されている。沓5
には固定沓と可動沓とがあるが、可動沓は橋桁の温度に
よる伸びを吸収するものであり、基本的には橋桁は橋脚
4に固定されている。
[0003] As shown in both figures, the bridge girder of the conventional bridge is:
It is supported by a shoe 5 having a spherical bottom surface provided between the main girder 1 supporting the floor slab 3 and the pier 4. Shoes 5
There are a fixed shoe and a movable shoe, but the movable shoe absorbs the elongation due to the temperature of the bridge girder, and the bridge girder is basically fixed to the pier 4.

【発明が解決しようとする課題】従来の橋梁は、上記の
如く橋桁が橋脚4に固定されているため、地震時には橋
桁の慣性力(橋桁質量×地震加速度)がそのまま橋脚4
の先端(天端)に作用し、過大な曲げモーメントが橋脚
4の付け根に働いて破損することがある。
In the conventional bridge, since the bridge girder is fixed to the pier 4 as described above, at the time of an earthquake, the inertia force of the bridge girder (mass of the bridge girder × the seismic acceleration) remains unchanged.
And the excessive bending moment acts on the base of the pier 4 to cause breakage.

【0004】従って本発明は上記従来技術に鑑み、地震
時における橋梁の橋脚や橋桁等の破損を防止することが
きる橋梁の免震構造を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a seismic isolation structure for a bridge that can prevent damage to a bridge pier, a bridge girder, or the like during an earthquake.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する第1
の発明の橋梁の免震構造は、橋桁と橋脚との間に橋軸方
向、橋軸直角方向及び鉛直方向に対して斜めにばねを配
設し、前記橋桁が前記橋脚の上を橋軸方向及び橋軸直角
方向に滑り得る構造とすると共に、可撓的で塑性変形可
能なストッパーを、その塑性変形によるエネルギ吸収能
力により、前記橋桁の運動範囲を制御して前記橋桁の過
大変位を防止するように配設したことを特徴とする。
A first aspect of the present invention for achieving the above object is as follows.
Seismic isolation of a bridge of the invention is the bridge axis direction between the bridge girder and pier
And a structure in which the bridge girder can slide on the pier in the bridge axis direction and the bridge axis perpendicular direction, and is flexible and plastically deformed. The possible stopper is the energy absorption capacity by its plastic deformation.
The range of movement of the bridge girder is controlled by force to
It is characterized by being arranged so as to prevent large displacement.

【0006】また第2の発明の橋梁の免震構造は、橋桁
と橋脚との間に介設した積層ゴムで前記橋桁を支持する
と共に、摩擦ダンパを前記橋桁と前記橋脚との間に橋軸
方向、橋軸直角方向及び鉛直方向に対し斜めに配設した
ことを特徴とする。また第3の発明の橋梁の免震構造
は、第1の発明の橋梁の免震構造において、前記ストッ
パは、二つのストッパの板厚を変えて衝突時の衝突力を
徐々に強くしたものであることを特徴とする。
According to a second aspect of the present invention , there is provided a seismic isolation structure for a bridge, wherein the bridge girder is supported by a laminated rubber interposed between the bridge girder and the pier, and a friction damper is provided between the bridge girder and the pier. It is arranged diagonally to the direction, the direction perpendicular to the bridge axis and the vertical direction. Also, the seismic isolation structure of the bridge according to the third invention.
In the seismic isolation structure for a bridge according to the first invention,
PA changes the thickness of the two stoppers to reduce the collision force
It is characterized by being gradually strengthened.

【0007】[0007]

【作用】上記第1の発明によれば、地震時おいて橋脚と
橋桁とは橋軸方向及び橋軸直角方向の滑りにより相対変
位が可能であり、橋脚先端には滑り時の摩擦力とばね力
とが働くのみとなる。また、この摩擦力が橋桁と橋脚と
が構成する振動系の減衰力となり、地震時における系の
応答を低減する。またストッパーにより前記滑り時にお
ける橋桁の運動範囲が制御される。
According to the first aspect of the invention, the bridge pier and the bridge girder can be relatively displaced by sliding in the direction of the bridge axis and in the direction perpendicular to the bridge axis during an earthquake, and the frictional force during sliding and the spring force Only power works. This frictional force becomes the damping force of the vibration system formed by the bridge girder and the pier, and reduces the response of the system during an earthquake. The movement range of the bridge girder at the time of the slip is controlled by the stopper.

【0008】また上記第2の発明によれば、地震時にお
いて橋脚と橋桁とは橋軸方向及び橋軸直角方向に相対変
位が可能となり、橋脚先端には積層ゴムのせん断変形時
の復元力と摩擦ダンパの摩擦力とが働くのみとなる。従
って橋脚先端に働く荷重が従来に比べて大幅に低減する
と共に摩擦ダンパが橋脚と橋桁とで構成する振動系の減
衰力として働くため、地震時における系の応答が低減す
る。また上記第3の発明によれば、ストッパの塑性変形
によって橋桁の過大変位を防止する際、二つのストッパ
の板厚を変えたことにより、衝突時の衝突力が徐々に強
くなる。
According to the second aspect of the invention, the pier and the bridge girder can be displaced relative to each other in the direction of the bridge axis and in the direction perpendicular to the bridge axis during an earthquake. Only the frictional force of the friction damper works. Therefore, the load acting on the tip of the pier is greatly reduced as compared with the conventional art, and the friction damper acts as a damping force of the vibration system composed of the pier and the bridge girder, so that the response of the system during an earthquake is reduced. According to the third aspect, the stopper is plastically deformed.
Two stoppers are used to prevent excessive displacement of the bridge girder by
By changing the plate thickness, the collision force at the time of collision gradually increases
It becomes.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づき詳細に
説明する。なお従来技術と同様の部分には同一の符号を
付した。
Embodiments of the present invention will be described below in detail with reference to the drawings. The same parts as those in the prior art are denoted by the same reference numerals.

【0010】〈第1実施例〉図1は本発明の第1実施例
に係る橋梁の側面図、図2は図1のA−A線矢視断面拡
大図、図3は図1のB−B線矢視断面拡大図、図4は図
2のC部断面拡大図、図5は本第1実施例に係る橋梁の
効果を示す説明図である。
<First Embodiment> FIG. 1 is a side view of a bridge according to a first embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view taken along the line AA of FIG. 1, and FIG. FIG. 4 is an enlarged cross-sectional view taken along line B of FIG. 2, FIG. 4 is an enlarged cross-sectional view of a portion C in FIG. 2, and FIG.

【0011】図1から図3に示すように、橋脚4の天端
20の主桁1間に設けた取付金具12と、主桁1と横桁
2とのコーナ部に設けた取付金具13との間にコイルば
ね11を各々配設しており、これらのコイルばね11は
橋軸方向、橋軸直角方向及び鉛直方向の3方向に対して
斜めになっている。
As shown in FIGS. 1 to 3, a mounting bracket 12 provided between the main girders 1 at the top end 20 of the pier 4 and a mounting bracket 13 provided at the corners of the main girder 1 and the horizontal girder 2 are provided. The coil springs 11 are disposed between the coil springs 11, and these coil springs 11 are inclined with respect to three directions of a bridge axis direction, a direction perpendicular to the bridge axis, and a vertical direction.

【0012】また図4に示すように、主桁1の下部には
すべり沓14を設け、橋脚4の天端20にはすべり板1
5を設けている。すべり沓14は、すべり板15の上に
設置されると共に、カバー16及び防塵カバー19によ
って覆われている。カバー16内には板厚が薄いストッ
パー17と、板厚が厚いストッパー18とが片持ち支持
されている。
As shown in FIG. 4, a sliding shoe 14 is provided below the main girder 1, and a sliding plate 1 is mounted on the top end 20 of the pier 4.
5 are provided. The sliding shoe 14 is installed on a sliding plate 15 and is covered by a cover 16 and a dustproof cover 19. A stopper 17 having a small thickness and a stopper 18 having a large thickness are cantilevered in the cover 16.

【0013】従って上記構成の第1実施例に係る橋梁に
よれば、橋桁と橋脚4との間にはコイルばね11が3方
向に対し斜め方向に配され、且つ橋脚天端20に設けら
れたすべり板15の上にすべり沓14が設置されている
ため、地震時おいて橋脚4と橋桁とは橋軸方向及び橋軸
直角方向の滑りにより相対変位が可能になると共に橋桁
の浮き上がりを防止することができ、橋脚先端には滑り
時の摩擦力とばね力とが働くのみとなる。また、この摩
擦力が橋桁と橋脚4とが構成する振動系の減衰力とな
り、地震時における系の応答を低減する。
Therefore, according to the bridge according to the first embodiment having the above structure, the coil springs 11 are arranged obliquely to the three directions between the bridge girder and the pier 4 and are provided at the pier top 20. Since the sliding shoe 14 is installed on the sliding plate 15, the pier 4 and the bridge girder can be relatively displaced by the sliding in the bridge axis direction and the direction perpendicular to the bridge axis and prevent the bridge girder from rising during an earthquake. Therefore, only the frictional force during sliding and the spring force act on the tip of the pier. Further, this frictional force becomes a damping force of the vibration system formed by the bridge girder and the pier 4, and reduces the response of the system during an earthquake.

【0014】図5にこの系の周波数応答曲線の例を示す
ように、本第1実施例に係る橋梁の免震構造では、橋脚
天端20の変位あるいは橋脚付け根の応力を従来構造に
比べて1/4〜1/6に低減することが可能である。
FIG. 5 shows an example of a frequency response curve of this system. In the seismic isolation structure of the bridge according to the first embodiment, the displacement of the pier top 20 or the stress of the pier base is compared with the conventional structure. It can be reduced to 1/4 to 1/6.

【0015】また、過大な橋桁の変位を防止するために
すべり沓14のカバー16にはストッパー17とストッ
パー18とが設けられており、更なる過大な変位防止と
してカバー16が機能し、また橋桁の落下防止として取
付金具12が機能する。ストッパー17とストッパー1
8とは、板厚を変えて衝突時の衝突力を徐々に強くする
と共に変形し易い片持ちとし、塑性変形によるエネルギ
ー吸収能力を持たせて、橋桁の過大変位を防止する。
In order to prevent excessive displacement of the bridge girder, a stopper 17 and a stopper 18 are provided on the cover 16 of the sliding shoe 14, and the cover 16 functions as a further excessive displacement prevention. The mounting bracket 12 functions as a fall prevention device. Stopper 17 and stopper 1
8 is to change the plate thickness to gradually increase the collision force at the time of collision and to make the cantilever easily deformable, to have an energy absorbing ability by plastic deformation, and to prevent excessive displacement of the bridge girder.

【0016】以上のことから、地震時における橋脚4の
破損、すべり沓14の破損及びすべり沓取付部の主桁1
の破損等を防止することができる。
From the above, the damage of the bridge pier 4, the damage of the sliding shoe 14, and the main girder 1 of the sliding shoe mounting portion at the time of the earthquake.
Can be prevented from being damaged.

【0017】〈第2実施例〉図6は本発明の第2実施例
に係る橋梁の側面図、図7は図6のD−D線矢視断面拡
大図、図8は図6のE−E線矢視断面拡大図、図9は摩
擦ダンパの一例を示す断面図、図10は積層ゴムの一例
を示す一部破断の側面図、図11は本第2実施例に係る
橋梁の効果を示す説明図である。
<Second Embodiment> FIG. 6 is a side view of a bridge according to a second embodiment of the present invention, FIG. 7 is an enlarged cross-sectional view taken along line DD of FIG. 6, and FIG. FIG. 9 is a sectional view showing an example of a friction damper, FIG. 10 is a partially broken side view showing an example of a laminated rubber, and FIG. 11 is a view showing the effect of the bridge according to the second embodiment. FIG.

【0018】図6から図8に示すように、橋桁の主桁1
と橋脚4との間に介設した積層ゴム24により主桁1を
支持している。また、橋脚4の天端の主桁1間に設けた
取付金具22と、主桁1と横桁2とのコーナ部に設けた
取付金具23との間に摩擦ダンパ21を各々配設してお
り、これらの摩擦ダンパ21は橋軸方向、橋軸直角方向
及び鉛直方向の3方向に対して斜めになっている。
As shown in FIGS. 6 to 8, the main girder 1 of the bridge girder
The main girder 1 is supported by the laminated rubber 24 interposed between the main girder 4 and the pier 4. Further, friction dampers 21 are provided between a mounting bracket 22 provided between the main girders 1 at the top end of the pier 4 and a mounting bracket 23 provided at the corners of the main girder 1 and the horizontal girder 2. These friction dampers 21 are inclined with respect to three directions of a bridge axis direction, a direction perpendicular to the bridge axis, and a vertical direction.

【0019】なお、ここで使用する摩擦ダンパ21及び
積層ゴム24は市販品であり、これらの構造の一例を図
9及び図10に示す。図9に示す摩擦ダンパ21は、外
筒21a内にロッド21dが挿入されており、このロッ
ド21dの先端側と基端側との間に摩擦リング21b、
押え板21c及び皿ばね21eが設けられている。また
図10に示す積層ゴム24は、フランジ24a,24d
間に鉄板24bとゴム24cとが交互に積層されてい
る。
The friction damper 21 and the laminated rubber 24 used here are commercially available products, and an example of their structure is shown in FIGS. 9 and 10. In a friction damper 21 shown in FIG. 9, a rod 21d is inserted into an outer cylinder 21a, and a friction ring 21b is provided between a distal end side and a proximal end side of the rod 21d.
A holding plate 21c and a disc spring 21e are provided. Further, the laminated rubber 24 shown in FIG.
The iron plates 24b and the rubbers 24c are alternately laminated between them.

【0020】従って上記構成の第2実施例に係る橋梁に
よれば、橋桁を支持している積層ゴム24は鋼板24b
とゴム24cとが交互に積層されているため、高荷重に
耐え得ると共に大きなせん断変形を許容し得る。また、
摩擦ダンパ21は橋桁と橋脚4との間に橋軸方向及び橋
軸直角方向に対し斜めに配され、且つ取付部が球面軸受
となっているため、地震時において橋脚4と橋桁とは橋
軸方向及び橋軸直角方向に相対変位が可能となり、橋脚
先端には積層ゴム24のせん断変形時の復元力と摩擦ダ
ンパ21の摩擦力とが働くのみとなる。従って、橋脚先
端に働く荷重が大幅に低減すると共に、摩擦ダンパ21
が橋脚4と橋桁で構成する振動系の減衰力として働くた
め、地震時における系の応答が低減する。
Therefore, according to the bridge according to the second embodiment having the above structure, the laminated rubber 24 supporting the bridge girder is made of a steel plate 24b.
Since the rubber and the rubber 24c are alternately laminated, it is possible to withstand a high load and to allow a large shear deformation. Also,
Since the friction dampers 21 are arranged obliquely between the bridge girder and the pier 4 with respect to the bridge axis direction and the direction perpendicular to the bridge axis, and the mounting portion is a spherical bearing, the bridge pier 4 and the bridge girder are connected to each other in an earthquake. Relative displacement in the direction and in the direction perpendicular to the bridge axis, and only the restoring force of the laminated rubber 24 at the time of shear deformation and the friction force of the friction damper 21 act on the tip of the pier. Therefore, the load acting on the tip of the pier is greatly reduced, and the friction damper 21
Acts as a damping force of the vibration system composed of the pier 4 and the bridge girder, and the response of the system during an earthquake is reduced.

【0021】図11にこの系の周波数応答曲線の例を示
すように、本第2実施例に係る橋梁の免震構造では、橋
脚天端の変位あるいは橋脚付け根の応力を従来構造に比
べ1/3〜1/4に低減することが可能である。また、
取付金具22により桁端から橋脚天端縁までの距離が増
し、これが落橋防止としても機能する。
FIG. 11 shows an example of a frequency response curve of this system. In the seismic isolation structure for a bridge according to the second embodiment, the displacement of the pier top or the stress at the pier root is reduced by 1 / compared to the conventional structure. It can be reduced to 3 to 1/4. Also,
The mounting bracket 22 increases the distance from the end of the girder to the top edge of the pier, which also functions as bridge prevention.

【0022】〈第3実施例〉第3実施例に係る橋梁は、
図1において、両外側の主桁1では上記第1実施例のよ
うにコイルばね11とすべり沓14及びすべり板15の
構成とし、内側の2本の主桁1では上記第2実施例のよ
うに積層ゴム24と摩擦ダンパ21の構成とする。
<Third Embodiment> A bridge according to a third embodiment is as follows.
In FIG. 1, both outer main girders 1 have the configuration of the coil spring 11, the sliding shoe 14, and the sliding plate 15 as in the first embodiment, and the inner two main girders 1 have the same structure as in the second embodiment. First, the laminated rubber 24 and the friction damper 21 are configured.

【0023】従って上記構成の第3実施例に係る橋梁で
は、両外側の主桁1においては上記第1実施例の作用と
同じであり、内側の2本の主桁1においては上記第2実
施例の作用と同じである。また、本第3実施例の効果と
しては、上記第1実施例の効果と上記第2実施例の効果
の中間程度である。
Accordingly, in the bridge according to the third embodiment having the above-described structure, the operation of the first embodiment is the same at the outer main girder 1 on both sides, and the operation of the second embodiment is performed at the inner two main girder 1. This is the same as the operation of the example. The effect of the third embodiment is approximately intermediate between the effect of the first embodiment and the effect of the second embodiment.

【0024】[0024]

【発明の効果】以上実施例と共に具体的に説明したよう
に本発明によれば、地震時における橋脚に作用する地震
力を低減することができ、橋脚の破損や主桁の破損等を
防止することができる。このため復旧工事及び復旧まで
の流通等の損害を防止できる。
According to the present invention, the seismic force acting on the pier during an earthquake can be reduced and damage to the pier and main girder can be prevented. be able to. Therefore, damages such as restoration work and distribution until restoration can be prevented.

【0025】また橋脚の過大な補強及び強度アップが不
必要となり、高架橋のコスト低減が可能となる。
In addition, it is not necessary to reinforce the bridge pier excessively and to increase the strength, and it is possible to reduce the cost of the viaduct.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る橋梁の側面図であ
る。
FIG. 1 is a side view of a bridge according to a first embodiment of the present invention.

【図2】図1のA−A線矢視断面拡大図である。FIG. 2 is an enlarged cross-sectional view taken along line AA of FIG.

【図3】図1のB−B矢視断面拡大図である。FIG. 3 is an enlarged cross-sectional view taken along the line BB of FIG. 1;

【図4】図2のC部断面拡大図である。FIG. 4 is an enlarged cross-sectional view of a portion C in FIG. 2;

【図5】本発明の第1実施例に係る橋梁の効果を示す説
明図である。
FIG. 5 is an explanatory diagram showing an effect of the bridge according to the first embodiment of the present invention.

【図6】本発明の第2実施例に係る橋梁の側面図であ
る。
FIG. 6 is a side view of a bridge according to a second embodiment of the present invention.

【図7】図6のD−D線矢視断面拡大図である。FIG. 7 is an enlarged cross-sectional view taken along line DD in FIG. 6;

【図8】図6のE−E線矢視断面拡大図である。FIG. 8 is an enlarged cross-sectional view taken along line EE in FIG. 6;

【図9】摩擦ダンパの一例を示す断面図である。FIG. 9 is a cross-sectional view illustrating an example of a friction damper.

【図10】積層ゴムの一例を示す一部破断の側面図であ
る。
FIG. 10 is a partially broken side view showing an example of a laminated rubber.

【図11】本発明の第2実施例に係る橋梁の効果を示す
説明図である。
FIG. 11 is an explanatory diagram showing an effect of the bridge according to the second embodiment of the present invention.

【図12】従来技術に係る橋梁の側面図である。FIG. 12 is a side view of a bridge according to the related art.

【図13】図12のF−F線矢視断面拡大図である。FIG. 13 is an enlarged cross-sectional view taken along line FF of FIG.

【符号の説明】[Explanation of symbols]

1 主桁 2 横桁 3 床版 4 橋脚 11 コイルばね 12 取付金具 13 取付金具 14 すべり沓 15 すべり板 16 カバー 17 ストッパー 18 ストッパー 19 防塵カバー 20 橋脚天端 21 摩擦ダンパ 22 取付金具 23 取付金具 24 積層ゴム DESCRIPTION OF SYMBOLS 1 Main girder 2 Cross girder 3 Floor slab 4 Bridge pier 11 Coil spring 12 Mounting bracket 13 Mounting bracket 14 Slip shoe 15 Slip board 16 Cover 17 Stopper 18 Stopper 19 Dustproof cover 20 Bridge pier top end 21 Friction damper 22 Mounting bracket 23 Mounting bracket 24 Lamination Rubber

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 橋桁と橋脚との間に橋軸方向、橋軸直角
方向及び鉛直方向に対して斜めにばねを配設し、前記橋
桁が前記橋脚の上を橋軸方向及び橋軸直角方向に滑り得
る構造とすると共に、可撓的で塑性変形可能なストッパ
ーを、その塑性変形によるエネルギ吸収能力により、
記橋桁の運動範囲を制御して前記橋桁の過大変位を防止
するように配設したことを特徴とする橋梁の免震構造。
1. A bridge axis direction between a bridge girder and a pier, at a right angle to the bridge axis.
A spring is disposed obliquely to the direction and the vertical direction, and the bridge girder has a structure capable of sliding on the pier in the bridge axis direction and the direction perpendicular to the bridge axis, and a flexible and plastically deformable stopper , A seismic isolation structure for a bridge, wherein the bridge girder is disposed so as to prevent an excessive displacement of the bridge girder by controlling a range of movement of the bridge girder by an energy absorbing ability by the plastic deformation .
【請求項2】 橋桁と橋脚との間に介設した積層ゴムで
前記橋桁を支持すると共に、摩擦ダンパを前記橋桁と前
記橋脚との間に橋軸方向、橋軸直角方向及び鉛直方向に
対し斜めに配設したことを特徴とする橋梁の免震構造。
2. The bridge girder is supported by a laminated rubber interposed between the bridge girder and the pier, and a friction damper is provided between the bridge girder and the pier in a bridge axis direction, a direction perpendicular to the bridge axis, and a vertical direction. A seismic isolation structure for bridges, which is installed diagonally.
【請求項3】 請求項1に記載する橋梁の免震構造にお3. The seismic isolation structure of a bridge according to claim 1,
いて、And 前記ストッパは、二つのストッパの板厚を変えて衝突時The stopper changes the thickness of the two stoppers during a collision.
の衝突力を徐々に強くしたものであることを特徴とするCharacterized by gradually increasing the collision force of
橋梁の免震構造。Seismic isolation structure of bridge.
JP7150443A 1995-06-16 1995-06-16 Bridge seismic isolation structure Expired - Fee Related JP3046929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7150443A JP3046929B2 (en) 1995-06-16 1995-06-16 Bridge seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7150443A JP3046929B2 (en) 1995-06-16 1995-06-16 Bridge seismic isolation structure

Publications (2)

Publication Number Publication Date
JPH093822A JPH093822A (en) 1997-01-07
JP3046929B2 true JP3046929B2 (en) 2000-05-29

Family

ID=15497052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7150443A Expired - Fee Related JP3046929B2 (en) 1995-06-16 1995-06-16 Bridge seismic isolation structure

Country Status (1)

Country Link
JP (1) JP3046929B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190683B1 (en) 1996-09-03 2001-02-20 Lintec Corporation Blackhead-removing face pack sheet
US6562357B2 (en) 1998-06-10 2003-05-13 Lintec Corporation Blackhead removing sheet and method for producing blackhead removing sheet
CN109778684A (en) * 2019-02-23 2019-05-21 浙江华锦建筑装饰设计有限公司 A kind of shock-absorbing bridge support

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4938577B2 (en) * 2006-07-26 2012-05-23 三井住友建設株式会社 Bridge reinforcement structure
JP4336857B1 (en) * 2008-04-17 2009-09-30 国立大学法人鳥取大学 Bridge group with shock absorber and shock absorbing method thereof
JP2015101866A (en) * 2013-11-22 2015-06-04 Jfeシビル株式会社 Vibration control reinforcing structure of bridge
JP6476055B2 (en) * 2014-04-30 2019-02-27 首都高速道路株式会社 Seismic structure for bridges
JP6249872B2 (en) * 2014-04-30 2017-12-20 新日鉄住金エンジニアリング株式会社 Sliding bearing and seismic isolation structure
JP6476054B2 (en) * 2014-04-30 2019-02-27 首都高速道路株式会社 Seismic structure for bridges
JP6344836B2 (en) * 2014-05-02 2018-06-20 首都高速道路株式会社 A damper used for the earthquake-resistant structure of a bridge and a method for restoring the earthquake-resistant structure.
JP6513387B2 (en) * 2014-12-19 2019-05-15 西日本高速道路株式会社 Vibration control device for girder bridge and reinforcement method for girder bridge
JP6508819B2 (en) * 2015-02-10 2019-05-08 首都高速道路株式会社 Vibration control structure for bridge and setting method of vibration control structure for bridge
JP6594062B2 (en) * 2015-06-29 2019-10-23 首都高速道路株式会社 Slide mechanism of bridge seismic device
JP6846313B2 (en) * 2017-08-25 2021-03-24 オイレス工業株式会社 Superstructure bearing structure
CN108532450B (en) * 2018-04-25 2019-07-23 云南武易高速公路建设指挥部 A kind of continuous bridge preloaded spring temporary consolidation device
CN109898404B (en) * 2019-04-18 2021-06-04 莆田市三龙恒基建材有限公司 Assembled bridge structure
CN110863423B (en) * 2019-11-28 2021-12-14 苏交科集团股份有限公司 Bridge butt joint anti-seismic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190683B1 (en) 1996-09-03 2001-02-20 Lintec Corporation Blackhead-removing face pack sheet
US6562357B2 (en) 1998-06-10 2003-05-13 Lintec Corporation Blackhead removing sheet and method for producing blackhead removing sheet
CN109778684A (en) * 2019-02-23 2019-05-21 浙江华锦建筑装饰设计有限公司 A kind of shock-absorbing bridge support

Also Published As

Publication number Publication date
JPH093822A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
JP3046929B2 (en) Bridge seismic isolation structure
JP4545920B2 (en) Seismic isolation system for bridges
JP4336857B1 (en) Bridge group with shock absorber and shock absorbing method thereof
JPH10280660A (en) Base isolation device and friction damper for base isolation device
JPH08284114A (en) Response control device for bridge
JP3854108B2 (en) Bridge seismic isolation device
JP2002070943A (en) Slip support device for base isolation
JP2001106455A (en) Elevator guide rail supporting device
JPH10159022A (en) Device for positioning at least one fixed point in civil engineering structure and its use
JPH0949209A (en) Vibration isolation method of bridge and construction of vibration isolation
JP3159643B2 (en) Seismic isolation bridge prevention device
JPH11293685A (en) Base isolation structure of construction
JP3146258B2 (en) Bridge bearing device
JP3185678B2 (en) Seismic isolation device
JP2547619Y2 (en) Structure seismic isolation device
JP3799450B2 (en) Seismic isolation isolator fastening method
JP2968469B2 (en) Articulated seismic isolation bridge prevention device
JP2801693B2 (en) Laminated rubber bearing
JPH02104834A (en) Response control device
JP3397678B2 (en) Damping structure for structures
JP2546071Y2 (en) Bridge girder damping device
JP2006125100A (en) Quake-absorbing damper structure
JPH05140911A (en) Vibration damping structure for bridge
JP3615625B2 (en) Bridge telescopic device
JP2662774B2 (en) Seismic isolation bearing structure for structures

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000215

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees